
   

 

 

Abstract 

We present a formal verification of a control algorithm from the 
literature for a four-cylinder four-stroke engine in the cutoff 
mode.  The controlled system is modeled, simulated and verified 
using CheckMate, a tool for formal verification of hybrid systems 
developed at Carnegie Mellon University. CheckMate 
automatically constructs a polyhedral-invariant hybrid automaton 
(PIHA) from a Matlab/Simulink model of the hybrid system and 
performs the verification using discrete model approximations. 
This case study illustrates how verification can be performed 
directly on a model of the hybrid system dynamics without first 
constructing an approximation to the continuous dynamics using 
timed automata or so-called linear hybrid automata models. 
 
Index Terms: hybrid systems, formal verification, finite-state 
approximations 

1 Introduction 

Recently, a tool called CheckMate was developed at 
Carnegie Mellon University to perform simulation and 
verification of a class of hybrid dynamic systems. This 
paper presents the application of CheckMate to an 
automotive control problem described in [1] and [2]. Our 
objective is to demonstrate the features of CheckMate and 
its application to practical problems. CheckMate deals 
with a class of hybrid systems called threshold-event-
driven hybrid systems (TEDHS) for which a verification 
procedure was proposed in [3]. In a TEDHS the changes in 
the discrete state can occur only when continuous state 
variables encounter specified thresholds.  
 CheckMate models are constructed using a custom 
graphical user interface (GUI) in the MATLAB Simulink 
environment. Thresholds in the TEDHS model are 
hyperplanes. Given the Simulink model, CheckMate 
constructs an equivalent hybrid automaton, which is the 
basis for the formal verification procedure. The key 
theoretical concepts used in CheckMate are described in 
[4] and [8]. 
 We present a CheckMate model a four-cylinder four-
stroke engine and its controller (initially presented in [1]). 
The problem is to verify properties of an event-driven 
control law that schedules air/fuel injection when the 

driver has released the throttle while the car is moving. 
This is the so-called cut-off mode. The objective is to 
minimize the mechanical oscillations as the car 
decelerates. Using the formulation of the resulting 
verification problem described in [1] and [2], we illustrate 
how CheckMate can be applied directly to the dynamic 
model of the hybrid system. This is in contrast to the 
application of the tool HyTech presented in [2] for this 
problem, which requires significant effort to first develop a 
linear hybrid system model of the system dynamics. 
 The following section gives an overview of the 
CheckMate user interface and the verification procedure 
implemented in CheckMate. Section 3 describes the model 
of the automotive cutoff mode dynamics and control 
algorithm. Section 4 presents the CheckMate model for the 
cutoff mode control algorithm and section 5 presents the 
verification results. Section 6 summarizes the results of 
this case study and describes some directions of current 
research on extending the capabilities of the CheckMate 
tool. The latest version of CheckMate can be downloaded 
from the CheckMate webpage at http://go.to/CheckMate. 

2 Overview of CheckMate 

CheckMate is a formal verification tool developed in 
Matlab/Simulink for TEDHSs with thresholds defined by 
hyperplanes. TEDHSs are modeled using Simulink block 
diagrams. The model is then converted into a polyhedral-
invariant hybrid automaton (PIHA), used for verification. 
The resulting PIHA is equivalent to the original TEDHS 
within a bounded region of the continuous state space 
called the analysis region. The system specification is 
expressed as an ACTL formula [7], a restriction of the 
CTL (Computation Tree Logic). For the theoretical 
background of CheckMate, see [3] and [8]. 

A. CheckMate GUI 

The CheckMate GUI is based on Matlab/Simulink using 
customized blocks. The components of a TEDHS model 
are switched continuous system blocks (SCSBs), 
polyhedral threshold blocks (PTHBs) and finite state 
machine blocks (FSM). Figure 1 shows a CheckMate block 
diagram. 
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Figure 1. A CheckMate block diagram. 

 

Switched Continuous System Block (SCSB) 

A SCSB models continuous dynamics with state equations 
that are selected according to the value of a discrete input 
signal. Three types of state equations are supported, clocks 
(pure integrators), affine ( bAxx +=

�
), and nonlinear 

( )x(fx =
�

). The routine used to approximate the 

reachability set in the verification procedure is selected 
according to the type of dynamics in the SCSBs. 

