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Conventional computers are optimized for executing 
programs made up of streams' of serial instructions. 
Conversely, modern programing practices stress the 
importance of non-sequential control flow and small 
procedures. The result of this hardware/software mismatch 
in today's general purpose computers is a costly, sub
optimal, self-perpetuating compromise. 

The solution to this problem is to change the paradigm 
for the computing environment. The two central concepts 
required in this new paradigm are efficient procedure calls 
and a user-modifiable instruction set. Hardware that is 
fundamentally based on the concept of modularity will lead 
to changes in computer languages that will better support 
efficient software development. Software that is able to 
customize the hardware to meet critical application-specific 
processing requirements will be able to attempt more 
difficult tasks on less expensive hardware. 

Writable Instruction Set/Stack Oriented Computers (WISC 
computersr exploit the synergism between multiple hardware 
stacks and writable microcode memory to yield improved 
performance for general purpose computing over conventional 
processors. Specific strengths of a WISC computer are 
simple hardware, high throughput, zero-cost procedure calls 
and a machine language to microcode .interface. 

WISC Technologies' CPU/32 is a 32-bit commercial 
processor that implements the WISC philosophy. 

INTRODUCTION 

People buy computers to solve problems. People measure 
the success of computers by how much was saved by using a 
computer to solve their problems. 

What is the expense of using a computer to solve a 
problem? Computers cost users not only money for hardware 
and software, but also resources for training, labor, and 
waiting for solutions (both during development and during 
use). In the early days, the cost of solving problems with 
computers was predominated by hardware costs. Miraculously, 
hardware costs have plunged even while capabilities have 
grown by leaps and bounds. As a result, the problems that 
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computers are solving .(and the programs that solve them) 
have grown much more complex. This has lead to the dramatic 
shift in recent years of spending more time and money on 
computer software than on hardware. 

Since expensive, complex software now dominates the 
cost of providing computer solutions to problems, much 
effort is going into changing the way software is written. 
These efforts often end up placing more demands upon 
hardware ("hardware is cheap"). Unfortunately, it never 
seems that hardware speed increases can quite keep up with 
added software demands ("software expands to fill all 
available computer resources"). Consequently, much research 
is being conducted on ways of making processors run programs 
more efficiently for any given hardware fabrication 
technology. 

The premise of this paper is that there are two 
fundamental problems with current general-purpose 
software/hardware environments: a lack of efficient hardware 
support for procedure calls, and an inability to tailor 
hardware to a,pplications based on software requirements. · 
The WISC architecture described in this paper provides 
efficient hardware support for procedure calls by using a 
combination of two hardware stacks and a dedicated address 
field in the instruction format. The WISC architecture also 
supports cost-effective modification and expansion of 
instruction sets by providing writable microcode memory with 
a simple format. 

This paper first describes some of the historical roots 
for the problems with conventional hardware/software 
environments, then describes.the concepts, implementation, 
and implications of the WISC approach to providing a more 
unified hardware/software environment. Although much of 
this discussion is applicable to all computing environments, 
the scope of this paper is limited to general-purpose 
processing on single-processor computers. 

THE HARDWA:RE/SOFTWARE EVOLUTION CYCLE 

In order to see how the hardware environment can be 
poorly matched to the needs of the software environment, 
consider the historical pattern of steps in the 
hardware/software evolution cycle since the days of the 
first computers: 

ll_ Profile existing software. How does a designer 
determine what instructions should be included in a new 
computer? Since the first use of most hardware is to run 
existing programs, the most scientific way to design an 
instruction set is to measure instruction execution 
frequencies on computers already in use. Such measurements 
usually reveal a preponderance of register manipulation 
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instructions and simple memory loads and stores. 
±.1_ Design ~ computer that efficiently exe7utes existing 

software. When the new machine is built, it will use faster 
hardware and a larger memory to execute more complex (and 
memory-hungry) versions of existing programs faster. 
Compilers for existing languages will be modified to take 
advantage of the new hardware resources, and perhaps some 
new features will be tacked onto the local dialect of the 
language to make use of added hardware capabilities. 
~ Write compilers that make ~ programs look like . 

existing software. · When a n~w language or a new dialect is 
developed, the compiler writer is interested in both 
improving the software environment and in generating 
efficient code. To accomplish these often divergent goals, 
compiler writers use optimization techniques to transform 
the source code into a program that will execute as 
efficiently as possible on available hardware. S.ince tl}e 
hardware designed in steps 1 and 2 is optimi,zed f.or certain 
types of operations, the output of these compilers will tend 
to use these same types of operations wherever possible. 

