

FORTH Processor Core for
Integrated 16-Bit Systems

Peter S. Danile and Christopher W. Malinowski, Harris Corp. Semiconductor Division, Melbourne, FL

bit processor using an industry-standard microcon-

troller or bit-slice processor calls not only for an
extensive board-level design effort, but also for a long-term
development program for software and firmware. It has been
difficult to use semicustom techniques for such development
because core processors have been scarce and microcode
development for custom ICs is very difficult.

However, in a growing number of high-performance sys-
tems for digital signal processing, control, and arithmetic,
application-specific processors are bringing forth the advan-
tages of integration—including high throughput, low power
dissipation, and much higher density than board-level
implementations. :

Harris Semiconductor now has a semicustom technolbgy,
called the Processor Toolbox, that eases the development of
high-performance 16-bit integrated processors. Toolbox fea-
tures include a very small core-processor cell, a highly
parallel architecture for maximum throughput, easy program-
ming and code development, code portability, a full set of
core-compatible peripheral cells that can support processor
clock frequencies as high as 15 MHz, and a set of high-speed
arithmetic and logic cells, such as a 16-bit multiplier, for
further customization.

The processor architecture derives from one conceived by
Charles Moore, inventor of the FORTH language. This RISC-
like, highly parallel architecture meets the size and through-
put requirements. The combination of the processor’s instruc-
tion set—a directly executable set of FORTH high-level
primitives—and its reliance on two stacks that reflect a
FORTH virtual machine results in a compact core processor
with less than 2500 gates. This core is called the FORTH
Optimized RISC Computing Engine, or Force.

Because each instruction comprises more than one FORTH
primitive (opcode), data-manipulation throughput can exceed
the processor’s clock frequency, often by a factor of three.
Consequently, for instruction sets rich in multiple-opcode
instructions, peak processing throughput can exceed 30 MIPS,
with a steady throughput of 10 to 20 MIPS.

Users of the Toolbox can develop application code in a
high-level FORTH language working with an interactive and
interpretive environment. FORTH is not only portable but also
offers expeditious debugging tools and edsy target-compila-
tion from one environment to another. Therefore, a wealth of
code written for DSP, artificial intelligence, control, number-
crunching, and real-time data-processing applications can be

5

The development of ‘a high-performance dedicated 16-

Reprinted from VLSI Systems Design June
1987, Copyright 1987 C.M.P. Publications Inc.
All rights reserved.

Clock

generator Ivnte.rrupt
logic
Data Program
RAM ROM

FIGURE 1. The Force Toolbox contains a FORTH
processor and support peripherals, all
available as cells and packaged parts.

ported to the Harris engine.

The principal advantage to designers of dedicated proces-
sors stems from the host of proprietary LSI and VLSI cells
being developed to support the FORTH core processor. The
Toolbox provides designers of Force-based products with a
set of packaged Force circuits identical to the cells available
in Harris’ standard-cell library (Figure 1). The designer can
use these parts to create a breadboard and experiment with
different configurations of the Force processor before moving
to an ASIC. He gains greater confidence in the design’s
functionality, because it can be exercised in a real environ-
ment in addition to a CAE simulation environment. Moreover,
the designer can use the prototype breadboard to generate a
reliable and accurate set of functional test vectors, a task both
formidable and error-prone otherwise.

Another advantage of creating a breadboard is that the
designer can compile the applications code and run it before
committing it to a ROM pattern. Running the application code
lets the designer make trade-offs between implementing func-

tions in hardware and coding them in software. The core’s
execution speed allows many functions—such as memory
swaps, arithmetic and logic functions, shifts, and masking—
to be implemented in firmware without sacrificing perfor-
mance, shrinking die size considerably. Such trade-offs can
be investigated only if the designer has access to the proces-
sor’s functional blocks and can exercise alternatives in real
time—that is, on a breadboard.

Finally, the Toolbox approach makes it easier to design a
testable circuit. During breadboarding, the designer can ob-
serve the timing of signal paths, such as the processor’s data
paths, which may not be directly accessible in an integrated
system. Identifying buried trouble spots increases the under-
standing of the circuit’s testability requirements and makes it
easier to implement such testability features as scan paths and
memory-check routines.

