Some Ideas for Stack Computer Design

Phil Koopman United Technologies Research Center

OVERVIEW

- How to pipeline a stack computer
 - ° RISC = Pipelined
 - ° Resurrection of the skip Instruction
- Making the most of on-chip memory
 - o Memory hierarchies for real-time control
- Stack-based execution for C
 - o Program size can be smaller

HOW TO PIPELINE A STACK COMPUTER -- 1

Traditional pipeline

time

- O Assumes access into register file takes time
- O Assumes writeback of result into register file takes
- ° Keeping branch delay to one slot is challenging
- O Has a load delay slot

I-FETCH	REG READ MEM R/W	ALU	REGISTER STORE	
	I-FETCH	REG READ MEM RAW	ALU	OPERAND STORE

HOW TO PIPELINE A STACK COMPUTER -- 2

- Proposed stack pipeline
 - ° Access to TOS is free for read and writes
 - ° Latency of operand access stage avoided
 - ° Can support auto-increment/decrement accesses
 - ° Can exploit two paths to memory
 - ° Has a load delay slot

SKIP INSTRUCTIONS

- Branch delays are a problem with pipelines
 - O Delay slot on subroutine call questionable for Forth
 - ° Filling branch delay slot difficult on stack machines
- Using skip instructions can solve the problem

- Only branch type is CALL (1 bit controls address generation)
- ° Conditional branch is a skip over a call instruction - buries branch delay slot into the skipped instruction

MAKING THE MOST OF ON-CHIP MEMORY (for real-time control)

- Caches inappropriate for many real-time systems
- On-chip memory much faster than off-chip accesses
- Use large on-chip memory for user-controlled storage
 - o Microcode ROM/RAM
 - ° Instruction ROM/RAM
 - ° Small data memory
- Idea: on-chip program memory to provide split-bus access without extra pins

STACK-BASED EXECUTION FOR C

- IF:
 - Memory space is limited
 - ° Program size matters more than ultimate speed
- THEN:
- ° Stack-relative addressing increases opportunities for code-sharing
 - Assignment of registers makes two identical code sequences compile to different binary images
 - A compiler can compress code using stack-based execution and shared code sequences
 - A C compiler can produce passable Forth-style code
 - Depends on locality of reference to C variables & coding style