DESIGN CONSTRAINTS ON
EMBEDDED REAL TIME CONTROL SYSTEMS

Philip J. Koopman Jr.
Senior Scientist
Harris Semiconductor
2525A Wexford Run Rd.
Wexford, PA 15090

ABSTRACT

Today’s embedded real time control applications
place extraordinary demands on microprocessors.
They have stringent constraints on size, weight,
power, cooling, computing performance,
reliability, and cost. Unfortunately for the desig-
ners of such systems, modern processor architec-
tures usually incorporate design features that are
valuable for general-purpose computing, but vio-
late constraints for hard real time problems.
These undesirable architectural features include:
cache memory, instructions with low semantic
content, write buffers, branch target buffers,
prefetch queues, pipelines, pure load/store ar-
chitectures, scoreboards, superscaler instruction
issue, dependence on sophisticated compiler tech-
nology, large register files, virtual memory,
autonomous I/O processors, and the use of special
DRAM access modes.

INTRODUCTION

The traditional approach for low performance con-
troller applications has been to use an integrated
microcontroller chip. The “system-on-a-chip”
solution has many obvious benefits, and makes
possible embedding an entire computing system in
an application. Unfortunately, these
microcontrollers have traditionally been based on
modest 8- or 16-bit general purpose micro-proces-
sor designs, leading t~ a serious lack of computing
power for real time applications.

A recent trend has been to place more
functionality and power in embedded systems.
Usually this leads to using a 16- or even 32-bit

71

general purpose microprocessor. Using a more
powerful general purpose processor provides sig-
nificant benefits in terms of speed and capability
to solve more complex problems. But this
capability is not without cost; a conventional
microprocessor can require a substantial amount
of off-chip support hardware, memory, and often a
complex operating system. This leads to increases
in required board space, power, weight, and cost.
Furthermore, the design tradeoffs that are made
by most processors favor desktop computing en-
vironments, and are exactly the wrong tradeoffs
for embedded real time control.

A CHARACTERIZATION OF EMBEDDED
REAL TIME CONTROL

Embedded real time control processors are com-
puters that are integral portions of equipment
such as cars, airplanes, computer peripherals,
audio electronics, and military equipment. A com-
puting task is considered to be a real time applica-
tion if the processor must respond to external
events within a relatively short time period. A
processor is considered to be embedded if it is built
into a piece of equipment that is not itself con-
sidered a computer.

Real Time Control

There are several different types of real time con-
trol, characterized by the predictability of service
requests and the strictness of the deadline for
responding to those events. One can think of real
time control tasks as being divided into three
categories: simple events, events with hard dead-
lines, and aperiodic events with hard deadlines.

Real time control of simple events is what most
people think of when discussing real time control.
This category of real time control requires
reasonably quick response to an external event.
Examples include responding to a mouse click
quickly enough to avoid irritating a workstation
user, or changing a traffic light in response to a car
activating a sensor at an intersection.

The main characteristics of this kind of real
time processing are there is some notion of how
quick a response is desired, but the time scale
involved is usually no stricter than tenths of
seconds, and there is considerable leeway in meet-
ing requirements. A single slow mouse cursor up-
date is not very noticeable, and most drivers will
wait for a few seconds before deciding that a traffic
light controller is broken. Since deadlines tend to
be soft, the consequences for missing the desired
response time are very slight, and tend to be
proportional to the amount of time by which the
deadline was missed.

A somewhat more challenging real time ap-
plication category is real time control with hard
deadlines. A hard deadline is typically a firm time
imposed by external events which can’t be missed
by any amount without a significant penalty. A
common hard deadline task is periodic sampling
hardware with a single-element buffer (such as a
serial communications port). If the interrupt
caused by reception of a data element is not
responded to by the time the next data element is
ready, data will be lost. The cost may involve
retransmission of the data if the sender is a com-
puter, or even permanent loss of the data if the
sender is a sensor without its own local memory.

The time frame for real time control with hard
deadlines ranges from microseconds to seconds.
There is often enough time be sure of accomplish-
ing a task simply by specifying a speed safety factor
into the design and then computing average per-
formance. Also, it is relatively straightforward to
predict the worst case situation if the full range of
external events and conditions can be predicted
when the software is being designed. If outside
events occur at regular intervals, a static schedule
can be devised which will guarantee correct opera-
tion. The consequences of missing a deadline can

72

be severe, but a missed service response can usual-
ly be recovered from with some cost.

