
Proceedings of the 1987 Rochester Forth Conference

WRITABLE INSTRUCTION SET, STACK ORIENTED COMPUTERS:

ABSTRACT

The WISC Concept

Philip Koopman Jr.
WISC Technologies, Inc.

Box 429 Route 2
La Honda, CA 94020

49

Conventional computers are optimized for executing
programs made up of streams' of serial instructions.
Conversely, modern programing practices stress the
importance of non-sequential control flow and small
procedures. The result of this hardware/software mismatch
in today's general purpose computers is a costly, sub
optimal, self-perpetuating compromise.

The solution to this problem is to change the paradigm
for the computing environment. The two central concepts
required in this new paradigm are efficient procedure calls
and a user-modifiable instruction set. Hardware that is
fundamentally based on the concept of modularity will lead
to changes in computer languages that will better support
efficient software development. Software that is able to
customize the hardware to meet critical application-specific
processing requirements will be able to attempt more
difficult tasks on less expensive hardware.

Writable Instruction Set/Stack Oriented Computers (WISC
computersr exploit the synergism between multiple hardware
stacks and writable microcode memory to yield improved
performance for general purpose computing over conventional
processors. Specific strengths of a WISC computer are
simple hardware, high throughput, zero-cost procedure calls
and a machine language to microcode .interface.

WISC Technologies' CPU/32 is a 32-bit commercial
processor that implements the WISC philosophy.

INTRODUCTION

People buy computers to solve problems. People measure
the success of computers by how much was saved by using a
computer to solve their problems.

What is the expense of using a computer to solve a
problem? Computers cost users not only money for hardware
and software, but also resources for training, labor, and
waiting for solutions (both during development and during
use). In the early days, the cost of solving problems with
computers was predominated by hardware costs. Miraculously,
hardware costs have plunged even while capabilities have
grown by leaps and bounds. As a result, the problems that

50 The Journal of Forth Application and Research Volume 5 Number 1

computers are solving .(and the programs that solve them)
have grown much more complex. This has lead to the dramatic
shift in recent years of spending more time and money on
computer software than on hardware.

Since expensive, complex software now dominates the
cost of providing computer solutions to problems, much
effort is going into changing the way software is written.
These efforts often end up placing more demands upon
hardware ("hardware is cheap"). Unfortunately, it never
seems that hardware speed increases can quite keep up with
added software demands ("software expands to fill all
available computer resources"). Consequently, much research
is being conducted on ways of making processors run programs
more efficiently for any given hardware fabrication
technology.

The premise of this paper is that there are two
fundamental problems with current general-purpose
software/hardware environments: a lack of efficient hardware
support for procedure calls, and an inability to tailor
hardware to a,pplications based on software requirements. ·
The WISC architecture described in this paper provides
efficient hardware support for procedure calls by using a
combination of two hardware stacks and a dedicated address
field in the instruction format. The WISC architecture also
supports cost-effective modification and expansion of
instruction sets by providing writable microcode memory with
a simple format.

This paper first describes some of the historical roots
for the problems with conventional hardware/software
environments, then describes.the concepts, implementation,
and implications of the WISC approach to providing a more
unified hardware/software environment. Although much of
this discussion is applicable to all computing environments,
the scope of this paper is limited to general-purpose
processing on single-processor computers.

THE HARDWA:RE/SOFTWARE EVOLUTION CYCLE

In order to see how the hardware environment can be
poorly matched to the needs of the software environment,
consider the historical pattern of steps in the
hardware/software evolution cycle since the days of the
first computers:

ll_ Profile existing software. How does a designer
determine what instructions should be included in a new
computer? Since the first use of most hardware is to run
existing programs, the most scientific way to design an
instruction set is to measure instruction execution
frequencies on computers already in use. Such measurements
usually reveal a preponderance of register manipulation

Proceedings of the 1987 Rochester Forth Conference 51

instructions and simple memory loads and stores.
±.1_ Design ~ computer that efficiently exe7utes existing

software. When the new machine is built, it will use faster
hardware and a larger memory to execute more complex (and
memory-hungry) versions of existing programs faster.
Compilers for existing languages will be modified to take
advantage of the new hardware resources, and perhaps some
new features will be tacked onto the local dialect of the
language to make use of added hardware capabilities.
~ Write compilers that make ~ programs look like .

existing software. · When a n~w language or a new dialect is
developed, the compiler writer is interested in both
improving the software environment and in generating
efficient code. To accomplish these often divergent goals,
compiler writers use optimization techniques to transform
the source code into a program that will execute as
efficiently as possible on available hardware. S.ince tl}e
hardware designed in steps 1 and 2 is optimi,zed f.or certain
types of operations, the output of these compilers will tend
to use these same types of operations wherever possible.

Some of the most common optimizations that compiler
writers use include unrolling loops into.in-line code
(figure la) and expanding the lowest level procedures as
macros within calling routines (figure lb). These two
optimizations are important in our discussion, because they
both tend to require increased program memory usage.in
exchange for increased execution speed. This is based on
the almost universal assumption that hardware is most
efficient at executing in-lirie code •

.il_ Write ~ applications using the ~ compilers
(which produces more machine code optimized for existing
hardware). When it comes time for new application progr,ams
to be written, programmers can be counted on to exploit all
the strengths (and quirks) of the newly available compilers
and hardware. · ·

DOFOR.J=1T03
st.3temeti t a
statemer1 t lo

END-LOOP
SOURCE CODE

Figure la. Unrolling Loops.

j = 1
statement a
statement b

j = 2
statement a
statement b

j = 3
statement a
statement b

OBJECT CODE

52 The Journal of Forth Application and Research Volume 5 Number 1

statement a
statement a

stateMent bl CALL B
statement c statement b2
CALL B statement b3
statement d

~ statement c

PROf"...EDURE B: staterRent bl
statement bl statement b2
statement b2 statement b3
statement b3 statement d

SOUf<:CE CODE OBJECT CODE

Figure lb. Expanding procedures in-line.