Some of the most common optimizations that compiler 
writers use include unrolling loops into.in-line code 
(figure la) and expanding the lowest level procedures as 
macros within calling routines (figure lb). These two 
optimizations are important in our discussion, because they 
both tend to require increased program memory usage.in 
exchange for increased execution speed. This is based on 
the almost universal assumption that hardware is most 
efficient at executing in-lirie code • 

.il_ Write ~ applications using the ~ compilers 
(which produces more machine code optimized for existing 
hardware). When it comes time for new application progr,ams 
to be written, programmers can be counted on to exploit all 
the strengths (and quirks) of the newly available compilers 
and hardware. · · 

DOFOR.J=1T03 
st.3temeti t a 
statemer1 t lo 

END-LOOP 
SOURCE CODE 

Figure la. Unrolling Loops. 

j = 1 
statement a 
statement b 

j = 2 
statement a 
statement b 

j = 3 
statement a 
statement b 

OBJECT CODE 
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statement a 
statement a 

stateMent bl CALL B 
statement c statement b2 
CALL B statement b3 
statement d 

~ statement c 

PROf"...EDURE B: staterRent bl 
statement bl statement b2 
statement b2 statement b3 
statement b3 statement d 

SOUf<:CE CODE OBJECT CODE 

Figure lb. Expanding procedures in-line. 

Despite the insulating effects of high level languages 
between programmers and machines, programmers are 
uncomfortably aware of any software features that reduce 
performance. When programs perform poorly because they are 
not suitable for automatic compiler optimization, the user 
is compelled to re-write programs to avoid inefficient 
structures or buy a more powerful (and more expensive) 
machine. This tends to further skew usage statistics, since 
new machines are perceived to be more expensive than clever 
but shabby software techniques. 

~ Go to step J.!l above, and get yet another computer 
that is even better at running existing programs. 

This development cycle clearly favors the propagation 
of initial biases in computer design to successive 
generations of machines. Could it be that years of 'pursuing 
this cycle has resulted in instruction sets that still favor 
the operations present in the early machines? Is this 
filtering process the real mechanism that lead to the 
concept of RISC architectures? 

HARDWARE EVOLUTION 

Having examined the process by which we ended up with 
today's computing environment problems, let us take a look 
at some of the evolutionary steps computer hardware 
architecture has taken along the way. 

The history of computers has been a story of providing 
faster hardware with increased capacity in smaller packages 
with lower prices. The primary emphasis has been on 
reducing the cost of computing by reducing the cost to 
purchase and operate hardware. Measurements that indicate 
the cost effectiveness of hardware include the cost per 
megabyte of program memory and the cost per millions of 
instructions executed per second. From the point of view of 

• 
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the purchaser, hardware becomes more of a bargain every year 
(or month, or even day). 

There have been two central problems to be overcome in 
increasing hardware performance: arithmetic computation 
speed and memory access speed. 

! . ., i I I l T r.J::·rc11 1,-.T T rir··· I I ' : 
: ·' ,._. · !'.'-''-· i - 11~· u-·c:·rF.:H'··1'•I11~1 1.,;H'· 1 11~ ,-,pEr:· h.tJD ! ~T-·'. ! I I - . I I i . __ t.. ~- - r:.H.l ' 
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Figure 2a. Pipelining. 
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Figure 2b. Parallelism. 

Arithmetic tomputation speed was a major problem in 
early computers. Originally, the arithmetic computation 
speed limitation was overcome by using pipelining (figure 
2a) and parallelism within the system (figure 2b). For 
example, separate portions of a processor could concentrate 
on fetching instructions, fetching operands, computing 
values, and storing results (pipelining). Additionally, 
individual hardware adders, multipliers, and dividers could 
work simultaneously on data within the computation section 
of the processor (parallelism). Recently, the increasing 
speed and complexity of VLSI circuitry (and especially the 
availability of inexpensive, fast floating point arithmetic 
chips) have greatly red~ced arithmetic computation speed as 
a problem in general purpose programing. 

As the time to perform arithmetic operations has been 
reduced, main memory access speed has emerged as the leading 
speed bottleneck. Historically, ther~ have always been two 
kinds of memory available to computer designers: small high
speed memory, and slow bulk memory~ Today, the trend 
continues. Affordable high capacity memory chips leap by 
factors of four in size every few years with modest 
increases in speed. Fast static memory increases moderately 
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in size, but increases dramatically in speed. 
As CPU speeds have outstripped bulk memory speeds, 

memory bandwidth limitations have become more severe. There 
are two ways to solve this problem: speed up average memory 
access time, and increase the amount of work done per memory 
access. Cache memory decreases average memory access time 
at the cost of added complexity by using the small, high 
speed memory devices to retain copies of instructions and/or 
data that are likely to be needed by the CPU. Caching 
schemes usually rely on the concept of locality: programs 
tend to execute instructions in sequence, and tend to access 
data in clumps. 

Other techniques to speed memory access include 
interleaving banks of memory and pre-fetching opcodes beyond 
the current operation being executed. Both methods tend to 
increase speed for sequentially executing programs at the 
cost of added hardware complexity. Separate data and 
program memories can also increase available memory 
bandwidth, but are beyond the scope of this paper. 