Real time control of aperiodic events with hard
deadlines is the most challenging of the categories
we are discussing. The difference between this
category and the last is that the external events
demanding service can not be scheduled in ad-
vance, and therefore can not be analyzed when
writing the software. To make matters worse, the
response time demanded by these aperiodic events
is often much quicker than for other real time
control tasks.

An example of an aperiodic event with hard
deadlines is receiving pulses from an inter-
ferometer used to measure the position of an ob-
ject. If there are several channels of measurement
data, a processor must be very careful to service all
inputs quickly enough to avoid missing a pulse.

This category of real time control is very dif-
ficult. In situations where microprocessors are
able to provide a solution, extreme measures must
often be taken by the system designers. For ex-
ample, it is common for programmers to program
exclusively in assembly language, and count clock
cycles of instructions in their program so as to
budget time down to the level of a single clock cycle.
Predictability and determinism of execution speed
are vital to ensure meeting tight deadlines.

Characterization of Embedded Systems

Embedded real time control applications not only
require real time control processing, but are also
characterized by having significant external
restrictions to the system design. Often the fact
that a computer is present in an embedded system
is completely invisible to the user, such as in an
automobile anti-skid braking system. At other
times, the fact a computer is present may be ob-
vious, such as in an aircraft autopilot.

An embedded processor may be added to a
product to meet basic requirements for
functionality that require a computer, to reduce
system cost by replacing special purpose hardware
with an inexpensive general purpose processor, or
sometimes, simply to add marketing features. In

all cases, the processor and its requirements must
be subservient to the needs of the system in which
it is embedded.
STEM ONS

Most embedded systems place severe constraints
on the processor in the terms of requirements for
size, weight, power, cooling, performance,
reliability, and cost. This is because the processor
is just a component of a larger system, which has
its own operating requirements and manufactur-
ing constraints.

Size and Weight

Size and weight restrictions can greatly limit the
complexity of the hardware which can be brought
to bear on solving a particular embedded control
problem. Platforms such as aircraft, spacecraft,
and portable equipment may have strict weight
limitations. Most other applications also have size
limitations of some sort. A typical embedded con-
troller may have a size budget of a few cubic inches,
and a weight budget of a few pounds (including the
power supply requirements).

The problem with size and weight restrictions
is that high performance processing systems tend
to be larger and heavier than slower systems. At
the CPU level, a processor that has a large number
of pins takes up a large printed circuit board area.
At the system level, a design that needs cache
memory controller chips and large amounts of

memory takes even more printed circuit board
area.

The key to the size and weight issue is keeping
component count small. This is best accomplished
by using the highest integration level possible.
But, even with custom VLSI chips and surface-
mount technology, the fact remains that in em-
bedded system, high complexity means problems
with size and weight budgets. The smallest sys-
tems are those which have on-chip memory for
some or all of the system requirements, do not
require external support chips (especially cache
memory support), and which allow small, efficient
encodings of programs.

73

owe

The processor complexity can affect the power
consumption of the system. High power consump-
tion increases the size and weight requirements of
the power supply. Since essentially all power con-
sumed by a computer is eventually given off as
heat, increased power consumption results in in-
creased cooling requirements.

The amount of power used by the processor is
related to the number of transistors and pins on
the processor chip. Processors that rely on exotic
process technology for speed usually consume too
much power to be useful. Processors that need
huge numbers of power consuming high speed
memory devices likewise can exceed a power
budget.

Consequently, CMOS components are usual-
ly used whenever possible. Newer CMOS technol-
ogy runs at high speed, yet dissipates little power
in comparison to other technologies. Static CMOS
is often selected because it can operate with a slow
or stopped clock to save power when the system is
idle.

Computing Performance

Computing performance in a real time embedded
control environment is not simply an instructions-
per-second rating. While raw computational per-
formance is important, other factors which are
vital to system performance include interrupt
response characteristics, context switching over-
head, and I/O performance. Since real time tasks
are characterized by frequent, often unpredictable
events, the performance of a processor at handling
interrupts is crucial to its suitability for real time
processing. Since a control application usually
involves a reasonable amount of communication
with the outside world (such as reading sensors
and activating control circuits), good I/O perfor-
mance is also important.