Despite the insulating effects of high level languages
between programmers and machines, programmers are
uncomfortably aware of any software features that reduce
performance. When programs perform poorly because they are
not suitable for automatic compiler optimization, the user
is compelled to re-write programs to avoid inefficient
structures or buy a more powerful (and more expensive)
machine. This tends to further skew usage statistics, since
new machines are perceived to be more expensive than clever
but shabby software techniques.

~ Go to step J.!l above, and get yet another computer
that is even better at running existing programs.

This development cycle clearly favors the propagation
of initial biases in computer design to successive
generations of machines. Could it be that years of 'pursuing
this cycle has resulted in instruction sets that still favor
the operations present in the early machines? Is this
filtering process the real mechanism that lead to the
concept of RISC architectures?

HARDWARE EVOLUTION

Having examined the process by which we ended up with
today's computing environment problems, let us take a look
at some of the evolutionary steps computer hardware
architecture has taken along the way.

The history of computers has been a story of providing
faster hardware with increased capacity in smaller packages
with lower prices. The primary emphasis has been on
reducing the cost of computing by reducing the cost to
purchase and operate hardware. Measurements that indicate
the cost effectiveness of hardware include the cost per
megabyte of program memory and the cost per millions of
instructions executed per second. From the point of view of

•

Proceedings of the 1987 Rochester Forth Conference 53

the purchaser, hardware becomes more of a bargain every year
(or month, or even day).

There have been two central problems to be overcome in
increasing hardware performance: arithmetic computation
speed and memory access speed.

! . ., i I I l T r.J::·rc11 1,-.T T rir··· I I ' :
: ·' ,._. · !'.'-''-· i - 11~· u-·c:·rF.:H'··1'•I11~1 1.,;H'· 1 11~ ,-,pEr:· h.tJD ! ~T-·'. ! I I - . I I i . __ t.. ~- - r:.H.l '
! Ft.. 11--H 1 1 "t..~r·-·i-i • ,.-.,-,.,1~·1·1r--·-1r1-·t·1·· '·=·-iu-,~,E I'
·1 . ---- 11 , , ._.,.I ,1_.,_1i-_. H -' '1 I•..) r:.

'-' [I• l°' 11'' I I I ' ~ =.=·: ·L- "... 1'- I . i i : ,~; __ ___.

Figure 2a. Pipelining.

~ ADDEF.'. #1

I I
l

~
I

'1
ADDEF.'. #2

1!

"'" II ~
I

MULT I PL! EF.'. I

~ I DI'...'IDEF.'.

Figure 2b. Parallelism.

Arithmetic tomputation speed was a major problem in
early computers. Originally, the arithmetic computation
speed limitation was overcome by using pipelining (figure
2a) and parallelism within the system (figure 2b). For
example, separate portions of a processor could concentrate
on fetching instructions, fetching operands, computing
values, and storing results (pipelining). Additionally,
individual hardware adders, multipliers, and dividers could
work simultaneously on data within the computation section
of the processor (parallelism). Recently, the increasing
speed and complexity of VLSI circuitry (and especially the
availability of inexpensive, fast floating point arithmetic
chips) have greatly red~ced arithmetic computation speed as
a problem in general purpose programing.

As the time to perform arithmetic operations has been
reduced, main memory access speed has emerged as the leading
speed bottleneck. Historically, ther~ have always been two
kinds of memory available to computer designers: small high
speed memory, and slow bulk memory~ Today, the trend
continues. Affordable high capacity memory chips leap by
factors of four in size every few years with modest
increases in speed. Fast static memory increases moderately

54 The Journal of Forth Application and Research Volume 5 Number 1

in size, but increases dramatically in speed.
As CPU speeds have outstripped bulk memory speeds,

memory bandwidth limitations have become more severe. There
are two ways to solve this problem: speed up average memory
access time, and increase the amount of work done per memory
access. Cache memory decreases average memory access time
at the cost of added complexity by using the small, high
speed memory devices to retain copies of instructions and/or
data that are likely to be needed by the CPU. Caching
schemes usually rely on the concept of locality: programs
tend to execute instructions in sequence, and tend to access
data in clumps.

Other techniques to speed memory access include
interleaving banks of memory and pre-fetching opcodes beyond
the current operation being executed. Both methods tend to
increase speed for sequentially executing programs at the
cost of added hardware complexity. Separate data and
program memories can also increase available memory
bandwidth, but are beyond the scope of this paper.

The second method of reducing the effects of a memory
access bottle-neck is the technique of increasing the average
amount of work done by each opcode fetched from memory.
This has lead to the development of what is now called the
Complex Instruction Set Computer (CISC) machine. CISC
machines are based on the concept of reducing the semantic
~ betw.een high level language source code and its
corresponding machine code. The theory is that if a high
level language specifies a complex operation such as a
character string move, it should be able to communicate this
operation with a single machine instruction and consume only
one memory cycle for opcode fetching. A simple, non-CISC
machine would have to synthesize a complex operation from a
sequence of simple instructions (consuming multiple memory
cycles for opcodes), resulting in a semantic gap between the
intent of the high level language and the way the intent

1.,.tALA < - ABS (!.,!ALA)

HIGH LE1.,JEL LAMGUAGE STATEMEMT

ACCUM <- (l.,JALA> I I Ai-:r·11M l- -:' 1,JALA'-:.
COMPA~:E ACCUM.• i3 I f:it1~:0M .,:: - ABS i::Abcutn
IF ACCUM < 0 I I <VALA> <- ACCUM

ACCUM < - ~] - ~iCCUM I I

END IF I
.___<_\J_A_L_A_>_,_:_-__ A_·c_.c_u_M __ ~--~· ~~~~--~---~~~~

Lm-l LU-H. IHSTPUCTIOHS
<LARGE SEMANTIC GAP)

Figure 3. Semantic Gap.