The second method of reducing the effects of a memory 
access bottle-neck is the technique of increasing the average 
amount of work done by each opcode fetched from memory. 
This has lead to the development of what is now called the 
Complex Instruction Set Computer (CISC) machine. CISC 
machines are based on the concept of reducing the semantic 
~ betw.een high level language source code and its 
corresponding machine code. The theory is that if a high 
level language specifies a complex operation such as a 
character string move, it should be able to communicate this 
operation with a single machine instruction and consume only 
one memory cycle for opcode fetching. A simple, non-CISC 
machine would have to synthesize a complex operation from a 
sequence of simple instructions (consuming multiple memory 
cycles for opcodes), resulting in a semantic gap between the 
intent of the high level language and the way the intent 

1.,.tALA < - ABS (!.,!ALA) 

HIGH LE1.,JEL LAMGUAGE STATEMEMT 

ACCUM <- (l.,JALA> I I Ai-:r·11M l- -:' 1,JALA'-:. 
COMPA~:E ACCUM.• i3 I f:it1~:0M .,:: - ABS i::Abcutn 
IF ACCUM < 0 I I <VALA> <- ACCUM 

ACCUM < - ~] - ~iCCUM I I 

END IF I 
.___<_\J_A_L_A_>_,_:_-__ A_·c_.c_u_M __ ~--~· ~~~~--~---~~~~ 

Lm-l LU-H. IHSTPUCTIOHS 
<LARGE SEMANTIC GAP) 

Figure 3. Semantic Gap. 
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must be communicated to the machine (figure 3). Some other 
examples of complex instructions supported in modern CISC 
architectures include frame based procedure parameter 
passing, array address calculation, and linked list pointer 
maintenance. 

As instruction sets have become more complex, hard
wired computers that decode and execute instructions by 
using only logic gates have become too complex to be cost 
effective for most applications. Consequently, the use of 
microcoded machines has come to dominate the computer 
industry. 

Microcoded computers execute several fast low-level 
instructions (called micro-instructions) to interpret and 
execute each machine instruction. Since each machine 
instruction may invoke a sequence of one or more micro
instructions, microcoded designs allow straightforward 
implementation of the complex instructions of a CISC 
machine. As the instruction set grows in size and 
complexity, microcoded designs simply increase the size of 
the ROM or RAM for storing micro-programs. Since microcoded 
designs store the mechanism for decoding and executing 
instructions in memory instead of as a network of logic 
gates, many design errors may be corrected simply by 
changing the microcode of the machine. This provides a 
significant savings in development time and cost over making 
changes to logic gates in a hard-wired computer design. 

Since adding instructions is relatively inexpensive in 
microcoded CISC machines, these machines usually attempt to 
reduce the size of the semantic gap by providing an 
abundance of complicated instructions designed to directly 
implement high level language functions. Unfortunately, as 
the semantic gap is reduced in this manner, CISC machines 
run into a different problem: semantic mismatch. 

1.,) 
'::.1- ~- .... -.E,. . .. F.·I: .. " ·c 1-E.'H ... ·.·==Er·. H ... RR.H·' .. ,,, __ =.· .. - .::;H::. .t.i H ·.:r:.H 'f ·-· I ( .. , I _, 
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PARAMETERS BY REFERENCE h PARAMETERS BY REFERENCE 

PARAMETERS BY VALUE ~ 
I I 
I l .. ) I 

32-BIT ·::TACf< ELEMEt-n·:; ,.. .. , i6-BIT STACK ELEMENT:; 
! 

LANGUAGE REQUIREMENTS MACH HJE HlSTRUCT IOM SET 

Figure 4. Semantic mismatch. 
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Semantic mismatch take places when a complex machine 
instruction doesn't exactly match the requirements of the 
high level language being used (figure 4). Semantic 
mismatch usually occurs because real-life CISC machines have 
a single instruction set that must meet the requirements of 
many diverse programing languages and application programs. 
This means that the instruction set is, of necessity, a 
compromise. 

Examples of how languages differ in their requirements 
include: zero-based versus one-based array addressing, 
procedure stack frame parameter organization, linked list 
pointer organization, and string count and delimiter 
organization. In addition, new complicated instructions are 
often not smart enough to efficiently handle special 
degener~te (but frequent) cases such as parameterless 
procedure calls. As a result, compilers often ignore many 
of the very complex instructions added (at considerable 
effort) to new machines. Most compiled programs tend to use 
simple to moderately complex instructions. 

The result of using the above approaches to increasing 
hardware power has been that most machines are well adapted 
to executing sequential programs of medium level complexity 
instructions. 

SOFTWARE EVOLUTION 

In early computers, hardware cost so much and was so 
scarce that any amount of programing effort was justifiable 
just to get an answer. As hardware has become less 
expensive, programs have become more complex, and software 
has grown tremendously in complexity and cost. Today, 
software is by far the most expensive part of any complex 
computer-based solution to a problem. 

Most programing is now done in high level languages. 
There are two broad classes of high level languages in use: 
special purpose languages and general purpose languages. 

Special purpose languages such as LISP, Prolog, and 
Smalltalk are based on computation models that stress 
unconventional approaches to problem solving. They 
typically do not address the issue of computational 
efficiency on general purpose computers. These languages 
tend to trade computational efficiency for flexibility and 
freedom of expression for specific tasks. Since these 
languages are often developed in research environments with 
ready access to powerful computers, computational efficiency 
is not a primary consideration. 