Two key considerations for more difficult real
time control applications are predictability and
determinacy. Predictable systems have behavior
at run-time that is easily understandable from
examination of the original source code program,;

in other words, there are no surprises to a user of
average sophistication. Deterministic systems
have instructions whose behavior does not vary; in
other words, the execution speed of an instruction
does not depend on execution history of the pro-
gram. For real time control with hard deadlines, a
designer must be able to predict with absolute
certainty the running time of the piece of code
responding to an external event. If a system has
variable performance elements, such as cache
memory, the designer must be extremely pessimis-
tic about the performance of these features, and
plan on the worst case.

In some systems, it is important to exactly
determine the time for a sequence of instructions
to execute, with no possibility for variation al-
lowed. Processors with extremely consistent ex-
ecution speeds can use software to reduce system
complexity by replacing hardware such as UART
chips, disk controller chips, or video memory se-
quencers with programmed transfers using care-
fully timed code.

Since program memory space may be extreme-
ly limited, programs may be highly compacted by
using subroutine calls to reuse common code se-
quences. In fact, many embedded applications use
threaded languages such as Forth because they
produce exceedingly compact code. This suggests
that an embedded processor should have efficient
support for subroutine calls as a means of conserv-
ing program memory.

Reliabiljty

Embedded processing applications are notorious
for extreme operating conditions, especially in
automotive and military equipment. The process-
ing system must deal with vibration, shock, ex-
treme heat and cold, and perhaps radiation. In
remotely installed applications, such as spacecraft
and undersea applications, the system must be able
to survive without field service technicians to
make repairs.

The general techniques used for avoiding
problems caused by operating environments is to
keep the component count and number of pins as
low as possible. It is also helpful to keep the system

as cool as possible to inhibit aging of the system’s
components.

Cost

The cost of the processor itself may be very impor-
tant to low- and medium-performance systems,
especially consumer electronics products. Since
the cost of a chip is related to the number of
transistors and to the number of pins on the chip,
low complexity processors have an inherent cost
advantage.

In high-performance systems, the cost of the
processor may be overwhelmed by the cost of the
multi-layered printed circuit boards, support
chips, and high-speed memory chips. In these
cases, overall system complexity must be reduced
to keep system costs down.

ARCHITECTURAL FEATURES

Many of the computer architect’s techniques to
improve system performance, such as cache,
branch target buffers, and prefetch queues, work
on statistical principles. They assume things such
as temporal and spatial locality, which tend to be
true on large workstation programs when run for
long periods of time. They give relatively uniform
performance when used in a CAD or office auto-
mation environment.

However, the constraints of hard real time
control applications have requirements which
make standard, statistically good speedup techni-
ques inappropriate. Real time control of aperiodic
eventsrequires absolute predictability, often down
to a single clock cycle. Deadlines must be guaran-
teed to be met 100% of the time. Having a situa-
tion where an unfortunate interaction between
two different routines contending for cache
memory causes an increase in cache misses is simp-
ly unacceptable. In a tightly scheduled environ-
ment, even the time taken by a single cache miss
can cause a misred deadline.

a jat itectu]

There are many reasons that an architectural fea-
ture is included in a processor. Today, usually the

74

feature is added in order to support “general pur-
pose” computing, which usually means engineer-
ing workstation application programs. The
problem is that this definition of “general pur-
pose” is often at odds with requirements for the
systems we have just described. The list of ar-
chitectural features that are inappropriate for
hard real time embedded control systems seems
similar to a catalogue of modern processor design
techniques. They are listed here along with a brief
explanation of the problems they can cause. The
focus here is on determinism and predictability,
although the reader should not forget that most of
these features also contribute substantially to sys-
tem complexity as well.