HIGH LEt..JEL INSTF.:UCTIOtt:;
i:SMALL ::H1Atff IC GAP)

Proceedings of the 1987 Rochester Forth Conference 55

must be communicated to the machine (figure 3). Some other
examples of complex instructions supported in modern CISC
architectures include frame based procedure parameter
passing, array address calculation, and linked list pointer
maintenance.

As instruction sets have become more complex, hard
wired computers that decode and execute instructions by
using only logic gates have become too complex to be cost
effective for most applications. Consequently, the use of
microcoded machines has come to dominate the computer
industry.

Microcoded computers execute several fast low-level
instructions (called micro-instructions) to interpret and
execute each machine instruction. Since each machine
instruction may invoke a sequence of one or more micro
instructions, microcoded designs allow straightforward
implementation of the complex instructions of a CISC
machine. As the instruction set grows in size and
complexity, microcoded designs simply increase the size of
the ROM or RAM for storing micro-programs. Since microcoded
designs store the mechanism for decoding and executing
instructions in memory instead of as a network of logic
gates, many design errors may be corrected simply by
changing the microcode of the machine. This provides a
significant savings in development time and cost over making
changes to logic gates in a hard-wired computer design.

Since adding instructions is relatively inexpensive in
microcoded CISC machines, these machines usually attempt to
reduce the size of the semantic gap by providing an
abundance of complicated instructions designed to directly
implement high level language functions. Unfortunately, as
the semantic gap is reduced in this manner, CISC machines
run into a different problem: semantic mismatch.

1.,)
'::.1- ~- -.E,. . .. F.·I: .. " ·c 1-E.'H ... ·.·==Er·. H ... RR.H·' .. ,,, __ =.· .. - .::;H::. .t.i H ·.:r:.H 'f ·-· I (.. , I _,

-.,-,. i~'T · TC"'·..'T CT .n. ,-.~ ~
'-"-"-" ~ , "t , '-· , , ._ •• F.. l!i.J.J I ,.. .. , I rn:r +DELI M ITEP STR mm

PARAMETERS BY REFERENCE h PARAMETERS BY REFERENCE

PARAMETERS BY VALUE ~
I I
I l ..) I

32-BIT ·::TACf< ELEMEt-n·:; ,.. .. , i6-BIT STACK ELEMENT:;
!

LANGUAGE REQUIREMENTS MACH HJE HlSTRUCT IOM SET

Figure 4. Semantic mismatch.

I

56 The Journal of Forth Application and Research Volume S Number 1

Semantic mismatch take places when a complex machine
instruction doesn't exactly match the requirements of the
high level language being used (figure 4). Semantic
mismatch usually occurs because real-life CISC machines have
a single instruction set that must meet the requirements of
many diverse programing languages and application programs.
This means that the instruction set is, of necessity, a
compromise.

Examples of how languages differ in their requirements
include: zero-based versus one-based array addressing,
procedure stack frame parameter organization, linked list
pointer organization, and string count and delimiter
organization. In addition, new complicated instructions are
often not smart enough to efficiently handle special
degener~te (but frequent) cases such as parameterless
procedure calls. As a result, compilers often ignore many
of the very complex instructions added (at considerable
effort) to new machines. Most compiled programs tend to use
simple to moderately complex instructions.

The result of using the above approaches to increasing
hardware power has been that most machines are well adapted
to executing sequential programs of medium level complexity
instructions.

SOFTWARE EVOLUTION

In early computers, hardware cost so much and was so
scarce that any amount of programing effort was justifiable
just to get an answer. As hardware has become less
expensive, programs have become more complex, and software
has grown tremendously in complexity and cost. Today,
software is by far the most expensive part of any complex
computer-based solution to a problem.

Most programing is now done in high level languages.
There are two broad classes of high level languages in use:
special purpose languages and general purpose languages.

Special purpose languages such as LISP, Prolog, and
Smalltalk are based on computation models that stress
unconventional approaches to problem solving. They
typically do not address the issue of computational
efficiency on general purpose computers. These languages
tend to trade computational efficiency for flexibility and
freedom of expression for specific tasks. Since these
languages are often developed in research environments with
ready access to powerful computers, computational efficiency
is not a primary consideration.

' While special purpose languages are important for their
application areas, the very same features that make them
powerful as a programing tool are the very things that make
them perform poorly on limited resource conventional

Proceedings of the 1987 Rochester Forth Conference 57

computers. Some of the special featur~s are dynamic memory
management (especially garbage collection), run-time operand
binding, and'inter-procedure communication protocols.
Today's trend is to either provide language-specific
hardware, or more powerful but ~ore expensive than average
hardware to run programs written in these languages.

Most application programs are written in general
purpose languages such as FORTRAN, BASIC, COBOL, Pascal, C,
and Ada. The early high level programing languages such as
FORTRAN were direct extensions of the philosophy of the
machines they were run on: sequential Von Neumann machines
with registers. Consequently, these languages and their
general usage have de~eloped to emphasize long sequences of
assignment statements with only occasional conditional
branches and procedure calls.

In recent years, however, the complexion of software
has begun to change. The currently accepted best practice
in software design centers around structured programing
using modular designs. On a large scale, the use of modules
is essential for partitioning tasks among programmers. On a
smaller scale, procedures control complexity by limiting the
amount of information that a programmer must deal with at
any given time.

Procedures (often called subroutines) started out in
early computers as a memory-saving device used at the cost
of reduced execution speed. In modern programing languages,
the importance of using procedures for software productivity
is taken for granted; memory savings are an almost
incidental advantage.

Modern languages such as Modula-2, Pascal, and Ada are
designed specifically to promote modular design. The one
hardware innovation that has resulted from the increasing
popularity of these structured languages has been a register
used as a stack pointer into main memory. With the
exception of this stack pointer and a few complex
instructions (which are not always usable by compilers),
hardware has remained basically unchanged. Because of this,
the machine code output of optimizing compilers for modern
languages still tends to look a lot like output from
earlier, non-structured languages.