' While special purpose languages are important for their 
application areas, the very same features that make them 
powerful as a programing tool are the very things that make 
them perform poorly on limited resource conventional 
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computers. Some of the special featur~s are dynamic memory 
management (especially garbage collection), run-time operand 
binding, and'inter-procedure communication protocols. 
Today's trend is to either provide language-specific 
hardware, or more powerful but ~ore expensive than average 
hardware to run programs written in these languages. 

Most application programs are written in general 
purpose languages such as FORTRAN, BASIC, COBOL, Pascal, C, 
and Ada. The early high level programing languages such as 
FORTRAN were direct extensions of the philosophy of the 
machines they were run on: sequential Von Neumann machines 
with registers. Consequently, these languages and their 
general usage have de~eloped to emphasize long sequences of 
assignment statements with only occasional conditional 
branches and procedure calls. 

In recent years, however, the complexion of software 
has begun to change. The currently accepted best practice 
in software design centers around structured programing 
using modular designs. On a large scale, the use of modules 
is essential for partitioning tasks among programmers. On a 
smaller scale, procedures control complexity by limiting the 
amount of information that a programmer must deal with at 
any given time. 

Procedures (often called subroutines) started out in 
early computers as a memory-saving device used at the cost 
of reduced execution speed. In modern programing languages, 
the importance of using procedures for software productivity 
is taken for granted; memory savings are an almost 
incidental advantage. 

Modern languages such as Modula-2, Pascal, and Ada are 
designed specifically to promote modular design. The one 
hardware innovation that has resulted from the increasing 
popularity of these structured languages has been a register 
used as a stack pointer into main memory. With the 
exception of this stack pointer and a few complex 
instructions (which are not always usable by compilers), 
hardware has remained basically unchanged. Because of this, 
the machine code output of optimizing compilers for modern 
languages still tends to look a lot like output from 
earlier, non-structured languages. 

Herein lies the problem. Conventional computers are 
still optimized for executing programs made up of streams of 
serial instructions. Execution traces for most programs 
show that procedure calls make up a rather small proportion 
of all instructions. Conversely, modern programing 
practices stress the importance of non-sequential control 
flow and small procedures. The clash between these two 
realities leads to a sub-optimal, and therefore costly, 
hardware/software environment on today's general purpose 
computers. 

This does not mean that programs have failed to become 
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more organized and maintainabls using structured languages, 
but rather that efficiency considerations and the use of 
hardware that encourages writihg sequential programs has 
prevented modular languages from achieving all that they 
might. Although the current philosophy is to break programs 
up into very small procedures, most programs still contain 
fewer, larger, and more complicated procedures than they 
should. 

How many functions should a typical procedure have? In 
Psychology of Communication: Seven Essays, George Miller 
gives strong evi~ence that the number seven (plus or minus 
two) applies to many aspects of thinking. The way the human 
mind copes with complicated information is by chunking 
groups of similar objects into fewer, more abstract objects. 
In a computer program, this means that each procedure should 
contain approximately seven fundamental operations (such as 
assignment statements or procedure calls) in order to be 
easily grasped~ If a procedure contains more than seven 
distinct operations, it should be broken apart by chunking 
related portions into subordinate procedures to reduce the 
complexity of each portion of the program. In another part 
of the book, George Miller shows that the human mind can 
only grasp two or three levels of nesting of ideas within a 
single context. This strongly suggests that.deeply nested 
loops and conditional structures should be arranged as 
nested procedure calls, not as convoluted indented 
structures within a procedure. 

The only question now is, why don't most programmers 
follow these guidelines? 

The most obvious reason that programmers avoid small, 
deeply nested procedures is the cost in speed of execution. 
Subroutine parameter setup and the actual procedure calling 
instructions can swamp the execution time of a program if 
used too frequently. All but the most sophisticated 
optimizing compiler can not help if procedures are deeply 
nested, and even those optimizations are limited. As a 
result, efficient programs tend to have a relatively shallow 
depth of procedure nesting. 

Another reason that procedures are not used more is 
that they are difficult to program. Often times the effort 
to write the pro-forma code required to define a procedure 
makes the definition of a small procedure too burdensome. 
When this awkwardness is added to the considerable 
documentation and project management obstacles associated 
with creating a new procedure in a big project, it is no 
wonder that average procedure sizes of one or two pages are 
considered appropriate. 

There is deeper cause why procedures are difficult to 
create in modern programing languages, and why they are used 
less frequently than the reader of a book on structured 
programing might expect: conventional programing languages 
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and the people who use them are steeped in the traditions of 
batch processing. Batch processing gives little reward in 
testability or convenience for working with small 
procedures. Truly interactive processing (which does not 
mean doing batch-oriented edit-compile-link-execute-crash
debug cycles from a terminal) is only available in a few 
environments, and is not taught to any large extent in 
universities. 

As a result of all these factors, today's programing 
languages provide some moderately useful capabilities for 
efficient modular programing. Today's hardware and 
programing environments unnecessarily restrict the usage of 
modularity, and therefore unnecessarily increase the cost of 
providing computer-based solutions to problems. 

