150

Proceedings of the 1990 Rochester Forth Conference

Adding a Third Stack to a Forth Engine

Rick VanNorman
Phil Koopman

Harris Semiconductor
Abstract

Of the many possible uses for an extra stack in a Forth execu-
tion environment, a local variable stack is the most attractive. A
local variable stack should be memory-resident, and be accessed
via an offset to a frame pointer register. This arrangement provides
excellent support for local variables in Forth as well as a clean
interface to C and other programming languages.

Introduction

Many uses have been proposed for a third stack in the Forth
execution environment. Some uses include: local variables, loop
control parameters, and separate stacks for each data type (e.g., a
string stack, a floating point stack).

The problem is that silicon real estate is expensive, so there
must be acompelling reason to add an additional stack. Since Forth
has long been successful with a two-stack execution model, it is
likely that the impetus for adding an additional stack will come
from requirements for supporting other languages. Only a stack
for local variables is important and inexpensive enough to support
with hardware on a Forth engine.

Local Variables

Locatl variables are variables that are visible only within a small
region of a Forth program, typically a single word. Various schemes
for supporting local variables in Forth have been discussed for
years (such as in [HART85], [LAQU84], and [LYONS8S]). The
purposes of local variables are to make code more understandable
and to reduce the number of stack manipulations. They require
more or less random access to a group of values that are typically
declared at the beginning of a word and discarded at the end of
that same word.

Implementations can use several locations for local variables:
statically allocated space dedicated to the Forth word, staticatly
allocated global shared memory, the data stack, the return stack,
and a separate local variable stack. All the schemes except a local
variable stack have limitations or efficiency problems. The local
variable stack has the problem that it requires adding another stack
to the run-time environment.

A Solution

Cis an important market force for Forth engines. Any commer-
cially successful stack computer must be able to run C well.

C programs use activation records for storing their local vari-
ables. An activation record is a stack that is allocated in blocks, or
frames, and accessed using offsets to a pointer to the top of the
stack. Activation records support random access to local variables,
and recursive calls. Stack computers will support activation records
in hardware to gain C performance.

The C activation record exactly matches the requirements of
Forth local variabies. If Forth programmers adopt the standard C
activation record format for local variables on their system, they
will accrue a number of benefits: local variables will be supported
with random access, values from the data and return stacks can be
flushed to the activation record prior to recursing to climinatc the

possibility of stack overflows, and Forth programs will have ready
access to parameters passed from C programs.

Implementations

On general purpose hardware, iocal variables can be imple-
mented simply by following the conventions for C parameter pass-
ing. On 680x0 systems, this typically involves using an address
register as the frame pointer for the local variable stack. On 80x86
systems, this typically involves using the BP register (which may
conflict with using this register as the return stack pointer or data
stack pointer on many systems).

Many Forth engines already have some support for a frame
pointer, since running C efficiently is becoming an important
market issue. For example, the RTX 2000 has a relocatable user
area pointer that is used to support C activation records.

An Example

For an example of the implementation of the proposed local
variable scheme on Forth hardware, consider the RTX2000. It
possessesa USER-BASE register, which can be used as an external
local variable stack. It allocates space in chunks of 32 words, and
reading or writing any location of the user space requires two clock
cycles. If we assume that local variables will be mapped into this
space, and we assume a smart C compiler (which is beyond the
scope of this paper), we can see the mechanism by which the
RTX2000 can efficiently use its user space for local variables.

Asimple implementation (adapted from [LAQU84]) of a word
that benefits from the use of local variables is QUADRATIC which is
the solution of the quadratic equation Q = Ax> + Bx + C. A typi-
cal Forth implementation of QUADRATIC is:

: QUADRATIC (cab x - q)
ROT OVER DUP * * —ROT * + + ;
\ 18 clock cycles, RTX2000

which is as clear as mud.

If a smart implementation of local variables is assumed, which
can compile the proper code, a better implementation is possible:

@ LOCAL X

1 LOCAL B

2 LOCAL A

3 LocAL C

: QUADRATIC (cabx -gq)
[4 LOCALS]
AXX**BX*+C+

\ 25 clocks, RTX2000

which compiles to (in an almost-assembler syntax) on the
RTX2000:

LABEL QUADRATIC (c ab x - q)

@ Ul \ set up the local frame
!
ut
u!
ue
ue
ue

-
x x >

\ AX~2
ue \ AX*2 B
ue \ AX*2 B X
\ AX~2 BX
\ AX"2+BX
U@ |\ AX"2+48X €
\ AXA2+BX+C
XIT

Mt W+ 20— 2 28N WN -~

Embedded Systems

Note that the calling routine is responsible for allocating the stack
frame that the routine used. This is identical to the code generated
by the C routine (also for the RTX2000):
int quad {c a b x)

int ¢, a, b, x3

{
t

return {a*x*x + b*x + ¢);

Programs as simple as this gain clarity, but not necessarily
speed, from the use of an activation record; as the program be-
comes more complex with more than two or three items on the
stack, stack thrashing to keep the correct operands on top out-
weighs the overhead of building and accessing an activation record.
Another benefit of using an activation record is in the resulting
clarity of the code written. The stack contains only the items of
interest for each operation, not the entire state of the local vari-
ables known to the routine. The resulting code written for this
model will be easier to understand, debug, and maintain.

Conclusions

A memory-resident local variable stack for Forth can be imple-
mented using hardware that is already provided on processors in
support of the C programming language. This provides efficient
support for local variables as well as a gateway to interfacing Forth
programs to programs in C and other languages.

References

[COLLSS] Collins, L., “LOGO in Forth - A Role for Stack
Frames and Local Variables,” 1985 FORML Proceedings,
59-70.

[HARTS85] Hart, J.R., and Perona, 1., “Local Variables,” The
Journal of Forth Application and Research, 3-2 (1985),
159-62.

(LAQU84] LaQuey, R., “Local Variables,” 1984 FORML
Proceedings, 307-316.

[LYONS5] Lyons, G.B., “Stack Frames and Local Variables,”
The Journal of Forth Application and Research, 3-1 (1985),
43-52.

[STODS8S] Stoddart, B., “Readable and Efficient Parameter
Access Via Argument Records,” The Journal of Forth
Application and Research, 3-1 (1985), 61-82.

[VOLKS84] Volk, W., “Named Local Variables in Forth,” 1984
FORML Proceedings, 307-316.