Polyhedral Threshold Block (PTHB) 

A PTHB represents a convex polyhedron parameterized by 
the matrix-vector pair (C,d). The input is a continuous state 
vector x and the output is a Boolean signal indicating 
whether or not the continuous state x lies within the 
polyhedron Cx ≤d. The input must be a single vector of 
SCSBs outputs. If necessary, outputs from multiple SCSBs 
must be combined using a Simulink MUX block to form a 
single vector as an input to a PTHB. 

Finite State Machine (FSMB) 

A FSMB block is a statechart block from the MATLAB 
Stateflow Toolbox with the following restrictions:  

•  Event Inputs: Each component of the event input vector 
must be a logical function of the outputs of PTHBs.  

•  Each input signal must be a logical function of the 
outputs of PTHBs or FSMBs. 

•  Output: Only one discrete data output is allowed. 

•  The Stateflow diagram must contain no hierarchy. Each 
state in a Stateflow diagram must assign a unique value 
to the data output in its entry action. No other action is 
permitted on any state or transition label. 

Standard Simulink Blocks 

•  For simulation, any Simulink/StateFlow block can be 
used. For example, a step signal generator block can 
be used to create initializing events for the FSMB, and 
scope blocks used to plot simulation trajectories. 

•  For verification, logical operators (AND, OR, XOR, 
etc) and signal MUX/DEMUX blocks can be used to 
construct the TEDHS model. 

B.  CheckMate Verification Procedure 

Verification in CheckMate is based on the theory of 
approximate quotient transition systems (AQTSs) for 
hybrid automata [8]. Given an ACTL expression, 
CheckMate verifies whether it is true for an AQTS, which 
is a conservative (outer) approximation to the sequential 
behavior of the hybrid automaton. If the assertion is true 
for the AQTS, it is true for the hybrid automaton. If it is 
not true, a less conservative AQTS can be constructed and 
the verification can be tried again. CheckMate handles 
polyhedral-invariant hybrid automata (PIHA), which are 
automata with invariants defined by the hyperplanes 
defining guards for the events leaving each discrete state 
(or location). Figure 2 illustrates the steps in the 
verification procedure. The first step in the verification 
procedure is to construct a PIHA that is equivalent to the 
TEHDS modeled by the CheckMate block diagram. In the 
current implementation, the locations in the PIHA 
correspond to cells in the continuous state space defined by 
the hyperplanes in the PTHBs. The continuous dynamics 
associated with each PIHA location and the PIHA events 
are guards are inferred from the logic in the FSMBs in the 
CheckMate model. 
 The next step is to create an initial partition of the 
hyperplane faces for the PIHA invariants. The elements of 
this partition become the states in the first AQTS. The 
transitions in the AQTS are computed using flowpipe 
approximations that are conservative approximations to 
the flows (reachable states) of the continuous dynamics 
leaving each AQTS state. Transitions are introduced when 
the entry states from one location can lead to the entry 
states of another location. 
 Given the AQTS for a partition of the PIHA 
invariants, along with an ACTL expression, verification is 
performed using fixed-point computations on the ACTL 
state space. If the ACTL expression is found false, the 
approximation could be too conservative. In this case, 
CheckMate has a procedure for refining the invariant 
partitions and computing a new AQTS, and the verification 
can be attempted again. As shown in Figure 2, CheckMate 
tests to see if the current AQTS is a bisimulation, in which 
case the AQTS is an exact, rather than approximate, 
representation of the hybrid system dynamics and the 
verification on the AQTS is conclusive. 
 

 
 
 
 
 
 
 

 

Figure 2. The CheckMate verification procedure. 
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3 Cutoff Control Problem  

The cutoff-mode control problem is described in [1] and 
[2]. The control objective is to reach injection cutoff while 
minimizing acceleration oscillations. The model can be 
divided into two sub-systems: the driveline model and the 
hybrid cylinder model.  