Herein lies the problem. Conventional computers are
still optimized for executing programs made up of streams of
serial instructions. Execution traces for most programs
show that procedure calls make up a rather small proportion
of all instructions. Conversely, modern programing
practices stress the importance of non-sequential control
flow and small procedures. The clash between these two
realities leads to a sub-optimal, and therefore costly,
hardware/software environment on today's general purpose
computers.

This does not mean that programs have failed to become

58 The Journal of Forth Application and Research Volume 5 Number 1

more organized and maintainabls using structured languages,
but rather that efficiency considerations and the use of
hardware that encourages writihg sequential programs has
prevented modular languages from achieving all that they
might. Although the current philosophy is to break programs
up into very small procedures, most programs still contain
fewer, larger, and more complicated procedures than they
should.

How many functions should a typical procedure have? In
Psychology of Communication: Seven Essays, George Miller
gives strong evi~ence that the number seven (plus or minus
two) applies to many aspects of thinking. The way the human
mind copes with complicated information is by chunking
groups of similar objects into fewer, more abstract objects.
In a computer program, this means that each procedure should
contain approximately seven fundamental operations (such as
assignment statements or procedure calls) in order to be
easily grasped~ If a procedure contains more than seven
distinct operations, it should be broken apart by chunking
related portions into subordinate procedures to reduce the
complexity of each portion of the program. In another part
of the book, George Miller shows that the human mind can
only grasp two or three levels of nesting of ideas within a
single context. This strongly suggests that.deeply nested
loops and conditional structures should be arranged as
nested procedure calls, not as convoluted indented
structures within a procedure.

The only question now is, why don't most programmers
follow these guidelines?

The most obvious reason that programmers avoid small,
deeply nested procedures is the cost in speed of execution.
Subroutine parameter setup and the actual procedure calling
instructions can swamp the execution time of a program if
used too frequently. All but the most sophisticated
optimizing compiler can not help if procedures are deeply
nested, and even those optimizations are limited. As a
result, efficient programs tend to have a relatively shallow
depth of procedure nesting.

Another reason that procedures are not used more is
that they are difficult to program. Often times the effort
to write the pro-forma code required to define a procedure
makes the definition of a small procedure too burdensome.
When this awkwardness is added to the considerable
documentation and project management obstacles associated
with creating a new procedure in a big project, it is no
wonder that average procedure sizes of one or two pages are
considered appropriate.

There is deeper cause why procedures are difficult to
create in modern programing languages, and why they are used
less frequently than the reader of a book on structured
programing might expect: conventional programing languages

-.//
I

Proceedings of the 1987 Rochester Forth Conference 59

and the people who use them are steeped in the traditions of
batch processing. Batch processing gives little reward in
testability or convenience for working with small
procedures. Truly interactive processing (which does not
mean doing batch-oriented edit-compile-link-execute-crash
debug cycles from a terminal) is only available in a few
environments, and is not taught to any large extent in
universities.

As a result of all these factors, today's programing
languages provide some moderately useful capabilities for
efficient modular programing. Today's hardware and
programing environments unnecessarily restrict the usage of
modularity, and therefore unnecessarily increase the cost of
providing computer-based solutions to problems.

UNIFICATION OF SOFTWARE AND HARDWARE

Developments in the conventional programing environment
may be reaching a dead end. Recent uniprocessor hardware
innovations tend to focus on either special purpose
processing for symbol manipulation or distilling
conventional machine instruction sets with yet another pass
through the analysis-implementation-programing cycle
discussed earlier.

The premise of this paper is that there is still
considerably more mileage to be gained from uniprocessors by
breaking out of the past cycles and looking at the
hardware/software problem as a whole. The answer lies not
with a new hardware architecture that mirrors current
software, nor in changing software to suit current hardware.
The answer lies in a redefinition of how we think about
hardware and software. In this manner, we can aspire to
achieve a unified hardware/software computing environment.

The first step in defining a unified general purpose
computing environment is to take to heart the philosophy of
breaking a problem up into smaller sub-problems. Instead of
building a computer that supports procedure calls as special
operations, what if we design a computer to expect
subroutine ~alls as its primary mode of operation?

Implementing this idea results in a machine that is
unlike conventional processors in a very fundamental way: it
is designed for non-sequential program execution. It
becomes a "tree processing machine". Programs are no longer
lists of sequential instructions with occasional branches
and procedure calls (figure 5). Programs are now organized
as a tree structure, with each instruction containing
operations and/or pointers to lower level nodes in the tree
(figure 6). In such a machine, the very notion of a program
"counter" becomes obsolete.

60 The Journal of Forth Application and Research Volume 5 Number I

PROCEDUF.:E A:
st.atement b call C call D

PROCEDURE c:
call E statement f call G

PROCEitURE E:
statement J

PROCEDURE G:
i::all K statement 1 call M

rP'ROcEDURE K:
I .. ·-statement p statement q

I PROCEDURE M:
L_sta+,emer1 t r stat em en t s

PfWCEDURE H:
statemer1 t n

PROCEDURE D:
statemi:-nt i

statement o

call H

Figure 5. A typical sequential pr~gram

If this machine could actually process procedure calls
simultaneously with other operations, modularity in programs
would not be penalized. such a machine would encourage
better software design, and could fundamentally alter the
way programmers think about programs.

Now that we have the concept_of hardware that is
efficient at implementing software procedures, how can we
change the software to better match the hardware? The
answer to this question lies in the concept of a modifiable
microcoded instruction set.

As discussed previously, reducing the semantic gap of a
processor can increase processing speed by reducing memory
bandwidth requirements. The only pitfall is that if a pre
defined instruction set does not closely match the
requirements of a language or application program, semantic
mismatch negates the usefulness of many complicated
instructions. Since general purpose machines are expected
to perform well on a wide variety of problems in many
different languages, the answer is to change the instruction
set as req~ired to suit each application program. This is
most easily done with a writable microcode memory (often
called writable control store).