UNIFICATION OF SOFTWARE AND HARDWARE 

Developments in the conventional programing environment 
may be reaching a dead end. Recent uniprocessor hardware 
innovations tend to focus on either special purpose 
processing for symbol manipulation or distilling 
conventional machine instruction sets with yet another pass 
through the analysis-implementation-programing cycle 
discussed earlier. 

The premise of this paper is that there is still 
considerably more mileage to be gained from uniprocessors by 
breaking out of the past cycles and looking at the 
hardware/software problem as a whole. The answer lies not 
with a new hardware architecture that mirrors current 
software, nor in changing software to suit current hardware. 
The answer lies in a redefinition of how we think about 
hardware and software. In this manner, we can aspire to 
achieve a unified hardware/software computing environment. 

The first step in defining a unified general purpose 
computing environment is to take to heart the philosophy of 
breaking a problem up into smaller sub-problems. Instead of 
building a computer that supports procedure calls as special 
operations, what if we design a computer to expect 
subroutine ~alls as its primary mode of operation? 

Implementing this idea results in a machine that is 
unlike conventional processors in a very fundamental way: it 
is designed for non-sequential program execution. It 
becomes a "tree processing machine". Programs are no longer 
lists of sequential instructions with occasional branches 
and procedure calls (figure 5). Programs are now organized 
as a tree structure, with each instruction containing 
operations and/or pointers to lower level nodes in the tree 
(figure 6). In such a machine, the very notion of a program 
"counter" becomes obsolete. 
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PROCEDUF.:E A: 
st.atement b call C call D 

PROCEDURE c: 
call E statement f call G 

PROCEitURE E: 
statement J 

PROCEDURE G: 
i::all K statement 1 call M 

rP'ROcEDURE K: 
I .. ·-statement p statement q 

I PROCEDURE M: 
L_sta+,emer1 t r stat em en t s 

PfWCEDURE H: 
statemer1 t n 

PROCEDURE D: 
statemi:-nt i 

statement o 

call H 

Figure 5. A typical sequential pr~gram 

If this machine could actually process procedure calls 
simultaneously with other operations, modularity in programs 
would not be penalized. such a machine would encourage 
better software design, and could fundamentally alter the 
way programmers think about programs. 

Now that we have the concept_of hardware that is 
efficient at implementing software procedures, how can we 
change the software to better match the hardware? The 
answer to this question lies in the concept of a modifiable 
microcoded instruction set. 

As discussed previously, reducing the semantic gap of a 
processor can increase processing speed by reducing memory 
bandwidth requirements. The only pitfall is that if a pre
defined instruction set does not closely match the 
requirements of a language or application program, semantic 
mismatch negates the usefulness of many complicated 
instructions. Since general purpose machines are expected 
to perform well on a wide variety of problems in many 
different languages, the answer is to change the instruction 
set as req~ired to suit each application program. This is 
most easily done with a writable microcode memory (often 
called writable control store). 

With writable microcode memory, the user can modify the 
instruction set of the machine to fit each application 
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program or programing language support environment. 
Applications can be initially written using a simple, 
generic instruction set. Then new instructions can be added 
to eliminate performance bottlenecks in heavily used code 
sequences. 

The combination of tree•processing hardware with 
software that can modify the machine's instruction set for 
best efficiency can produce unexpected benefits in both 
hardware and software performance. The next section 
discusses an architectural approach to implementing such a 
machine, and the benefits that may be derived. 

THE WISC APPROACH 
~- -~- -~~~-

The Writable Instruction Set Computer (WISC) approach 
to computer design provides a computer that efficiently 
supports the integrated hardware/software development 
environment just discussed. A WISC machine has high-speed 
procedure processing capability along with the capability to 
redefine the instruction set. WISC machines implement these 
goals by using multiple hardware stacks for operand and 
procedure return address storage, and writable microcode 
memory for storing the instruction set definitions. WISC 
machines also have a fixed instruction format for simplicity 
and speed of operation, and strive to meet the criterion of 
usefully employing all available memory cycles. 

Once the decision is made to use a hardware stack in a 
design, an interesting and somewhat unexpected cascade of 
benefits is realized. These benefits lead to the 
architectural features of WISC machines. 

The WISC machine discussed in this paper uses two 
hardware stacks: one for data parameters and one for return 
parameters. The first benefit of using these hardware 
stacks is that the overhead cost normally associated with 
procedure calls is greatly reduced. During a procedure 
call, the hardware return stack eliminates the need to save 
a return address to main memory. Additionally, the hardware 
data stack eliminates the need to save registers and data 
values to memory and/or fetch procedure input parameters 
from memory within a procedure. 

Now, however, the unexpected benefits begin to accrue. 
A pure stack machine has no need for parameters with opcodes 
(except for memory addresses.) Since all operations are 
relative to the current position of the stack pointer, each 
opcode can be a simple parameterless field of five to ten 
bits. This greatly simplifies instruction decoding logic 
since implicit operands eliminate the need for explicit 
addressing modes, register specifications, etc. In a 
microcoded machine, this means that the opcode can directly 
access a microcode word with no decoding logic. All this 
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makes the hardware simpler, faster, and less expensive to 
develop and manufacture. 