A. Driveline Model 

The driveline model deals with the physical variables of 
the car engine. The original continuous model was 
developed by Magnetti-Marelli [2]. The physical state 
variables are: z1 (engine block angle (radians)), z2 (wheel 
revolution speed (radians/s)), z3 (axle torsion angle 
(radians)), z4 (crankshaft revolution speed (rpm)), and φ 
(crankshaft angle (degrees)).  The parameters for the 
system can be found in [2]. According to [1] the oscillation 
in the system can be studied in the two-dimensional space 
of state variables x2 and x3 in a system obtained by a 
similarity transformation. Thus, the design in [1] is derived 
using the system sub-matrices 
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The crankshaft angle rate depends on all of the state 
variables, but the influence of state variables x1 and x4 can 
be reduced to a constant input by evaluating their average 
values from simulations. 

B. Hybrid cylinder model 

In a four-cylinder four-stroke engine there are four discrete 
states for each cylinder: exhaust, intake, compression and 
combustion. The state of each cylinder changes when the 
crankshaft angle satisfies mod(φ,180) = 0 which defines 
the  phase_change event. The finite state machine in Fig. 3 
shows this discrete-state behavior. 

C. Cut-off Mode Control Law 

Torque is supplied in the combustion phase when fuel has 
been injected at the intake phase. The controller must 
decide whether or not to inject fuel for a particular cylinder 
during when the cylinder is in its exhaust phase. Therefore, 
the effect of a control decision is realized three cycles after 
the decision is made.  We introduce the following notation. 
Let u(k) denote the value of the control decision 
determining whether or not there will be torque from the 
combustion phase after the kth phase change. The value of 
u(k) is either 0 (no torque) or a constant m =10Nm 
(torque). At phase change k, the controller must choose the 
value of u(k+3). The cut-off mode control law uses a 
predictive model to evaluate at each exhaust phase whether 
or not to inject fuel on the subsequent intake phase. Let the 
state vector be x = [x2 x3]

T, and let x(k) denote the value of 
the state vector at the kth phase_change event. The 
predicted values of the state for the next four phase 

changes are denoted x(1/k),...,x(4/k). We have then that 
x(4/k) = P4x(k) + P3qu(k) + P2qu(k+1) +Pqu(k+2) 
+qu(k+3), where T=0.00642271sec is the sampling rate, P 
= exp(A23T), q = A23

-1(P - Ι)b23 and the values of u(k), 
u(k+1), and u(k+2) are already determined. Torque 
decisions in the cutoff mode are taken according to 
“comfort criteria.”  In [2] these criteria are translated into 
the following rule:  
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where γΤ=[0.783, -0.621] and x0(4/k) and xm(4/k) are the 
predicted state values for u(k+3)=0 and m, respectively. 
 
 
 
 
 
 

 
Figure 3 - States for one cylinder. 

D. The Verification Problem 

Figure 4 shows a trajectory for x(0) = [74.3275,-39.7538] 
and φ0 = 00. We focus on the region where the system 
starts to chatter, which continues until the state enters a 
ball of radius ρ.  At that point fuel injection ceases and free 
evolution behavior takes place [1]. We show the region of 
interest for formal verification in Fig where d = 2.74 and h 
= 8.8762. The initial set is (x2,x3) ∈  ([6.6, 6.9] x 
[9.9,10.4]). The objective of the verification is to show that 
the trajectory does not cross the boundaries of the 
verification region a distance d from the switching line 
before reaching the “ finish line”  in Fig. 5.  The trajectories 
shown in Fig. 5 are simulations starting at the four corners 
of the set of initial states. These trajectories are insufficient 
to verify that no trajectories will leave the verification 
region due to the nonlinearities introduced by the 
switching rules. 

4 CheckMate Model 

The CheckMate model for the cutoff control system 
comprises driveline dynamics, angle modulation and 
torque decision/prediction models. Figure 6 shows a 
CheckMate block diagram for this system. In this section, 
we describe the details of this diagram. 

A. Driveline Dynamics model 

The driveline dynamics are modeled in a SCSB with two 
modes representing the free evolution when there is no 
torque and the force evolution when there is torque. There 
are three state variables, x2, x3, and φ. The mode is selected 
by the discrete output coming from the FSM. 
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B. Angle Modulation 

Two PTHBs reach_zero and reach_180 generate events 
when the torque angle φ crosses 00 or 1800 . An FSM 
receives the output of PTHB and generates event 

phase_change, which toggles the sign of φ
�
 in the 

continuous dynamics. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  Simulation of the system. 

