

Abstract

We present a formal verification of a control algorithm from the
literature for a four-cylinder four-stroke engine in the cutoff
mode. The controlled system is modeled, simulated and verified
using CheckMate, a tool for formal verification of hybrid systems
developed at Carnegie Mellon University. CheckMate
automatically constructs a polyhedral-invariant hybrid automaton
(PIHA) from a Matlab/Simulink model of the hybrid system and
performs the verification using discrete model approximations.
This case study illustrates how verification can be performed
directly on a model of the hybrid system dynamics without first
constructing an approximation to the continuous dynamics using
timed automata or so-called linear hybrid automata models.

Index Terms: hybrid systems, formal verification, finite-state
approximations

1 Introduction

Recently, a tool called CheckMate was developed at
Carnegie Mellon University to perform simulation and
verification of a class of hybrid dynamic systems. This
paper presents the application of CheckMate to an
automotive control problem described in [1] and [2]. Our
objective is to demonstrate the features of CheckMate and
its application to practical problems. CheckMate deals
with a class of hybrid systems called threshold-event-
driven hybrid systems (TEDHS) for which a verification
procedure was proposed in [3]. In a TEDHS the changes in
the discrete state can occur only when continuous state
variables encounter specified thresholds.
 CheckMate models are constructed using a custom
graphical user interface (GUI) in the MATLAB Simulink
environment. Thresholds in the TEDHS model are
hyperplanes. Given the Simulink model, CheckMate
constructs an equivalent hybrid automaton, which is the
basis for the formal verification procedure. The key
theoretical concepts used in CheckMate are described in
[4] and [8].
 We present a CheckMate model a four-cylinder four-
stroke engine and its controller (initially presented in [1]).
The problem is to verify properties of an event-driven
control law that schedules air/fuel injection when the

driver has released the throttle while the car is moving.
This is the so-called cut-off mode. The objective is to
minimize the mechanical oscillations as the car
decelerates. Using the formulation of the resulting
verification problem described in [1] and [2], we illustrate
how CheckMate can be applied directly to the dynamic
model of the hybrid system. This is in contrast to the
application of the tool HyTech presented in [2] for this
problem, which requires significant effort to first develop a
linear hybrid system model of the system dynamics.
 The following section gives an overview of the
CheckMate user interface and the verification procedure
implemented in CheckMate. Section 3 describes the model
of the automotive cutoff mode dynamics and control
algorithm. Section 4 presents the CheckMate model for the
cutoff mode control algorithm and section 5 presents the
verification results. Section 6 summarizes the results of
this case study and describes some directions of current
research on extending the capabilities of the CheckMate
tool. The latest version of CheckMate can be downloaded
from the CheckMate webpage at http://go.to/CheckMate.

2 Overview of CheckMate

CheckMate is a formal verification tool developed in
Matlab/Simulink for TEDHSs with thresholds defined by
hyperplanes. TEDHSs are modeled using Simulink block
diagrams. The model is then converted into a polyhedral-
invariant hybrid automaton (PIHA), used for verification.
The resulting PIHA is equivalent to the original TEDHS
within a bounded region of the continuous state space
called the analysis region. The system specification is
expressed as an ACTL formula [7], a restriction of the
CTL (Computation Tree Logic). For the theoretical
background of CheckMate, see [3] and [8].

A. CheckMate GUI

The CheckMate GUI is based on Matlab/Simulink using
customized blocks. The components of a TEDHS model
are switched continuous system blocks (SCSBs),
polyhedral threshold blocks (PTHBs) and finite state
machine blocks (FSM). Figure 1 shows a CheckMate block
diagram.

Formal Verification of Hybrid Systems Using
CheckMate: A Case Study

B. Izaias Silva and Bruce H. Krogh
Dept. of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Izaias@cmu.edu/krogh@ece.cmu.edu

C*x <= d

upper_bound

q

updown

C*x <= d

lower_bound

continuous

MuxMux1

Figure 1. A CheckMate block diagram.