The Toolbox version of the core processor (Figure 2)
comes in a 144-pin pin-grid array with all the /O signals
bound to pins. Besides the core, the Force Toolbox also
contains packaged versions of a stack controller with an on-
chip 64 X 16-bit stack RAM, an interrupt controller, and a
16 X 16-bit multiplier. By early 1988, Harris also will offer a
hardware-development system and a Force target compiler
that, in combination with a breadboard system, will support
firmware-code development.

Once hardware and firmware are defined, the design is
implemented in a semicustom IC, for which- the designer
customizes the program, data, and stack memories by using
RAM and ROM module compilers. As much as 64K of on-chip
firmware ROM can be integrated in addition to 16K of data
RAM. Because FORTH code is so compact, very extensive
application-specific code can be implemented in firmware
along with the kernel code. To replace the discrete logic on
the breadboard, the designer uses 7400-type SSI and MSI cells
from the Harris standard-cell library.

The Force Core

" The Toolbox’s Force core processor is a bare control
engine with 123 1/0 lines. These signals include three parallel
16-bit data buses (two for stack memories and one for main
memory), a 16-bit main-memory address bus, and a dual-
purpose 5-bit address-extension bus. In addition, a general-
purpose 16-bit bus (G-bus) acts as the processor’s primary I/O
signal path.

A principle of RISC philosophy is to bring execution speed
as close as possible to the maximum memory-access speed.
As a corollary, the number of multicycle instructions in the
processor’s instruction set is reduced to maximize the proces-
sor’s data-bus throughput and bandwidth.

The processor’s independent buses account for the Force
core’s high throughput. Because each instruction executes in
no more than two clock cycles, at least three of the five buses
are active during any clock cycle. The G-bus transfers data at
up to 30 MB/s when the processor operates at 15 MHz; the
main-memory bus transfers data at up to 30 MB/s when in a
streamed-move mode.

The Force core processor’s highly parallel architecture
(Figure 3) reflects the stricture of its horizontal instructions.
Its eight main registers provide parallel storage and access to
the parameter stack’s top two locations (TOP and NEXT), the
top location of the return stack (I), the instruction register

P

? Ha T, T "iﬂd} 0 A
2. The packaged version of the Force
Core processor.

(IR), the program counter (PC), and two arithmetic-instruction
registers (MD and SR). The MD register stores the partial
results of step-multiply and step-divide instructions; the SR
register stores the partial results of hardware-assisted square-
root operations. :

The minimal overhead to support subroutines also reflects
the nature of the FORTH language, which is heavily oriented
toward the use of subroutines. The core processor is opti-
mized for the minimum number of cycles necessary to ex-
ecute a subroutine call and return. Through instruction parti-
tioning and architectural refinement, the execution of a
subroutine call requires only a single clock cycle; the return
requires no added clock cycles. All interrupts that are inter-
preted as subroutine calls therefore require only one clock
cycle of overhead.

Stack Controller Cell

Because the stack-oriented FORTH instructions employ
stacks in every command, the most critical peripheral used
with the Force core processor is the stack controller. Control-
ling the stacks with software routines would degrade the
system’s performance. The core directs the stack controller
through the RW and SA signals. The stack controller responds
to the SA signal with either a push (data write) or pop (data
read), according to the status of the RW signal.

In the packaged version of the stack controller are 64 words
of memory with an access time of approximately 30 ns, so the
designer can operate the core at 15 MHz without worrying
about the access time of data in the stack. In an ASIC
implementation, the stack’s memory size can be altered and
the access time improves to about 20 ns.