C. Torque decision and Prediction 

The controller behavior consists of a FSM shown in Fig. 7 
that keeps track of the three torque input values that have 
already been decided. The states in this FSM are labeled 
h000, h001, h010, h011, h100, h101, h110 and h111 
corresponding the eight possible on-off values for the 
controls u(k),u(k+1),u(k+2). From each state there are two 
possible transitions. To represent the decision logic, we 
consider the following predicates:  
A :    γTx0(4/k) ≥ 0    
B :    γTxm(4/k) ≥ 0    
C :   γTx0(4/k) ≥ γTxm(4/k) 
D :   γTx0(4/k) ≤  - γTxm(4/k).  
In terms of these predicates, the control u(k+3)=m if and 
only if the following predicate is true: 
 
S(A,B,C,D)=ABC + (~A)BD + A~B~D + ~A~B~C 
      
Letting h =P3qu(k)+P2qu(k+1) + Pqu(k+2) G= P4, j = qm  
 

A :  - γTP4 x0 ≤ γTh   
B :  - γTP4 x0 ≤ γTh + γTqm   
C:       γTqm   ≤ 0.   
D :  2 γTP4 x0≤-2γTh - γTqm 
 
Observing that:  γTqm > 0, A

�
 B,  ~D �  B and D �  ~A  

we can reduce S(A,B,C,D) = S(D) = D.  In other words, 
only predicate D is necessary to make the control decision. 
Figure 8 shows the torque decision regions depending on 
the prediction for the next three states: the white (black) 
region means proposition D is false (true).  

D. Simulation and Validation using CheckMate 

 

For this example, the ACTL specification is 
AF(angle==cross_finish_line)& (AG~out_of_bound)). It 
says: “eventually”  the system will cross the line named 
“ finish line”  and “never”  go out of the “out_of_bound”  
box (the region is presented in Fig. 5). With CheckMate it 
is possible simulate and check if the specification (in 
ACTL) is satisfied by trajectories starting at vertices of the 
initial state set. Simulated trajectories are shown in Fig. 5. 
 
  
 

 

Figure 5.  Sliding mode of the Cutoff control System. 
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Figure 6.  CheckMate model for cutoff control System. 

5 Verification using CheckMate 

The verification of the cutoff control system was done 
using the same parameters presented in [1]. The initial 
condition set is: (x2, x3) ∈ [6.6,6.9]x[9.9,10.4], φ = 0.1. 

0)0( >φ
�

. We started in the discrete state “110” , reflecting 

the torque decisions already stored at the initial state. 
 The verification was successful. Table 1 presents 
some of the data from the verification. The elapsed time 
was 111 minutes (on a 600MHz PC). No refinements were 
necessary; the verification was true for the first AQTS. 
 Figure 9 shows the sets if reachable states in the x2-x3 
plane at the switching instants. Note that these sets include 
points that would not be predicted from the simulations in 
Fig. 5 starting from the vertices of the initial state set. 
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Figure 7.  FSM predictor. 

 

 

 

Figure 8.  Decision mapping regions. 

6 Concluding Remarks 

This paper presents a case study applying CheckMate, a 
new tool for computer-aided verification of hybrid 
systems. We verified the correctness of a cutoff control 
system for a combustion engine using a model and data 
from the literature. This study demonstrates the following: 

1) CheckMate deals directly with the system dynamics, 
rather than constructing a simplified model using 
linear or timed automata as required by other tools; 

2) With Checkmate it is possible to simulate the system 
behavior for selected initial conditions. This is a quick 
and powerful way to debug the model, reason about 
the system, and obtain preliminary verification results. 

 In the course of doing this case study, we developed a 
new method in CheckMate for constructing the AQTS for 
systems affine continuous dynamics that improved the 

computation time dramatically. Details of this method will 
be published elsewhere. Current research is focusing on 
verification of sampled-data hybrid systems and methods 
for reducing the size and complexity of the PIHA 
representation of a given TEDHS.  

Hyperplanes 11 Cells 42 
PIHA locations 288 Discrete states 288 
Refinements  None Time elapsed 111 m 

Table 1. Verification data. 

 
Figure 9. Reachable set (partial 2D view). 
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