Switched Continuous System Block (SCSB)

A SCSB models continuous dynamics with state equations
that are selected according to the value of a discrete input
signal. Three types of state equations are supported, clocks
(pure integrators), affine (bAxx +=

�
), and nonlinear

()x(fx =
�

). The routine used to approximate the

reachability set in the verification procedure is selected
according to the type of dynamics in the SCSBs.

Polyhedral Threshold Block (PTHB)

A PTHB represents a convex polyhedron parameterized by
the matrix-vector pair (C,d). The input is a continuous state
vector x and the output is a Boolean signal indicating
whether or not the continuous state x lies within the
polyhedron Cx ≤d. The input must be a single vector of
SCSBs outputs. If necessary, outputs from multiple SCSBs
must be combined using a Simulink MUX block to form a
single vector as an input to a PTHB.

Finite State Machine (FSMB)

A FSMB block is a statechart block from the MATLAB
Stateflow Toolbox with the following restrictions:

• Event Inputs: Each component of the event input vector
must be a logical function of the outputs of PTHBs.

• Each input signal must be a logical function of the
outputs of PTHBs or FSMBs.

• Output: Only one discrete data output is allowed.

• The Stateflow diagram must contain no hierarchy. Each
state in a Stateflow diagram must assign a unique value
to the data output in its entry action. No other action is
permitted on any state or transition label.

Standard Simulink Blocks

• For simulation, any Simulink/StateFlow block can be
used. For example, a step signal generator block can
be used to create initializing events for the FSMB, and
scope blocks used to plot simulation trajectories.

• For verification, logical operators (AND, OR, XOR,
etc) and signal MUX/DEMUX blocks can be used to
construct the TEDHS model.

B. CheckMate Verification Procedure

Verification in CheckMate is based on the theory of
approximate quotient transition systems (AQTSs) for
hybrid automata [8]. Given an ACTL expression,
CheckMate verifies whether it is true for an AQTS, which
is a conservative (outer) approximation to the sequential
behavior of the hybrid automaton. If the assertion is true
for the AQTS, it is true for the hybrid automaton. If it is
not true, a less conservative AQTS can be constructed and
the verification can be tried again. CheckMate handles
polyhedral-invariant hybrid automata (PIHA), which are
automata with invariants defined by the hyperplanes
defining guards for the events leaving each discrete state
(or location). Figure 2 illustrates the steps in the
verification procedure. The first step in the verification
procedure is to construct a PIHA that is equivalent to the
TEHDS modeled by the CheckMate block diagram. In the
current implementation, the locations in the PIHA
correspond to cells in the continuous state space defined by
the hyperplanes in the PTHBs. The continuous dynamics
associated with each PIHA location and the PIHA events
are guards are inferred from the logic in the FSMBs in the
CheckMate model.
 The next step is to create an initial partition of the
hyperplane faces for the PIHA invariants. The elements of
this partition become the states in the first AQTS. The
transitions in the AQTS are computed using flowpipe
approximations that are conservative approximations to
the flows (reachable states) of the continuous dynamics
leaving each AQTS state. Transitions are introduced when
the entry states from one location can lead to the entry
states of another location.
 Given the AQTS for a partition of the PIHA
invariants, along with an ACTL expression, verification is
performed using fixed-point computations on the ACTL
state space. If the ACTL expression is found false, the
approximation could be too conservative. In this case,
CheckMate has a procedure for refining the invariant
partitions and computing a new AQTS, and the verification
can be attempted again. As shown in Figure 2, CheckMate
tests to see if the current AQTS is a bisimulation, in which
case the AQTS is an exact, rather than approximate,
representation of the hybrid system dynamics and the
verification on the AQTS is conclusive.

Figure 2. The CheckMate verification procedure.