With writable microcode memory, the user can modify the
instruction set of the machine to fit each application

Proceedings of the 198 7 Rochester Forth Conference

(A)
}._

I

I
. 1"

/

(bl _,..

Figure 6. A typical program tree

~
............. --·-... .~

.._) I

r D)
1, I

1 •••• -.... _ .. -·'

[Ll

0

61

62 The Journal of Forth Application and Research Volume 5 Number I

program or programing language support environment.
Applications can be initially written using a simple,
generic instruction set. Then new instructions can be added
to eliminate performance bottlenecks in heavily used code
sequences.

The combination of tree•processing hardware with
software that can modify the machine's instruction set for
best efficiency can produce unexpected benefits in both
hardware and software performance. The next section
discusses an architectural approach to implementing such a
machine, and the benefits that may be derived.

THE WISC APPROACH
~- -~- -~~~-

The Writable Instruction Set Computer (WISC) approach
to computer design provides a computer that efficiently
supports the integrated hardware/software development
environment just discussed. A WISC machine has high-speed
procedure processing capability along with the capability to
redefine the instruction set. WISC machines implement these
goals by using multiple hardware stacks for operand and
procedure return address storage, and writable microcode
memory for storing the instruction set definitions. WISC
machines also have a fixed instruction format for simplicity
and speed of operation, and strive to meet the criterion of
usefully employing all available memory cycles.

Once the decision is made to use a hardware stack in a
design, an interesting and somewhat unexpected cascade of
benefits is realized. These benefits lead to the
architectural features of WISC machines.

The WISC machine discussed in this paper uses two
hardware stacks: one for data parameters and one for return
parameters. The first benefit of using these hardware
stacks is that the overhead cost normally associated with
procedure calls is greatly reduced. During a procedure
call, the hardware return stack eliminates the need to save
a return address to main memory. Additionally, the hardware
data stack eliminates the need to save registers and data
values to memory and/or fetch procedure input parameters
from memory within a procedure.

Now, however, the unexpected benefits begin to accrue.
A pure stack machine has no need for parameters with opcodes
(except for memory addresses.) Since all operations are
relative to the current position of the stack pointer, each
opcode can be a simple parameterless field of five to ten
bits. This greatly simplifies instruction decoding logic
since implicit operands eliminate the need for explicit
addressing modes, register specifications, etc. In a
microcoded machine, this means that the opcode can directly
access a microcode word with no decoding logic. All this

Proceedings of the 1987 Rochester Forth Conference

makes the hardware simpler, faster, and less expensive to
develop and manufacture.

63

Since intermediate operands are kept on the hardware
data stack, each microcoded instruction need take only one
memory reference cycle (with loads and stores taking two
memory cycles). Since microcoded primitives can be kept
simple enough to execute within a single memory access
cycle, there is no need for a complex pipeline to perform
decoding, operand-fetching, execution, and result storage.
A simple overlapped instruction fetch/decode and instruction
execution strategy is quite ample to use all available
memory bandwidth.

As an added bonus of using a stack-oriented instruction
set, procedure calls may be made at zero cost in execution
time for most cases. Since a stack-oriented opcode need
only take roughly one-quarter of ~ 32-bit instruction word,
the remaining instruction word bits are available to use as
a procedure branching address (figure 7). If an overlapped
fetch/decode and execution strategy is used, procedure
calls, procedure returns, and unconditional branches may be
processed in parallel with operation decoding.

I OPCODE I ADDRES'.3
Figure 7. Generic WISC instruction format.

Now add the power of a changeable microcoded
instruction set to the hardware stack machine just
described. Since a fixed instruction format stack machine
is free from complex opcode format interpretation and other
complications, the hardware design is simple. And, simple
hardware means simple microcode.

One problem with the few writable instruction sets
available on current machines is that the microcode is just
too hard to write. Microcode formats of 48 to 128 bits are
very common. That's a lot of complexity for a programmer to
handle! In fact, such complex microcode formats make
expectations of customizing instruction sets for
applications unrealistic. As will be shown later, a single
format 32-bit micro-instruction format is more than
sufficient for a WISC machine.

Since a WISC architecture can be designed with a simple
microcode format, moderately sophisticated users (such as
compiler writers) can customize the.architecture to meet
their needs. Use of writable microcode memory leads to an
increase in semantic content (and therefore a reduction of
the semantic gap) for each instruction, and therefore more
work done per memory access. It also eliminates the problem

64 The Journal of Forth Application and Research Volume 5 Number 1

of semantic mismatch, since the instruction set can be
modified to suit the quirks of any application or language
support environment.

There is yet another benefit to the WISC approach. The
combination of hardware stacks with writable microcode
memory results in the blurring of the boundaries between
high level programs, machine code, and microcode.

Consider the conventional processor. · High level
structured programs are converted from groups of procedures
with stack-oriented local variables 'l;o machine code. A
considerable change in the look and feel of the program
takes place as high level language operations are
transformed into groups of primitive operations. While a
complex machine instruction set may support such stack
operations as frame pushes and pops, and even fetch a
variable given a frame pointer and an offset, the paradigm
switches from variables and frames in high level languages
to registers and memory pointers in machine code.

The means of passing information between many high
level language procedures is the stack. The way of passing
information between conventional machine language
instructions is through registers or discrete memory
locations. The fundamental mechanisms are completely
different. If an instruction could be added to microcode
memory to replace a procedure, it would result in re-writing
the calling code to format the operands in registers instead
of in a stack frame.

Now consider a WISC machine. WISC machines accomplish
efficient procedure calling in part by the use of a data
stack to pass information from calling programs to
procedures. WISC instruction formats are greatly simplified
by using this same data stack for holding operands. This
means that a procedure can be transparently replaced with a
microcoded primitive by simply replacing the procedure call
with an opcode. There is no impact to any other aspect of
the source code. This not only simplifies the substitution
of microcoded primitives for high level source code
fragments, but can actually lead to a view of microcode
memory as a cache memory f.or frequently used operations.

