

Prof. Philip Koopman

Carnegie Mellon University

Ensuring the Safety of On-Road Self-Driving Car Testing

PA AV Summit April 9, 2018

Tempe Arizona / March 18, 2018

Elaine Herzberg Pre-impact dashcam image Tempe Police Dept.

A tragic death has occurred

- How can we mitigate risk in the future?
- Activities that do NOT improve safety of autonomous vehicle (AV) testing:
 - Assigning blame
 - Arguing that delaying deployment costs lives
 - Finding out why autonomy failed (surprise!)
- We should NOT sacrifice at-risk population for sake of progress
 - Instead, make progress with safe AV testing platforms
 - AV testing platform = autonomy + safety driver + safety support technology

How Do You Know It's Safe Enough?

Safety Case:

A structured written argument, supported by evidence, justifying system is acceptably safe for intended use.

National Transportation Safety Board/Handout via REUTERS

Example structure:

- Safety Reason 1 / evidence for reason 1
- Safety Reason 2 / evidence for reason 2
- Safety Reason 3 / evidence for reason 3

Safety Case Elements for AV Testing

Essential observations for AV testing

- We care about safety of test vehicle
 - Autonomy is immature that's why there is a safety driver!
- Appropriately safe does not mean perfect

https://goo.gl/YUC5oU

■ AV testing safety goal: no worse than human-driven vehicle

- The safety driver is paying adequate attention
- The safety driver has time to react if needed
- 3. When the safety driver reacts, the vehicle will respond properly

Is the Safety Driver Really In the Loop?

- "We have a safety driver" doesn't cut it as an argument
- Driver Dropout is well known
 - Airline pilots (even if there are two!)
 - 1990s-era Automated Highway System
 - Can't just assume alert safety drivers
- Questions to ask about safety drivers:
 - Are they trained?
 - How will you ensure they are alert/awake?
 - How will you monitor on-road performance?

Snooze cruise: How the drama unfolded as the two pilots 'slumbered at the controls' 2009 https://goo.gl/5htvnP

DRIVER DISTRACTION DETECTION

Can Safety Driver React In Time?

Safety Driver Tasks:

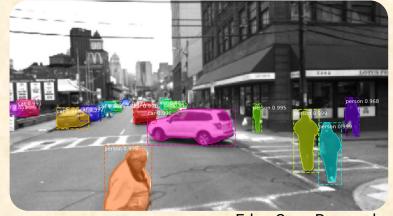
- Mental model of "normal" AV
- Detect abnormal AV behavior
- React & recover if needed

- Does driver know when to take over?
- Can driver brake in time?
 - Or is sudden lane change necessary?

What if AV commands sudden left turn into traffic?

Jan 20, 2016; Handan, China

Keeping the Safety Driver in the Loop



Supervisory human process:

- First detect AV problem; then react
- Driver awareness of AV state
 - Does AV see a pedestrian?
 - Is AV planning to avoid obstacle?
 - Is AV accurately displaying its intended plan?

Must intervene before it's too late to recover

Edge Case Research

Does The Big Red Button Work?

Claim: safety driver can over-ride autonomy

STEERING

BIG RED DRIVER Is this safe? **AUTONOMY** COMPUTER CAR COMPUTER ENGINE. BRAKES.

AUTONOMY Is this? COMPUTER DRIVER **BIG RED SWITCH** CAR COMPUTER ENGINE. BRAKES.

STEERING

- Use accepted practices to ensure disengagement safety
 - For example, safety standard (ISO 26262) for disengagement mechanism

Example Safety Argument Sketch

■ Safety driver(s) attentive

- Safety driver training, qualification
- Real-time driver alertness monitoring
- Review of driver performance data

Effective safety driver reaction

- Leave margin for recovery
- Don't paint human driver into a corner

■ AV disengagement mechanism really works

Follows safety engineering practices

Implementation Considerations

Minimal regulatory intervention approach:

- AV testers provide the safety argument
 - Measured against criteria they themselves create
- Who decides sufficiency?
 - Perhaps public review and litigation exposure

Key features of this safety approach:

- Proprietary autonomy information not revealed
- Designer flexibility in choosing approach
- Emphasizes adequate testing safety, not AV perfection

Summary

- Proposed Safety Goal:
 - AV testing as safe as a human-driven vehicle
 - Show that the safety driver is paying adequate attention
 - Show that the safety driver has time to react if needed
 - Show that AV disengagement/safing actually works

QUESTIONS?