63 

Since intermediate operands are kept on the hardware 
data stack, each microcoded instruction need take only one 
memory reference cycle (with loads and stores taking two 
memory cycles). Since microcoded primitives can be kept 
simple enough to execute within a single memory access 
cycle, there is no need for a complex pipeline to perform 
decoding, operand-fetching, execution, and result storage. 
A simple overlapped instruction fetch/decode and instruction 
execution strategy is quite ample to use all available 
memory bandwidth. 

As an added bonus of using a stack-oriented instruction 
set, procedure calls may be made at zero cost in execution 
time for most cases. Since a stack-oriented opcode need 
only take roughly one-quarter of ~ 32-bit instruction word, 
the remaining instruction word bits are available to use as 
a procedure branching address (figure 7). If an overlapped 
fetch/decode and execution strategy is used, procedure 
calls, procedure returns, and unconditional branches may be 
processed in parallel with operation decoding. 

I OPCODE I ADDRES'.3 
Figure 7. Generic WISC instruction format. 

Now add the power of a changeable microcoded 
instruction set to the hardware stack machine just 
described. Since a fixed instruction format stack machine 
is free from complex opcode format interpretation and other 
complications, the hardware design is simple. And, simple 
hardware means simple microcode. 

One problem with the few writable instruction sets 
available on current machines is that the microcode is just 
too hard to write. Microcode formats of 48 to 128 bits are 
very common. That's a lot of complexity for a programmer to 
handle! In fact, such complex microcode formats make 
expectations of customizing instruction sets for 
applications unrealistic. As will be shown later, a single
format 32-bit micro-instruction format is more than 
sufficient for a WISC machine. 

Since a WISC architecture can be designed with a simple 
microcode format, moderately sophisticated users (such as 
compiler writers) can customize the.architecture to meet 
their needs. Use of writable microcode memory leads to an 
increase in semantic content (and therefore a reduction of 
the semantic gap) for each instruction, and therefore more 
work done per memory access. It also eliminates the problem 
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of semantic mismatch, since the instruction set can be 
modified to suit the quirks of any application or language
support environment. 

There is yet another benefit to the WISC approach. The 
combination of hardware stacks with writable microcode 
memory results in the blurring of the boundaries between 
high level programs, machine code, and microcode. 

Consider the conventional processor. · High level 
structured programs are converted from groups of procedures 
with stack-oriented local variables 'l;o machine code. A 
considerable change in the look and feel of the program 
takes place as high level language operations are 
transformed into groups of primitive operations. While a 
complex machine instruction set may support such stack 
operations as frame pushes and pops, and even fetch a 
variable given a frame pointer and an offset, the paradigm 
switches from variables and frames in high level languages 
to registers and memory pointers in machine code. 

The means of passing information between many high 
level language procedures is the stack. The way of passing 
information between conventional machine language 
instructions is through registers or discrete memory 
locations. The fundamental mechanisms are completely 
different. If an instruction could be added to microcode 
memory to replace a procedure, it would result in re-writing 
the calling code to format the operands in registers instead 
of in a stack frame. 

Now consider a WISC machine. WISC machines accomplish 
efficient procedure calling in part by the use of a data 
stack to pass information from calling programs to 
procedures. WISC instruction formats are greatly simplified 
by using this same data stack for holding operands. This 
means that a procedure can be transparently replaced with a 
microcoded primitive by simply replacing the procedure call 
with an opcode. There is no impact to any other aspect of 
the source code. This not only simplifies the substitution 
of microcoded primitives for high level source code 
fragments, but can actually lead to a view of microcode 
memory as a cache memory f.or frequently used operations. 

In practice, this view of microcode memory as a cache 
memory allows the developer to selectively optimize the 
hardware for each application. This.could be done by pencil 
and paper analysis of the program, or by using execution 
profiling software to create a histogram of execution 
frequencies for each section of code. The most heavily 
executed procedures can then be partly or wholly transferred 
from high level code to microcode, resulting in a 
significant speed increase. In the case of providing run
time support for the output of a compiler, the microcoded 
instruction set can be tailored to exactly implement the 
types of operations supported by the language. In either of 
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these cases, the microcode becomes a sort of cache memory 
for storing the operations that need to be executed most 
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frequently. · .. 
This view of microcode memory as a sort of instruction 

cache is the final link of a chain that transforms a WISC 
machine to something beyond a conventional processor: it 
makes the WISC machine into a tree processing machine that 
merges all levels of processing into a unified 
hardware/software environment. Instead of representing 
programs as sequences of in-line instructions that are 
occasionally interrupted by procedure calls, the WISC 
processor views programs as an orderly nested series of 
procedure calls, with the final level of procedure call 
being a call to mitrocode memory. 