Cache memory. Data and instruction cache
memories are the biggest sources of unpre-
dictability and indeterminacy. Modern compiler
technology is just beginning to address the issue of
scheduling instruction cache misses. Further-
more, it is impossible to characterize data cache
misses for programs of interesting complexity. Be-
cause the time required to process a cache miss is
approximately an order of magnitude slower than
the time required for a cache hit, significant execu-
tion speed degradation takes place with even a
small percentage of cache misses. Figure 1 shows
relative execution time variations that may take
place with varying numbers of cache misses. In
this five-instruction example, assuming that a
cache miss costs five clock cycles, execution time

may vary between 5 and 25 clock cycles for the
game code. In hard real-time systems, often the

. worst case of all cache misses must be assumed for

time-critical sections, resulting in designing
hardware with only fast static memory chips that
render the cache management hardware super-
fluous. On-chip caches add to system debugging
concerns because they are often not visible outside
the chip.

Low semantic content of instructions. Low
semantic content of instructions greatly increases
the number of instructions that must be executed
to accomplish a given task. This, in turn, increases
demands for high-speed memory. A requirement
for large amounts of high speed memory in turn
either requires the use of cache memory or a sig-
nificant expense in making all program memory
out of cache-grade memory chips for high guaran-
teed system performance.

Variable length execution times of instruc-
tions. Many instructions (usually on CISC sys-
tems) can take a variable number of clock cycles to
execute, often depending on the data input to the
instruction. An example of such an instruction is
amultiply routine that has an “early-out” feature.

Write buffers. Write buffers allow the CPU to
perform a write to memory without pausing for an
actual memory cycle to take place. The problem is
that this write must then wait for spare bus cycles.

HiHIHIHIH] ALLCACHEHITS
HiH MISS H|H| ONE CACHE MISS
MISS MISS MISS MISS MISS ALL CACHE MISSES
TIME
Figure 1.

Example of cache misses causing variable execution time.

75

If no spare bus cycles are forthcoming, the proces-
sor must be stalled when the write buffer over-
flows. Additional stalls can be caused if a memory
read could possibly correspond to a memory loca-
tion that has yet to be updated by the write buffer.
Interaction between the write buffer and cache
missges for instruction and data fetches can cause
indeterminacy in program execution.

Branch target buffers. This is a special case of
an instruction cache, in which past program execu-
tion history is used to cache instructions at branch
targets for quick access. This type of instruction
cache operates in a manner dependent on input
data, and so is beyond the ability of compilers to
manage effectively. Branch target buffers are
sometimes used in conjunction with branch predic-
tion strategies, in which the compiler encodes a
guess as to whether a particular branch is likely to
be taken into the instruction itself, causing either
the branch target or the next consecutive instruc-
tion to be fetched before the outcome of the branch
is resolved. The actual time to perform a branch
then depends on whether the compiler guessed the
branch outcome correctly, and whether the branch
target buffer value corresponds to the guess made
by the compiler.

Prefetch queues. Prefetch queues greatly affect
the predictability of execution because the execu-
tion time for an instruction depends on whether or
not the preceding instructions were slow enough
to allow the prefetch queue to accumulate new
instructions. Thus, determining whether a par-
ticular instruction will execute quickly from the
prefetch queue or slowly from program memory
requires cycle counting of several preceding in-
structions to see if spare memory cycles would have
been available for the prefetch queue to fill. This
cycle counting is subtly affected by data-dependent
execution paths through the program as well as
the number of wait states or cache misses in pro-
gram memory. For example, if there is a latency
for filling an empty prefetch queue, adding a one-
cycle wait state that causes the prefetch queue to
be emptied may add more than one clock cycle to
program execution time.

Pipelines. A deep instruction pipeline increases
interrupt response latency. Even if the first in-

76

struction of an interrupt service routine can be
inserted into the pipeline within one clock of the
interrupt being asserted, it still takes several clock
cycles for the instruction to pass through the
pipeline and actually do its job. A pipeline also
requires some sort of handling of data depend-
encies and delays for memory access, which results
either in compiler-generated nops, instruction
rearrangement, or hardware-generated pipeline
stalls. All of these dependency-resolution techni-
ques decrease predictability, determinacy, or both.

Pure load/store architectures. Load/store
RISC architectures can by their very nature make
no provision for atomic read/modify/write instruc-
tions. This generally required the addition of ex-
ternal hardware for implementing semaphores,
locks, and other inter-process communication
devices, increasing system complexity.