The stack controller operates with the core processor’s
parameter stack (through SAS and RWS signals) and the return
stack (SAR and RWR), giving a typical system two stack
controllers (Figure 4). To enhance system flexibility, the
signals OVER and UNDER generate interrupts when the stacks
are ready to overflow or underflow. UNDER occurs when the

FIGURE 3. Parallel architecture lets three ot five processor buses be active for all instructions.

stack is pushed more than popped and the stack address lines
reach 00. The assertion should initiate a routine that either
resets the controller (if more returns than routines were
called) or tries to recover from other sources of underflow.
The OVER signal occurs when the number of words pushed
onto the stack exceeds a user-defined maximum. This maxi-
mum can be programmed into the ASIC implementation by
writing into an offset register through the G-bus.

To implement multitasking versions of the Force proces-
sor, Harris is developing a multitasking stack controller
(MSC). The MSC enables the user to partition the 256-word
stack into eight separate stacks via a 3-bit address size
register. For example, if the system must ran two concurrent
jobs, the size register is programmed to divide the stack RAM
into two 128-word stacks. To switch between tasks, the
processor enables a task-select register through the G-bus.
When this register is written to, the stack pointer of the
current task is saved and the stack pointer for the new task is
restored at the new task’s current address.

When the stack controllers and core processor are integrat-
ed on a single chip, options for increasing performance are
available. Not only can the access times of the controller and
the data RAMs be reduced merely by integrating, but access
time can also be reduced further by separating the bidirec-

tional data buses into read (POP) and write (PUSH) buses
(Figure 5). In the discrete versions, the data buses are
bidirectional to allow them to connect directly to standard
RAMs with bidirectional data buses. Separating the buses adds
some additional routing area; on the other hand, the time
required to set up the buses for either a read or a write is
eliminated, improving system response time substantially.

Interrupt Controller and Host Interface

The interrupt controller and the host interface help the core
processor interact efficiently with the surrounding system.
First, the interrupt controller contains 15 prioritized interrupt-
request inputs and a separate input for nonmaskable interrupts
(NMI). The interrupt priorities are fixed (to decrease response
time) but can be defeated by writing in the interrupt control-
ler’s mask register (which has a discrete address on the G-
bus). The interrupt controller samples the request inputs on
opposite edges of the system clock. When two consecutive
samples confirm that an interrupt is present, the INT line is
asserted. The core processor responds with the INTA signal,
which directs the interrupt controller to generate the appropri-
ate vector for the interrupt. This vector comprises a 7-bit user-
defined field for the location of the interrupt-vector table and
a 5-bit field that designates the appropriate interrupt.

FIGURE 4. Breadboard design of Force system.

In the packaged version of the interrupt controller, the
interrupt vector for the valid highest-priority interrupt is
presented to the core processor within 40 ns of the INTA pulse.
Thus the controller can operate with the core processor at
system frequencies greater than 15 MHz. Once the system has
entered an interrupt routine, the core’s INTE signal inhibits
any new interrupt from generating a new INTA. During INTE
assertion, the system can clear the interrupt source and
rewrite the Force configuration register to re-enable the inter-
rupts. The interrupt controller does not automatically nest
interrupts, so the system does not need to modify the interrupt
controller until it must mask or unmask any interrupt line.

To create an interface between the Force core and a host
controller that does not degrade the core’s performance, the
Toolbox includes a host interface cell. The interface allows
another processor to read and write data in the Force core’s
memory-address space; it receives as inputs the address and
data lines of the shared memory, the command lines from the
processors, the core’s data signals, and a MEMORY _READY
signal that indicates when the data in the shared memory is
valid. It provides a READY signal to the host, to indicate when
it can read or write data, and a clock signal to the core. Figure
6 shows a typical configuration of the interface, the core
processor, and the shared memory.

The host interface suspends the core processor when it
attempts to read invalid data. When the data is not in the

shared memory, the MEMORY_READY input to the host
interface is de-asserted until the data in the memory becomes
valid. While the signal is low, the interface suspends execu-
tion by the core processor; the processor continues when
MEMORY _READY is re-asserted.

When the host processor wants to write to the shared
memory, the host interface checks the FORCE_LOCK signal
to determine if the Force processor has priority on the
memory bus. If not, the interface suspends the core processor
and hands control over to the host. If wait states are neces-
sary, MEMORY_READY becomes low and the host interface
stalls the host with the- HOST_READY signal. When HOST _
READY is asserted, the host can relinquish priority on the bus.