In practice, this view of microcode memory as a cache
memory allows the developer to selectively optimize the
hardware for each application. This.could be done by pencil
and paper analysis of the program, or by using execution
profiling software to create a histogram of execution
frequencies for each section of code. The most heavily
executed procedures can then be partly or wholly transferred
from high level code to microcode, resulting in a
significant speed increase. In the case of providing run
time support for the output of a compiler, the microcoded
instruction set can be tailored to exactly implement the
types of operations supported by the language. In either of

Proceedings of the 1987 Rochester Forth Conference

these cases, the microcode becomes a sort of cache memory
for storing the operations that need to be executed most

65

frequently. · ..
This view of microcode memory as a sort of instruction

cache is the final link of a chain that transforms a WISC
machine to something beyond a conventional processor: it
makes the WISC machine into a tree processing machine that
merges all levels of processing into a unified
hardware/software environment. Instead of representing
programs as sequences of in-line instructions that are
occasionally interrupted by procedure calls, the WISC
processor views programs as an orderly nested series of
procedure calls, with the final level of procedure call
being a call to mitrocode memory.

Now that WISC machines are viewed as tree processors,
several changes in programming take place. If a suitable
microcoded instruction set is used, compiled object code can
closely correspond to the original source code, resulting in
simpler and more efficient compilers and debugging tools.
There is no mismatch between the high level language source
code and the actual machine code executed at run time.

Additionally, procedures are not viewed by the
programmer as a collection of in-line code fragments, but
rather as tree structure. The branches of this tree
structure represent the control flow structure of the
program (procedure calls, returns, and jumps). The leaves
of the tree are represeh~ procedure calls into microcode
(figure 6 above).

From the above features we can see that a WISC machine
uses simple, and therefore fast hardware to execute high
semantic content instructions that closely reflect the
structure of the software. Programmers are not penalized
for organizing programs into small, understandable
procedures. This results in compact tree-oriented program
structures which are composed of hierarchically arranged
solutions to sub-problems. Thus programs can be
simultaneously optimized for small memory space, fast
execution speed, and low development cost. This allows the
hardware/software environment to deliver cost-effective
solutions to the user's problems.,

DESIGN OF ~ 32-BIT WISC MACHINE

In order to reify the conceptual design just presented,
it is necessary to define the high level design of a WISC
machine. For the purposes of this paper, the design of a
32-bit WISC machine called the CPU/32 will be discussed in
detail.

It turns out that after a WISC machine is specified as
having hardware stacks and a writable instruction set, the

66 The Journal of Forth Application and Research Volume 5 Number I

single most important part of the design is the instruction
format. The key to high-speed processing with zero-cost
procedures is to use a fixed length instruction format that
contains both an opcode and a procedure address.

The CPU/32 uses a 9-bit opcode (figure 8). These 9
bits can form the page address for a page of microcode
memory, eliminating virtually all instruction decoding
logic. This allows for up to 512 opcodes in the machine.

BIT: 31 ·:>·':• 22 2 1 0

OPCODE ADDRESS CALL/
EXIT

CONTROL
Figure 8. CPU/32 instruction format.

The remaining 23 bits of the 32 bit instruction format
are dedicated to address and control information. If all
instructions are aligned on byte boundaries that are evenly
divisible by 4, then the high 21 bits of the remaining 23
bits in the instruction can address an instruction word in
memory (with the low order 2 address bits masked to 0). The
lowest order 2 bits of each instruction can then be used as
a branching mode selection: procedure call, procedure
return, or unconditional jump. These 23 bits can be used to
execute an unconditional jump, procedure call, or (ignoring
the address field) procedure return in parallel with opcode
execution. The CPU/32 can process procedure calls for free!

As additional embellishments, this instruction format
allows tail-end recursion elimination by substituting an
unconditional branch for a procedure call as the last
instruction of a procedure, and facilitates conditional
branching and looping by having the branch destination
address readily available. ·

The CPU/32's block diagram is shown in figure 9. The
CPU/32's resources include a data stack, an ALU with a data
register (Data Hi) and a transparent latch, an auxiliary
(Data Lo) register that can connect with the Data Hi
register for 64-bit shifting, a return stack with a bi
directional data path to the memory addresser for procedure
call address manipulation, a memory addresser, program
memory, and microcoded controller. All of the resources are
connected to a central data bus, with access to I/O services
through an appropriate host interface. All data paths and
registers in the CPU/32 are 32-bits wide.

There are several interesting aspe·cts to the CPU/32.
One feature that is not always found on hardware-based stack
designs is that the Data Hi register above the ALU can hold
the top data stack element. This allows the use of a
single-ported data stack RAM. Another is that the stack
pointers can be loaded with values from the data bus. This

Proceedings of the 1987 Rochester Forth Conference

DATA

STACK

DATA HI
F.:EGISTER

BUS
BUFFER

(J)
)

.-----i i:Q

DATA
LATCH

([
1-
<I
~

BUS
BUFFER

RAM DATA

RETURti
ADDRESS

. STACK

MEMORY ADDRESS
LOGIC

ADDF~ESS

.PROGRAM
MEMORY

DATA

I- ..-~ HANDLER ---..--1

I

,--------------J
64-BIT I

SHIFTIMG I DATA LO
L--(

REGISTER

HOST IliTERFACE

Figure 9. The WISC CPU/32.

H

i:Q

()j
(' ...)

BUS
BUITTR

BUS

BUFFER

MICRO-PROGRAM
COUNTER

ADDRESS

MI CRO-PROGRAt1
MEMORY

DATA

MICRO-INSTRUCTION
REGISTER

.......
CONTROL SIGNALS

67

68 The Journal of Forth Application and Research Volume 5 Number 1

makes accessing deeply buried stack elements relatively easy
by eliminating the need for repetitive stack pushing and
popping.