Scoreboards. Scoreboards attempt to speed up
program execution by allowing several instruc-
tions to be in execution concurrently. Scoreboard-
ing usually implies out-of-order execution, which
may make it impossible to correctly determine the
correct system state in the event of an exception or
interrupt (the term usually used here is that the
system has imprecise interrupts). Furthermore,
the execution time of an instruction depends on
the resources being used by the previous several
instructions, and can vary considerably.

Superscaler instruction issue. Newer-genera-
tion microprocessors are beginning to implement
“superscaler” instruction execution, in which mul-
tiple instructions may be issued in a single clock
cycle. Unfortunately, the number of instructions
that may be issued depends on the types of the
instructions, the available hardware resources,
and the execution history of the program. All
these factors make it very difficult to determine
any single instruction’s execution time.

Dependence on sophisticated compiler tech-
nology. Most RISC designs depend implicitly on
complex and ambitious optimizing compilers for
fast operating speeds. This tradeoff between
hardware and software complexity is a part of the
RISC design philosophy. The problem is that the
optimizing compilers make it difficult to establish

a correspondence between source code and the code
that actually is executed because of the large num-
ber of program transformations performed. This
complicates program debugging, as well as
decouples the programmer’s source code changes
from effects on final program performance,
decreasing predictability. A surprising side-effect
of the complexity of these compilers is that they
add a level of indeterminacy in the mapping of
source to object code. The use of heuristics for
block-level and global optimization techniques can
actually cause the same exact sequence of source
code statements to generate significantly different
object code in two places of the same program
module (Razouk et al. 1986).

Large register files. The use of a large number
of registers allows programs to execute quickly,
but greatly increases the amount of information
(the machine state) that must be saved on context
switches and interrupts. This adversely affects
responsiveness to external events.

Virtual memory. The use of virtual memory
implies the use of a cache memory to perform
address translation (a Translation Lookaside Buff-
er), which has the same problems as other caches.
If a disk-paging system is used, the problem of
speed degradation can become much worse than
for simple cache misses.

Autonomous I/O processors. The use of
autonomous I/O processors and DMA hardware
that steal bus cycles can cause non-determinism as
the processor is stalled for bus accesses. Conse-
quently, it is sometimes desirable to perform I/O
directly from the CPU.

77

Use of DRAM access technology. Some proces-
sor implementations exploit special access techni-
ques to DRAM chips in order to achieve high
average throughput with a low system cost. The
use of static-column, paged, and video DRAMs
creates real problems in predictability because ac-
cess to these DRAMs becomes much slower when-
ever page boundaries must be crossed. The use of
DRAM memory chips also requires performing
memory refresh, which can interact with other
accesses to cause performance degradations that
are worse than expected.

The Challenge to Processor Designers

The above list of architectural characteristics con-
tains elements of design found in virtually every
RISC or CISC processor made today. These ar-
chitectural characteristics are truly valuable for
speeding up average system performance, especial-
ly in workstation environments. The problem is
that hard embedded real time control applications
do not have the same characteristics and require-
ments as workstation-based engineering design
applications, and so these characteristics actually
hurt system performance. Therefore, what is
needed are new CPU designs that make tradeoffs
in favor of the requirements of real time embedded
control, even at the expense of performance of
workstation-type applications.

REFERENCE

Razouk, R., Stewart, T. & Wilson, M. (1986)
Measuring Operating System Performance
on Modern Micro-Processors, In: Perfor-
mance 86, ACM, NY, pp. 193-202.

Systems Design & _ tworks Conferenc

The Conference on Computer Systems, Peripherals and Network
Santa Clara Convention Center, Santa Clara, CA

Conference Proceedings
Microprocessor Track

cﬂf & ®

Tape Disk
Controller ‘ Controller ,

IEEE 802.5

| Token Ring

Host Compute

cPU 3.;3:: Router ——————-{__j

- | P
FDDI
1 Backbone
Network +

. 1

MAC ' File Server
Bridge Printer l

IEEE 602.3
Ethernet
71y jadag !

FDO!L Front End Network

EDITOR MAY 8-10, 1990
Kenneth Maijithia SANTA CLARA, CA
Sponsored By: In Cooperation with: MAP
EDCON & Electronic Design Pﬂeslse
SFBAC OF IEEE 7 (a Penton Publication) and ACM o i