Writing host-processor data into the shared memory is
simpler than reading from it. The host writes directly to the
host interface, which holds the data in a buffer. When the
memory bus becomes free, the interface writes the data into
the memory. A HOST_READY signal is set when the buffer is
full to prevent the host from writing over new data.

If the host processor wants to do some house-cleaning in
the shared memory, it requests priority on the memory bus by
asserting the HOST __LOCK pin. This signal suspends the core
processor so the host can have exclusive access to the mem-
ory. In normal operation, the use of LOCK signals should be
minimized so performance is not degraded.

The host interface is designed to work with an asynchro-

FIGURE 5. Integrated configuration of core,
stack controller, and multiplier.

nous host by synchronizing all commands from the host with
the Force clock signal. The core processor can work with
synchronous or asynchronous RAMs, even if the host interface
is used in a completely synchronous system. If the interface is
integrated with the core, minor modifications can improve
response time in the host read/write cycle. Also, if the shared
memory is integrated with the other components, the MEM-

ORY_READY line is not necessary because the on-chip com-

piled RAM is fast enough to always contain valid data.
Multiplier

Harris has designed a 16 X 16-bit multiplier, using its
proprietary MPS algorithm, for use with the Force core pro-
cessor. The peripheral performs full 16 X 16 multiplication,
generating a 32-bit product in as little as two clock cycles
when the peripheral is integrated with the core; a breadboard
system can complete a multiply in five clock cycles.

The multiplier operates either clocked or unclocked and
provides tristate signals at the output control and data (MSP
and LSP) lines. It has data latches at its inputs to allow clocked
operation independent of the core. On-chip results are gener-
ated in less than 50 ns from the edge of the clocking signal,
and the two 16-bit words in the product can be read simulta-
neously or in sequence.

The designer can incorporate the multiplier into the Force
architecture in several ways. First, he could designate several
G-bus addresses to identify the multiplier, multiplicand, and
the product’s most-significant word (MSP) and least-signifi-
cant word (LSP). Using this configuration, the core processor
would write the addresses and read back the results to receive
the result in four clock cycles.

He also could designate one G-bus address to identify either
the multiplier or the multiplicand. The second operand can
attach directly to the processor’s TOP bus. To perform a
multiplication, the multiplier would be written to the G-bus
and the multiplicand placed on the TOP bus. Upon comple-

FIGURE 6. Configuration of core and shared
memory with host interface.

tion, the processor executes a FETCH_SWAP from the G-bus
to receive either the MSP or LSP of the result (depending on the
multiplier’s configuration), placing it in the NEXT register. A
G-bus FETCH then retrieves the remaining product word. This
operation requires only three clock cycles to multiply two 16-
bit numbers, and when many numbers need to be scaled by a
constant (the multiplicand), the multiply takes only two clock
cycles once the initial multiplier is written to the' G-bus.
When the multiplier is integrated with the Force processor,
the multiplier and multiplicand can be placed directly on the
TOP and NEXT buses. The multiplier would be configured in
its feedthrough mode, and a 32-bit product would be available
every clock cycle. To execute a multiplication, the processor
needs to read only the appropriate G-bus addresses. Il

About the Authors

Peter S. Danile is currently a section head
of semicustom design at Harris Semiconduc-
tor. Prior to joining Harris in 1981, he
worked for both Northern Telecom and Mo-
torola Communications. A graduate of the
University of South Florida in 1976, Peter
went on to receive his MSE with honors from
Florida Atlantic University in 1980.

Christopher W. Malinowski is a senior
scientist for Harris’ semiconductor research
and development department, and a program
manager for the Force project. He holds an
MS degree in nuclear electronics and a PhD in
solid-state physics from Warsaw Technical
University.

We'’re backing you up with
products, support, and solutions!