The use of a transparent latch on the ALU inputs allows
connecting any data bus resource to one si4e of the ALU
within one clock cycle, but also allows the latch to retain
an intermediate value without disturbing the contents of the
Data Hi register. This capability results in a savings of a
clock cycle any time the top of stack element in Data Hi
needs to be swapped with a cell in the data stack RAM.

The CPU/32 has no program counter. Each instruction
contains the address of the next instruction. The only
exception to this is when procedure returns are being
processed, in which case the return stack value is passed
directly through the memory address logic to access the next
sequential instruction in the calling program.

While there is no program counter, there is an
incrementer within the program memory logic that is used to
add a one word displacement to procedure call addresses
before they are saved on the stack. This incrementing is
required in order to generate correct return addresses. The
incrementer is also useful in block memory moves.

The micro-instruction register forms a one-stage micro
instruction pipeline that eliminates wasted time which would
otherwise result from waiting for micro-program memory
access. The only drawbacks to this design are that a two
micro-cycle minimum is imposed on all op-codes, and delayed
micro-instruction branches must be used for condition code
testing. However, the small, high speed memory used to
implement the micro-program memory and data stack memory
allows for two micro-code cycles within each memory cycle
time, essentially eliminating the impact of these drawbac~s
on system performance.

The micro-instruction format is shown in figure 10.
Each micro-instruction uses 30 of the available 32 bits.

The entire instruction decoding path, from the return
address stack all the way through to the micro-instruction
register, is totally independent of the data bus. This
allows ALU and data stack operations to proceed while
simultaneously fetching and decoding instructions. This
structure allows nearly 100% of the memory bandwidth to be
used productively.

In the CPU/32, each instruction is fetched and decoded
during a two micro-cycle period, waits in the micro
instruction pipeline for one clock cycle, then executes in
two or more additional microcycles. The ·average instruction
execution rate is just under one instruction per two micro-
cycles. ·

Proceedings of the 1987 Rochester Forth Conference

BITS
0-3
4-7
8-9
10-11
12-13
14-15
16-19
20
21
22-23
24-26
27-28
29
30
31

Figure 10.

USAGE
Bus source select
Bus destination select
Data stack pointer control
Return stack pointer control
ALU multiplexer shift control
unused
ALU function select
ALU mode select
ALU carry-in & shift-in
Data Lo register shift control
Microcode conditional branch select
Microcode next address generation
Increment microcode page register
Fetch & decode next macro-instruction
Memory address increment control

CPU/32 micro-instruction format.

69

An interesting software implication of the opcode
format and system design is that opcodes interspersed with
procedure calls must be compacted into single instructions
in order to get zero-cost procedure calls. The procedure
call in each instruction takes effect after the opcode has
been completed. The only times that procedure calls are not
zero-cost are in deeply nested procedures where there are no
opcodes before the first procedure call in each successive
level. Subroutine returns are zero-cost if the last
instruction in a procedure is an opcode reference.

A possible compiler optimization that can easily
increase efficiency is the substitution of an unconditional
branch for a procedure call if the last primitive within a
procedure is itself a procedure call (this is often called
tail-end recursion elimination). Another possible
optimization is a "bubbling-up" of the first opcode of a
procedure to a calling program when the calling program
would otherwise be forced to execute a null op-code in a
series of consecutive procedure calls.

The system software for the CPU/32 obviously plays an
important part in the establishment of a productive
computing environment. While languages such as C are very
well suited to the WISC architecture, eventually a new
language will evolve to exploit the new capabilities of
tree-oriented processors. Such a language would likely
have: small, easily defined procedures; interactive
development, compilation, and testing at the pro6edure
level; easy access to a microcode assembler; extensibility
of both data and compiler control structures; a high level
infix syntax; a library of commonly needed functions; and
support for module archiving and reuse.

70 The Journal of Forth Application and Research Volume 5 Number 1

THE WISC TECHNOLOGIES CPU/32

Now that the design for the CPU/32 has be presented,
the question is, can such a machine actually be built? The
answer is, of course, yes. WISC Technologies' CPU/32 is a
commercial system that implements all of the ph~losophy and
architectural features discussed in this paper.

Additional CPU/32 implementation features not
previously discussed are a OMA memory transfer capability
with the host computer, hardware and software interrupt
support, and support for byte-oriented memory access.

CONCLUSION

WISC Technologies' CPU/32 is an implementation of a new
way of thinking about domputing environments: tree-organized
program structures that emphasize modular programing for
general-purpose computing. Preliminary use of WISC machines
indicates that performance is equal to or better than other
high-performance general purpose uniprocessors over broader
classes of problems than might be expected. In particular,
expert system programs with their tree-traversal emphasis
are particularly well suited to WISC-type architectures.

If the past patterns of hardware and software evolution
can be broken, we might yet see quantum leaps in programmer
productivity. I think that WISC computers are more than
just another novel architecture. I think that they are a
new way of looking at the bottom line of computing: getting
problems solved.

SOURCES CONSULTED

A. Agrawala and R. Rauscher, Foundations of
Microprogramming: Architecture, Software, and
Applications, Academic Press, New York NY, 1976.

M. And7ews, Principles of Firmware Engineering in
Microprogram Control, Computer Science Press, Potomac
MD, 1980.

R. Blake, "Exploring a Stack Architecture", Computer, May
1977, pp. 30-39.

D. Bulman, "Stack Computers: An Introduction", Computer, May
1977, pp. 18-28.

R. Colwell et al., "Computers, Complexity, and Controversy",
Computer, May 1977, pp. 30-39.

M. Flynn, "Directions and Issues in Architecture.and
Language", Computer, October 1980, pp. 5-22.

~ I

Proceedings of the 1987 Rochester Forth Conference 71

F. Hill and G. Peterson, Digital Systems: Hardware
Organization and Design, (2nd ed.), John Wiley & sons,
1978.

M. Katevenis, Reduced Instruction Set Computer Architectures
for VLSI, MIT Press, Cambridge MA, 1985.

P. Koopman Jr., "Microcoded Versus Hard-wired Control",
Byte, January 1987, pp. 235-242.

P. Koopman Jr. and G. Haydon, "MVP Microcoded CPU/lt> -
Architecture", The Journal of Forth Applications and
Research, Volume 4, Number 2, 1986, pp. 277-280.