P2 ∈ { 0,1}

FSMB

PTHB

SCSB

P1 ∈ { 0,1} X ∈ Rn

q ∈ Zm

Y

Y

Verification

AQTS

STOP: Specification is false

Test for
Bisimulation

STOP:
Specification

is true

N

N

Construct PIHA

Initial Partition

Refine Partition

3 Cutoff Control Problem

The cutoff-mode control problem is described in [1] and
[2]. The control objective is to reach injection cutoff while
minimizing acceleration oscillations. The model can be
divided into two sub-systems: the driveline model and the
hybrid cylinder model.

A. Driveline Model

The driveline model deals with the physical variables of
the car engine. The original continuous model was
developed by Magnetti-Marelli [2]. The physical state
variables are: z1 (engine block angle (radians)), z2 (wheel
revolution speed (radians/s)), z3 (axle torsion angle
(radians)), z4 (crankshaft revolution speed (rpm)), and φ
(crankshaft angle (degrees)). The parameters for the
system can be found in [2]. According to [1] the oscillation
in the system can be studied in the two-dimensional space
of state variables x2 and x3 in a system obtained by a
similarity transformation. Thus, the design in [1] is derived
using the system sub-matrices









−
−−

=
3216.3736.25

736.253216.3
A23 b23

T = [26.3824 -34.9729].

The crankshaft angle rate depends on all of the state
variables, but the influence of state variables x1 and x4 can
be reduced to a constant input by evaluating their average
values from simulations.

B. Hybrid cylinder model

In a four-cylinder four-stroke engine there are four discrete
states for each cylinder: exhaust, intake, compression and
combustion. The state of each cylinder changes when the
crankshaft angle satisfies mod(φ,180) = 0 which defines
the phase_change event. The finite state machine in Fig. 3
shows this discrete-state behavior.

C. Cut-off Mode Control Law

Torque is supplied in the combustion phase when fuel has
been injected at the intake phase. The controller must
decide whether or not to inject fuel for a particular cylinder
during when the cylinder is in its exhaust phase. Therefore,
the effect of a control decision is realized three cycles after
the decision is made. We introduce the following notation.
Let u(k) denote the value of the control decision
determining whether or not there will be torque from the
combustion phase after the kth phase change. The value of
u(k) is either 0 (no torque) or a constant m =10Nm
(torque). At phase change k, the controller must choose the
value of u(k+3). The cut-off mode control law uses a
predictive model to evaluate at each exhaust phase whether
or not to inject fuel on the subsequent intake phase. Let the
state vector be x = [x2 x3]

T, and let x(k) denote the value of
the state vector at the kth phase_change event. The
predicted values of the state for the next four phase

changes are denoted x(1/k),...,x(4/k). We have then that
x(4/k) = P4x(k) + P3qu(k) + P2qu(k+1) +Pqu(k+2)
+qu(k+3), where T=0.00642271sec is the sampling rate, P
= exp(A23T), q = A23

-1(P - Ι)b23 and the values of u(k),
u(k+1), and u(k+2) are already determined. Torque
decisions in the cutoff mode are taken according to
“comfort criteria.” In [2] these criteria are translated into
the following rule:

î



 ≤=+

otherwisem

kmxTkxTifku |)/4(||)/4(|0)3(
0 γγ ,

where γΤ=[0.783, -0.621] and x0(4/k) and xm(4/k) are the
predicted state values for u(k+3)=0 and m, respectively.

Figure 3 - States for one cylinder.

D. The Verification Problem

Figure 4 shows a trajectory for x(0) = [74.3275,-39.7538]
and φ0 = 00. We focus on the region where the system
starts to chatter, which continues until the state enters a
ball of radius ρ. At that point fuel injection ceases and free
evolution behavior takes place [1]. We show the region of
interest for formal verification in Fig where d = 2.74 and h
= 8.8762. The initial set is (x2,x3) ∈ ([6.6, 6.9] x
[9.9,10.4]). The objective of the verification is to show that
the trajectory does not cross the boundaries of the
verification region a distance d from the switching line
before reaching the “ finish line” in Fig. 5. The trajectories
shown in Fig. 5 are simulations starting at the four corners
of the set of initial states. These trajectories are insufficient
to verify that no trajectories will leave the verification
region due to the nonlinearities introduced by the
switching rules.