SEMICUSTOM/CUSTOM TECHNOLOGIES 'LINEAR

* CMOS Programmable Logic * CMOS Digital e Op Amps

* Gate Arrays ¢ CMOS Analog e Comparators

* Standard Cells * Bipolar Analog ¢ Analog Switches
¢ Full Custom ¢ Dielectric Isolation ¢ Buffers

¢ Gallium Arsenide
e Radiation Hardened

DATA ACQUISITION TELECOMMUNICATION DIGITAL COMMUNICATION MICROPROCESSOR
¢ Analog Multiplexers e SLICs ¢ CMOS 1553 Bus Interface * CMOS 80C86—16-Bit
¢ D/A Converters e PCM and Univ. Active Filters e CMOS UARTs . * CMOS 80C88—8/16-Bit
e A/D Converters * CVSDs * CMOS Manchester ¢ CMOS 80C85 RH—8-Bit
- Sample-and-Hold ¢ T1 and ISDN Circuits Encoder/Decoder ¢ CMOS 80C86 RH—16-Bit
Amplifiers ¢ CMOS ARINC Bus Interface * CMOS 8/16-Bit Peripherals

MEMORY GALLIUM ARSENIDE RADIATION HARDENED

* CMOS RAMs ¢ Microwave FETs ¢ SRAMs/PROMs

* CMOS PROMs ¢ Digital ICs * Microprocessors

e CMOS Memory Modules -« Microwave Monolithic ICs -» Gate Arrays/Standard Cells

) e Microwave Amplifiers e Op Amps/Multiplexers
o Custom/Fabrication Services e Full Custom
Company Headquarters

2401 Palm Bay Road
Palm Bay, FL. 32905
(305) 724-7418

International OEM Sales

Europe Headquarters (UK) 44-734-698-787
Japan (Tokyo) 81-3-345-8911

National Distributors

Anthem Electronics

Falcon Electronics
Hall-Mark Electronics
Hamilton-Avnet Corporation
R.C. Components

Schweber Electronics

In Canada
Hamilton/Avnet Corporation
Semad Electronics

FOR YOUR INFORMATION,
OUR NAME IS

-HARRIS

Harris Semiconductor: Analog - CMOS Digital
Reorder Number: 6AR-8019 Gallium Arsenide - Semicustom - Custom

©Harris Corp., June 1987
Printed in U.S.A.

& HARRIS

help a cell library
called Force set the
ideas of real-time
designers into silicon.

DESIGN ENTRY

Standard-cell CPU toolkit
crafts potent processors

Todd Jones, Christopher Malinowski, and Stanley Zepp
Harris Semiconductor Sector, P.O. Box 883, Melbourne, FL 32904; (305) 724-7000.

Reprinted with permission from Electronic
Design (Vol. 35, No. 12) May 14, 1987,
Copyright 1987. Hayden Publishing Co. Inc.,
a subsidiary of VNU .

Real-time-system designers demanding the highest
performance are bound by hardware and software
“chains. System throughputs are shackled by the
limitations of standard microprocessors, a poor
match between popular languages and real-time
control applications, and the lack of a powerful,
general-purpose 16-bit microprocessor that' can

share one chip with application-specific logic.
 Designers can overcome the speed limitations
with bit-slice processors, which are hard to pro-
gram; or by coupling

T logic and bipo-
A 16-bit RISC-like lar microcontrollers,
y which are power-
CPU and COI'n.p lex hungry. Such solutions
suppor f functions are expensive to develop

and build, difficult to
document and main-
tain, and often cannot
be applied to new
technologies.

Out to break those
chains is a Forth optimized reduced-instruction-set
computing engine (Force) and a standard-cell tool-
kit. The CMOS engine is a 16-bit processor in stan-
dard-cell form, and the toolbox is a set of complex
cells, among them a stack controller, interrupt con-
troller, multiplier, and multiplier-accumulator.
The cells fit into a computer-aided-design package
for developing real-time products.

The architecture of the reduced-instruction-set
processor puts to work in hardware an existing
Forth-language virtual machine (see “Forth: A
Language for Real-Time Control,” p. 94). The sili-
con version grows out of technology licensed from
Novix Inc., of Cupertino, Calif., and makes the vir-
tual machine available as an embedded CPU and
standard all-based product. The low gate count,
however, does not sacrifice performance.