Now that WISC machines are viewed as tree processors, 
several changes in programming take place. If a suitable 
microcoded instruction set is used, compiled object code can 
closely correspond to the original source code, resulting in 
simpler and more efficient compilers and debugging tools. 
There is no mismatch between the high level language source 
code and the actual machine code executed at run time. 

Additionally, procedures are not viewed by the 
programmer as a collection of in-line code fragments, but 
rather as tree structure. The branches of this tree 
structure represent the control flow structure of the 
program (procedure calls, returns, and jumps). The leaves 
of the tree are represeh~ procedure calls into microcode 
(figure 6 above). 

From the above features we can see that a WISC machine 
uses simple, and therefore fast hardware to execute high 
semantic content instructions that closely reflect the 
structure of the software. Programmers are not penalized 
for organizing programs into small, understandable 
procedures. This results in compact tree-oriented program 
structures which are composed of hierarchically arranged 
solutions to sub-problems. Thus programs can be 
simultaneously optimized for small memory space, fast 
execution speed, and low development cost. This allows the 
hardware/software environment to deliver cost-effective 
solutions to the user's problems., 

DESIGN OF ~ 32-BIT WISC MACHINE 

In order to reify the conceptual design just presented, 
it is necessary to define the high level design of a WISC 
machine. For the purposes of this paper, the design of a 
32-bit WISC machine called the CPU/32 will be discussed in 
detail. 

It turns out that after a WISC machine is specified as 
having hardware stacks and a writable instruction set, the 
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single most important part of the design is the instruction 
format. The key to high-speed processing with zero-cost 
procedures is to use a fixed length instruction format that 
contains both an opcode and a procedure address. 

The CPU/32 uses a 9-bit opcode (figure 8). These 9 
bits can form the page address for a page of microcode 
memory, eliminating virtually all instruction decoding 
logic. This allows for up to 512 opcodes in the machine. 

BIT: 31 ·:>·':• ....... 22 2 1 0 

OPCODE ADDRESS CALL/ 
EXIT 

CONTROL 
Figure 8. CPU/32 instruction format. 

The remaining 23 bits of the 32 bit instruction format 
are dedicated to address and control information. If all 
instructions are aligned on byte boundaries that are evenly 
divisible by 4, then the high 21 bits of the remaining 23 
bits in the instruction can address an instruction word in 
memory (with the low order 2 address bits masked to 0). The 
lowest order 2 bits of each instruction can then be used as 
a branching mode selection: procedure call, procedure 
return, or unconditional jump. These 23 bits can be used to 
execute an unconditional jump, procedure call, or (ignoring 
the address field) procedure return in parallel with opcode 
execution. The CPU/32 can process procedure calls for free! 

As additional embellishments, this instruction format 
allows tail-end recursion elimination by substituting an 
unconditional branch for a procedure call as the last 
instruction of a procedure, and facilitates conditional 
branching and looping by having the branch destination 
address readily available. · 

The CPU/32's block diagram is shown in figure 9. The 
CPU/32's resources include a data stack, an ALU with a data 
register (Data Hi) and a transparent latch, an auxiliary 
(Data Lo) register that can connect with the Data Hi 
register for 64-bit shifting, a return stack with a bi
directional data path to the memory addresser for procedure 
call address manipulation, a memory addresser, program 
memory, and microcoded controller. All of the resources are 
connected to a central data bus, with access to I/O services 
through an appropriate host interface. All data paths and 
registers in the CPU/32 are 32-bits wide. 

There are several interesting aspe·cts to the CPU/32. 
One feature that is not always found on hardware-based stack 
designs is that the Data Hi register above the ALU can hold 
the top data stack element. This allows the use of a 
single-ported data stack RAM. Another is that the stack 
pointers can be loaded with values from the data bus. This 



Proceedings of the 1987 Rochester Forth Conference 

DATA 

STACK 

DATA HI 
F.:EGISTER 

BUS 
BUFFER 

(J) 
) 

.-----i i:Q 

DATA 
LATCH 

([ 
1-
<I 
~ 

BUS 
BUFFER 

RAM DATA 

RETURti 
ADDRESS 

. STACK 

MEMORY ADDRESS 
LOGIC 

ADDF~ESS 

.PROGRAM 
MEMORY 

DATA 

I- ..-~ HANDLER ---..--1 

I 

,--------------J 
64-BIT I 

SHIFTIMG I DATA LO 
L--( 

REGISTER 

HOST IliTERFACE 

Figure 9. The WISC CPU/32. 

H 

i:Q 

()j 
(' ... ) 

BUS 
BUITTR 

BUS 

BUFFER 

MICRO-PROGRAM 
COUNTER 

ADDRESS 

MI CRO-PROGRAt1 
MEMORY 

DATA 

MICRO-INSTRUCTION 
REGISTER 

....... 
CONTROL SIGNALS 

67 



68 The Journal of Forth Application and Research Volume 5 Number 1 

makes accessing deeply buried stack elements relatively easy 
by eliminating the need for repetitive stack pushing and 
popping. 