P. Koopman Jr., "The WISC Concept", Byte, April 1987,
pp. 187-217.

P. Lewis et al., Compiler Design Theory, Addison-Wesley,
Reading MA, 1978.

G. Miller, Psychology of Communication: Seven Essays, Basic
Books, New York NY, 1967.

v. Milutinovic, Tutorial .£!!Advanced Microprocessors and
Hiqh-level Language Computer Architecture, IEEE
Computer Society Press, Washington DC, 1986.

G. Myers, Advances in Computer Architecture, John Wiley &
Sons, New York, 1982, pp. 212-214.

J. Park, "Toward the Development of a Real-Time Expert
System", The Journal of Forth Applications and
Research, Volume 4, Number 2, 1986, pp. 133-154.

o. Patterson and c. Sequin, "A VLSI RISC", Computer,
September 1982, pp. 8-21.

s. Przybylski et al., Organization and VLSI Implementation
of MIPS, Stanford University Technical Report Number
84-259, April 1984.

P. Schulthe~s, "Reduced High-Level-Language Instruction
Set", IEEE Micro, June 1984, pp. 55-67.

A. Tanenbaufu, "Implications of Structured Programming for
Machine Architecture", Communications of the ACM, Vol.
21 No. 3, March 1978, pp. 237-246. ~ ~- -~

J. Tremblay and P. Sorenson, The Theory and Practice of
Compiler Writing, McGraw-Hill, New York NY, 1985.

W. Wulf, "Compilers and Computer Architecture", Computer,
July 1981, pp 41-47.

/'

'

if

Volume 5

FORTH
APPLICATION AND

RESEARCH
Number 1

1987 ROCHESTER FORTH CONFERENCE PROCEEDINGS

Introduction
Lawrence P. Forsley

INVITED PAPERS

1987

5

Biological Aspects of Neural Nets , . 9
Dr. Iben Browning

A Stack-Frame Architecture Language Processor
R. D. Dixon, Wright State University

The Massively Parallel Processor: Architecture and Application
John E. Dorband, NASA/Goddard Space Flight Center

11

27

A 32-Bit Forth Microprocessor . 39
John R. Hayes, Martin E. Fraeman, Robert L. Williams, and Thomas Zaremba
Johns Hopkins University

Writable Instruction Set, Stack Oriented Computers: The WISC Concept . 49
Philip Koopman, Jr., WISC Technologies, Inc.

PRESENTED PAPERS

Pride-II Physical Layout Program or Modifying Forth for "Non-Believers"
Tom Almy, Tektronix

ColorForth: A Powerful Programming Language for the COCO-II
Georges-Emile April Ecole Polytechnique de ¥ontreal

75

79

Architectures for High-Speed Processing . 83
R. K. Bardin, Lockheed Palo Alto Research Center

Forth and Computer-Assisted Instruction (CAI)
I. From Mainframe to Micro: From Coursewriter to Forth
J. Brooks Breeden, Ohio State University

Forth and Computer-Assisted Instruction (CAI)
II. The Role of Forth in Formative Evaluation of Instructional Materials
J. Brooks Breeden, Ohio State· University

87

91

2 The Journal of Forth Application and Research Volume 5 Number 1

Organizing and Financing Start-Up Software Ventures . 95
Robert E. Brown, Esq., Boylan, Brown, Code, Fowler, Randall and Wits.on

Committee Networks: What They Can and Cannot Do
R. J. Brown, Elijah Laboratories, Inc.

A High Performance VME Processor Card When 32-Bit Super-Micros Can't Cut It
Phil Burnley and Thomas Harkaway, Xycom

Advantages of a Fully Segmented Forth Architecture
Jim Callahan

An Emulator for Utah Common LISP's Abstract Virtual Register Machine
Harold Carr and Robert R. Kessler, University of Utah

97

101

109

113

Putting LISP on Forth Base . 117
Harold Carr and Robert R. Kessler, University of Utah

Data Structures for a Forth Environment
Rob Chapman, Idacom Electronics, Ltd.

121

Fuzzy-Forth Rule Based Production System for Real Time Control Systems . 125
L. E. Borges da Silva, G.-E. April, and G. Olivier, Ecole Polytechnique de Montreal

Extended Memory Operations for F83
Robert H Davis

Object-Oriented Local Variables/Data Structures for F83
Robert H Davis

131

135

High Performance Neural Networks . 137
W. B. Dress, Martin Marietta, Oak Ridge National Laboratories,

A Forth Implementation of LISP . 141
Tom Hand, Florida Institute of Technology

BOXER: An Interactive Analysis System for Cardiovascular Physiology Data
Jesse W. Hartley, University of Missouri-Columbia

A Unification of Software and Hardware; A New Tool for Human Thought
Glen B. Haydon, WISC Technologies, Inc.

145

149

Transportable Forth and Cross Compilers . 153
Rieks Joosten, Pijnenburg Software Developments

Implementing Forth on the 80386 . 157
John E. Lecky, University of Vermont

BORON-Yet Another Object Oriented Forth . 161
Steven M Lewis, University of Southern California

A VLSI Implementation of a Stack-Frame Computer . 165
C. Longway, Ray Siferd, and R. D. Dixon, Wright State University

Computer-Aided Medical Diagnosis: An Alternative to an "Expert System"
Robert L. Luke, IIL MD.

169

The Least Common Robot Project . 175
Donald Meyers and A. Richarjl Miller, Miller Microcomputer Services

~-------· -----·----