The RISC-like architecture avoids a high gate
count, a problem that blocks other processors from
serving as standard cells. The CPU has only 2500
.gates, a very low number that owes to the proces-

sor’s simple, directly executable set of Forth words
and to heavy reliance on the two memory stacks.
The CPU’s low gate count leaves plenty of chip for
stack memory, external interfaces, and specialized
I/0 to be created with cell-library CAD tools.

Depending on the task, the core processor can
operate at clock rates in excess of 15 MHZ, with an
average execution throughput of between 1 and 1.5
clock cycles per instruction. That corresponds to a
sustained throughput of 10 to 15 million high-level
instructions per second (MIPS). Also, because each
instruction executes the equivalent of several Forth
primitives, peak processing throughput can exceed
30 million Forth primitives per second.

A typical form that the Force machine would
take starts with the core processor and adds three
memories: a main program memory, a return stack
for dealing with subroutine calls, and a parameter
stack for storing data (Fig. 1). Inside the core are
three key registers that keep the operations moving
at high speed. The I register, which is the logical top
of the return stack; and the Top and Next registers,

DESIGN ENTRY m Cover: Standard-cell CPU

which are the two top locations of a parameter stack.
Thanks to the small core size, designs can rely heavily

on on-chip stack memories. For some tasks, dataand pro-

gram memories could also be included on chip. However,
when large amounts of memory become too costly, fast,
off-chip ROMs, EPROMs, and static RAMs enable de-
signers to build systems operating at clock speeds of 10
MHz or greater.

HIGHLY PARALLEL ARCHITECTURE

All instructions execute in one or two clock cycles, and
all three memory spaces can be accessed simultaneously.
Although the concepts of RISC design apply to the pro-
cessor, the architecture differs significantly from other
CPUs of that type. The Force core puts to work a high-
level language as its native instructions, giving the pro-
grammer a compact set of very powerful commands.

Other RISC processors use a reduced set of low-level
instructions that help the chips optimize throughput. Of-
ten, however, programs are big and development time is
long. In contrast, the Force core needs less code for a giv-
en application, increasing programmer productivity and
cutting software-development costs.

The processor core executes instructions fetched out of
main memory. These instructions closely mirror the
Forth language primitives. Arithmetic and logic com-

mands operate on the Top and Next registers and return
the result to both those units, especially the Top register.
Similarly, if operations must be-performed on the return
stack, the I register comes into play. There is also a fast
I/0 bus that can be accessed in parallel with the memo-
ries. For extra speed, arithmetic or logic operations, if
needed, can be performed on read I/0 data during, rather
than after, the read cycle.

The main memory holds data, instructions, and the
traditional Forth *‘dictionary” structures. Dual stacks
are formed by two dedicated RAMs, which appear to the
processor as last-in, first-out (LIFO) structures con-
trolled by the stack-controller subsections (one for each
stack). The stack controllers generate stack memory ad-
dresses under the direction of the processor.

In Forth, subroutine calls and operations on the data
stack are most important. For this reason, the architec-
ture is geared to these operations. For instance, the sub-
routine call takes one clock to do the “top-of-stack” arith-
metic or logic operations. In addition, a subroutine return
can occur in the same clock cycle as most other instruc-
tions. As a result, the total subroutine call-and-return
overhead is cut to just one clock cycle with no extra time
needed for the return.

The processor’s highly parallel architecture executes

the equivalent of several Forth language primitives at

Forth: a language for real-time control

Designing today’s real-time control
applications requires a high-level lan-
guage that interfaces easily with cus-
tom hardware. The ideal language
would need little or no dedicated
memory outside that required for the
application; it would present few, if
any, restrictions on application-mem-
ory locations. The language must also
lend itself to testing and debugging
the application in its real-time envi-
ronment. Finally, compiled applica-
tion code should be compact and exe-
cute fast.