The use of a transparent latch on the ALU inputs allows 
connecting any data bus resource to one si4e of the ALU 
within one clock cycle, but also allows the latch to retain 
an intermediate value without disturbing the contents of the 
Data Hi register. This capability results in a savings of a 
clock cycle any time the top of stack element in Data Hi 
needs to be swapped with a cell in the data stack RAM. 

The CPU/32 has no program counter. Each instruction 
contains the address of the next instruction. The only 
exception to this is when procedure returns are being 
processed, in which case the return stack value is passed 
directly through the memory address logic to access the next 
sequential instruction in the calling program. 

While there is no program counter, there is an 
incrementer within the program memory logic that is used to 
add a one word displacement to procedure call addresses 
before they are saved on the stack. This incrementing is 
required in order to generate correct return addresses. The 
incrementer is also useful in block memory moves. 

The micro-instruction register forms a one-stage micro
instruction pipeline that eliminates wasted time which would 
otherwise result from waiting for micro-program memory 
access. The only drawbacks to this design are that a two 
micro-cycle minimum is imposed on all op-codes, and delayed 
micro-instruction branches must be used for condition code 
testing. However, the small, high speed memory used to 
implement the micro-program memory and data stack memory 
allows for two micro-code cycles within each memory cycle 
time, essentially eliminating the impact of these drawbac~s 
on system performance. 

The micro-instruction format is shown in figure 10. 
Each micro-instruction uses 30 of the available 32 bits. 

The entire instruction decoding path, from the return 
address stack all the way through to the micro-instruction 
register, is totally independent of the data bus. This 
allows ALU and data stack operations to proceed while 
simultaneously fetching and decoding instructions. This 
structure allows nearly 100% of the memory bandwidth to be 
used productively. 

In the CPU/32, each instruction is fetched and decoded 
during a two micro-cycle period, waits in the micro
instruction pipeline for one clock cycle, then executes in 
two or more additional microcycles. The ·average instruction 
execution rate is just under one instruction per two micro-
cycles. · 
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BITS 
0-3 
4-7 
8-9 
10-11 
12-13 
14-15 
16-19 
20 
21 
22-23 
24-26 
27-28 
29 
30 
31 

Figure 10. 

USAGE 
Bus source select 
Bus destination select 
Data stack pointer control 
Return stack pointer control 
ALU multiplexer shift control 
unused 
ALU function select 
ALU mode select 
ALU carry-in & shift-in 
Data Lo register shift control 
Microcode conditional branch select 
Microcode next address generation 
Increment microcode page register 
Fetch & decode next macro-instruction 
Memory address increment control 

CPU/32 micro-instruction format. 
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An interesting software implication of the opcode 
format and system design is that opcodes interspersed with 
procedure calls must be compacted into single instructions 
in order to get zero-cost procedure calls. The procedure 
call in each instruction takes effect after the opcode has 
been completed. The only times that procedure calls are not 
zero-cost are in deeply nested procedures where there are no 
opcodes before the first procedure call in each successive 
level. Subroutine returns are zero-cost if the last 
instruction in a procedure is an opcode reference. 

A possible compiler optimization that can easily 
increase efficiency is the substitution of an unconditional 
branch for a procedure call if the last primitive within a 
procedure is itself a procedure call (this is often called 
tail-end recursion elimination). Another possible 
optimization is a "bubbling-up" of the first opcode of a 
procedure to a calling program when the calling program 
would otherwise be forced to execute a null op-code in a 
series of consecutive procedure calls. 

The system software for the CPU/32 obviously plays an 
important part in the establishment of a productive 
computing environment. While languages such as C are very 
well suited to the WISC architecture, eventually a new 
language will evolve to exploit the new capabilities of 
tree-oriented processors. Such a language would likely 
have: small, easily defined procedures; interactive 
development, compilation, and testing at the pro6edure 
level; easy access to a microcode assembler; extensibility 
of both data and compiler control structures; a high level 
infix syntax; a library of commonly needed functions; and 
support for module archiving and reuse. 



70 The Journal of Forth Application and Research Volume 5 Number 1 

THE WISC TECHNOLOGIES CPU/32 

Now that the design for the CPU/32 has be presented, 
the question is, can such a machine actually be built? The 
answer is, of course, yes. WISC Technologies' CPU/32 is a 
commercial system that implements all of the ph~losophy and 
architectural features discussed in this paper. 

Additional CPU/32 implementation features not 
previously discussed are a OMA memory transfer capability 
with the host computer, hardware and software interrupt 
support, and support for byte-oriented memory access. 

CONCLUSION 

WISC Technologies' CPU/32 is an implementation of a new 
way of thinking about domputing environments: tree-organized 
program structures that emphasize modular programing for 
general-purpose computing. Preliminary use of WISC machines 
indicates that performance is equal to or better than other 
high-performance general purpose uniprocessors over broader 
classes of problems than might be expected. In particular, 
expert system programs with their tree-traversal emphasis 
are particularly well suited to WISC-type architectures. 

If the past patterns of hardware and software evolution 
can be broken, we might yet see quantum leaps in programmer 
productivity. I think that WISC computers are more than 
just another novel architecture. I think that they are a 
new way of looking at the bottom line of computing: getting 
problems solved. 
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