4 CheckMate Model

The CheckMate model for the cutoff control system
comprises driveline dynamics, angle modulation and
torque decision/prediction models. Figure 6 shows a
CheckMate block diagram for this system. In this section,
we describe the details of this diagram.

A. Driveline Dynamics model

The driveline dynamics are modeled in a SCSB with two
modes representing the free evolution when there is no
torque and the force evolution when there is torque. There
are three state variables, x2, x3, and φ. The mode is selected
by the discrete output coming from the FSM.

Phase_change

Phase_change

Phase_change

Phase_change

Exhaust Intake

Combustion Compression

B. Angle Modulation

Two PTHBs reach_zero and reach_180 generate events
when the torque angle φ crosses 00 or 1800 . An FSM
receives the output of PTHB and generates event

phase_change, which toggles the sign of φ
�
 in the

continuous dynamics.

Figure 4. Simulation of the system.

C. Torque decision and Prediction

The controller behavior consists of a FSM shown in Fig. 7
that keeps track of the three torque input values that have
already been decided. The states in this FSM are labeled
h000, h001, h010, h011, h100, h101, h110 and h111
corresponding the eight possible on-off values for the
controls u(k),u(k+1),u(k+2). From each state there are two
possible transitions. To represent the decision logic, we
consider the following predicates:
A : γTx0(4/k) ≥ 0
B : γTxm(4/k) ≥ 0
C : γTx0(4/k) ≥ γTxm(4/k)
D : γTx0(4/k) ≤ - γTxm(4/k).
In terms of these predicates, the control u(k+3)=m if and
only if the following predicate is true:

S(A,B,C,D)=ABC + (~A)BD + A~B~D + ~A~B~C

Letting h =P3qu(k)+P2qu(k+1) + Pqu(k+2) G= P4, j = qm

A : - γTP4 x0 ≤ γTh
B : - γTP4 x0 ≤ γTh + γTqm
C: γTqm ≤ 0.
D : 2 γTP4 x0≤-2γTh - γTqm

Observing that: γTqm > 0, A

�
 B, ~D � B and D � ~A

we can reduce S(A,B,C,D) = S(D) = D. In other words,
only predicate D is necessary to make the control decision.
Figure 8 shows the torque decision regions depending on
the prediction for the next three states: the white (black)
region means proposition D is false (true).

D. Simulation and Validation using CheckMate

For this example, the ACTL specification is
AF(angle==cross_finish_line)& (AG~out_of_bound)). It
says: “eventually” the system will cross the line named
“ finish line” and “never” go out of the “out_of_bound”
box (the region is presented in Fig. 5). With CheckMate it
is possible simulate and check if the specification (in
ACTL) is satisfied by trajectories starting at vertices of the
initial state set. Simulated trajectories are shown in Fig. 5.

Figure 5. Sliding mode of the Cutoff control System.

s ta rt

C *x <= d

reac h_z ero

C *x <= d

reac h_180

h000

h001

h010

h011

h100

h101

h110

h111

q

pred ic to r

N O T

not2

N O T

not1

C *x <= d

h111

C *x <= d

h110

C *x <= d

h101

C *x <= d

h100

C *x <= d

h011

C *x <= d

h010

C *x <= d

h001

C *x <= d

h000

C *x <= d

f in is h_ line

d riv el ine

X O Rang le_ trigge r

q

ang le

NO TN O T

M ux

M 4

M ux M 3

M uxM 1

Figure 6. CheckMate model for cutoff control System.

5 Verification using CheckMate

The verification of the cutoff control system was done
using the same parameters presented in [1]. The initial
condition set is: (x2, x3) ∈ [6.6,6.9]x[9.9,10.4], φ = 0.1.