One language that easily meets all
those conditions is Forth. No ancil-
lary libraries or executives take up
valuable memory space, and because
Forth is quite compact, much of the
development can actually take place
on the application hardware. This
ability greatly aids the integration
and testing phase of the program.
Run-time diagnostics are similarly
aided by a small interpreter that does
real-time monitoring and control in
stand-alone tasks.

Forth is an integrated software-de-
velopment environment incorporat-

ing an editor, compiler, and debug-
ger, as well as a host of other
development utilities that, in other
environments, are usually separate.
Because Forth is interpretive, the pro-
grammer can directly compile and ex-
ecute code as soon as it is entered.

Being interpretive, the language
speeds prototyping. It lets designers
find out if the basic algorithm is cor-
rect before committing much time
and resources to generating code.

Forth is a software environment
that embodies a “virtual machine,”
which is the heart of the development
system. Much of the virtual machine
is the dictionary, which is a linked list
of procedures called words. Stacks
communicate parameters between
procedures and link subroutine calls
during execution; they are the hub of
all machine activity. The parameter
stack maintains the program data,
and the return stack maintains the re-
turn addresses during execution.

A typical application is built upon
subroutines, and each word that is de-
fined in Forth is treated like a proce-
dure call. An application is built up of

words predefined by the program-
mer. These words can in turn be used
again to define more complex words
in the application. As each new word
is defined, it is entered into the dictio-
nary, from which it is pulled as need-
ed. This process continues until the fi-
nal application program exists as a
single word.

The internal structure of a Forth
word consists of a header, containing
the name field and dictionary link,
and the body. The body is a list of sub-
routine calls to the words that make
up the definition. During execution of
a word, the internal list of procedures
is executed, calling another word of
internal subroutine lists. This ;j)rocess
of subroutine calls continues until a
low-level primitive is encountered.
That primitive is then executed, as it
contains low-level machine
instructions.

This process of layered subroutine
calls is often referred to as threaded
code. Because of this form of execu-
tion, the virtual machine depends
heavily on modular programming
techniques and subroutine calls.

DESIGN ENTRY m Cover: Standard-cell CPU

]

ments, the cells can be cascaded using their Carry and
Borrow signals. The cells generate the Stack Underflow
and Stack Overflow outputs to indicate an empty and full
status of the stack. Usually, these outputs would inter-
rupt the processor.

For math intensive applications, the toolbox includes a
16-by-16-bit fast multiplier that executes a proprietary al-
gorithm and operates at cycle times below 50 ns. The mul-
tiplier performs a signed-magnitude multiplication with-
in one clock cycle of the engine. Also available is a 16-by-
16-bit multiplier-accumulator (MAC) cell for jobs like
digital filtering.

For dedicated tasks calling for parallel external ALU
or concurrent external arithmetic operations, a set of fast
16--and 32-bit arithmetic cells is available. The library
also includes a 32-bit barrel shifter and a leading-zero-de-
tector cell for floating-point math operations that need
fast normalization and denormalization.

Giving priority encoding of up to 15 asynchronous
maskable interrupts, the interrupt vector-generator
(IVG) cell also delivers a 16th, nonmaskable interrupt
(NMI) directly to the processor’s NMI input. The IVG’s
mask register has a bit for each of the prioritized interrupt
inputs and is loaded from the'processor’s T bus. That bus
connects to the top of the parameter stack.

Any true interrupt input that is not masked will set the
INT, informing the processor of the pending interrupt.

Atthesame time, the IVG produces a vector location cor-
responding to the highest-priority unmasked interrupt-
ing input. This location establishes the point at which in-
terrupt-code execution starts when the interrupt is
acknowledged. The interrupt-vector location is read onto
the core I/O-input (G) bus when the signal INTA ema-
nates from the core during an interrupt-acknowledge cy-
cle. That vector can also be read by subsequent I/0 read
instructions. :

An asynchronous host-interface cell lets the core com-
municate with slower hosts, typically general-purpose
processors, in a master-slave environment. In the inter-
face scheme, the host processor can access either part or
all of the chip’s data or program RAM, which would ap-
pear to the host as a block of its own memory space. The
interface cell’s arbitration logic allows the host only one
access at a time, interleaved with one or more core-pro-
cessor accesses. This limit, however, may be bypassed
with lock options by either processor. Those options
grant temporary exclusive access to the interface by one
processor or-the other.