0)0(>φ
�

. We started in the discrete state “110” , reflecting

the torque decisions already stored at the initial state.
 The verification was successful. Table 1 presents
some of the data from the verification. The elapsed time
was 111 minutes (on a 600MHz PC). No refinements were
necessary; the verification was true for the first AQTS.
 Figure 9 shows the sets if reachable states in the x2-x3
plane at the switching instants. Note that these sets include
points that would not be predicted from the simulations in
Fig. 5 starting from the vertices of the initial state set.

x(0)

x3

x2

d

d

h

Finish line

 Out-of_bound
 Finish_line

Figure 7. FSM predictor.

Figure 8. Decision mapping regions.

6 Concluding Remarks

This paper presents a case study applying CheckMate, a
new tool for computer-aided verification of hybrid
systems. We verified the correctness of a cutoff control
system for a combustion engine using a model and data
from the literature. This study demonstrates the following:

1) CheckMate deals directly with the system dynamics,
rather than constructing a simplified model using
linear or timed automata as required by other tools;

2) With Checkmate it is possible to simulate the system
behavior for selected initial conditions. This is a quick
and powerful way to debug the model, reason about
the system, and obtain preliminary verification results.

 In the course of doing this case study, we developed a
new method in CheckMate for constructing the AQTS for
systems affine continuous dynamics that improved the

computation time dramatically. Details of this method will
be published elsewhere. Current research is focusing on
verification of sampled-data hybrid systems and methods
for reducing the size and complexity of the PIHA
representation of a given TEDHS.

Hyperplanes 11 Cells 42
PIHA locations 288 Discrete states 288
Refinements None Time elapsed 111 m

Table 1. Verification data.

Figure 9. Reachable set (partial 2D view).

Bibliography
[1] Balluchi, A. et al., Hybrid Control for Automotive Engine

Management: The Cut-Off Case. In HSCC 98: Hybrid Systems -
Computation and Control, Lecture Notes in computer Science 1386,
Springer- Verlag, 1998.

[2] Villa, T. et al., Formal Verification of an Automotive Engine
Controller in Cutoff Mode, Proc. of the 37th CDC 1998, Tampa,
Florida USA.

[3] Cury, J.E. R., Krogh, B.H. and Niinomi, T. . Synthesis of
supervisory controller for hybrid systems based on approximating
automata. IEEE Transaction on Automatic Control, 43(4):564-569,
April 1998.

[4] Chutinan, A. and Krogh B.H. Computing polyhedral approximating
automata for a class of linear hybrid systems. In Hybrid Systems V,
Lecture Notes in Computer Science. Springer-Verlag, 1998.

[5] Chutinan, A. and Krogh B.H. Computing polyhedral
approximations to dynamic flow pipes. The 37th IEEE conference
on Decision and Control: Invited Session on Synthesis and
Verification of Controllers for Hybrid Systems, 1998.

[6] Zhao, Feng. Automatic analysis and synthesis of controllers for
dynamical systems based on phase-space knowledge. PhD thesis,
MIT artificial intelligence Laboratory, August 1992.

[7] Clarke, E.M., Grumberg, O and Long, D. Verification tools for
finite-state concurrent systems. In Proceeding of A Decade of
Concurrency: Reflections and Perspectives, pages 124-175, REX
School/Symposium, Noordwijkerhout, The Netherlands, 1-4 June
1993. Springer-Verlag, Berlin, Germany, 1994.

[8] Chutinan,A. and Krogh B.H., Approximate Quotient Transition
Systems for Hybrid Systems. In Proc. 2000 American Control
Conference, Chicago, June 2000,

[9] Henzinger, T., et al. Hytech: A model checker for hybrid systems.
Software tools for technology transfer, 1(1):110-122, 1997.

Pred - 000 Pred - 001 Pred - 010

Pred - 011 Pred - 100

Prediction - 101

Pred - 110

Prediction - 111

x2

x3