PUTTING THE PIECES TOGETHER

To see how all the macrocells come together, examine
their work in a high-performance processor aimed at
closed-loop control and other math-intensive tasks. Such
jobs include robotics, instrumentation, flight control, sig-

Instruction
decode

Return stack input v ’\gglc?re'g:nl;gg 1/O registers Main memory Parameter stack
\)) Stack
1ie Vs 18] G Top Output Input irt;put r(;lgtxtu?tgglg
Write ‘ 164 16 £ 16 fi6_ Pusq |oUP
Decrementer |-$ Data o 16
I/ %Lnspm olétput Byte swap Byte swap
us Top bus
3 ' EiRa
l Incrementer L
] Program Instruction Configuration Multiply-divide Square-root
Indgx register counter register Next register register register
¥ i
Y bus

Top

2. A simple processor, the 16-bit Force core contains three key registers, the Top, Next, and |, that hold the
most fime-critical information. Other registers in the core take care of status-handling operations. Special
registers and logic help multiply, divide, and find square roots.

DESIGN ENTRY m Cover: Standard-cell CPU

once. In only two cycles, one such multifunction instruc-
tion performs the Forth equivalent of over swap—which
exchanges, duplicates, and subtracts the values in two
registers. It is executed just like classic executed Forth
code.

The complex macrocells in the Force toolbox are based
on an advanced cell library and computer-aided-design
capability developed by Harris and SDA Systems Inc., of
Santa Clara, Calif. The tools define cells and macrocells
and efficiently place and route completed designs. They
route designs incorporating fixed blocks of logic or mem-
ory, macrocells, and standard cells. Also included are
tools to verify and simulate completed designs. The SDA
software can compile RAMs and ROMs with variable
size, configuration, and layout shape.

Besides the specially developed Force toolbox macro-
cells, the SDA design environment also contains a num-
ber of microprocessor-support peripherals, such as indus-
try-standard and proprietary serial asynchronous
transmitter-receivers, baud-rate generators, clock gener-
ators, programmable interval timers, and Manchester en-
coder-decoders. Not only that, the toolbox ties directly
into Harris’s already available standard-cell library. As a
result, the designer can glue the complex blocks together
or develop added logic functions using the 7400-series
logic elements.

For breadboarding of systems, Harris has developed a
144-lead version of the Force core only. The core is in-
cluded in a demonstration board from Logical Devices
Inc., of Ft. Lauderdale. With this board, designers can ac-
cess all of the processor’s I/0, making it possible to
breadboard a full system. It can interface to any CRT ter-
minal or serial-communication port, and contains ROM
and RAM space for the application code. Extra space is
available should a particular task require more memory.

A development system configured as an IBM PC plug-

in board and aimed at a PC-integrated development envi-
ronment is now in final development by Silicon Compos-
ers Inc. of Palo Alto, Calif. Moreover, a Forth target
compiler is now hosted on the IBM PC family. This target
compiler makes possible the development of software in
the PC environment, generating executable code for the
Force processor and for use as a development tool for
software vendors.

A CLOSE LOOK AT THE MACROCELLS

The Force processor core is the key element of the tool-
box. That simple, yet powerful control engine is tied to
other circuits by means of parallel, 16-bit data paths to
the parameter stack, return stack, main memory, and the
general-purpose I/0 bus. There is also a 16-bit main
memory address bus and a 5-bit address extension, which
also functions as an I/0O address bus. Inside the processor
core are eight registers; four of which are independently
accessible in parallel (Fig. 2).

The Top, Next, I, and Instruction Registers are all sep-
arately accessible so that multiple operations can be done
simultaneously. The other four are the program counter,
square-root, configuration, and multiply-divide registers.
With its byte-swap logic on the main memory buses, the
processor can rapidly reorder or perform byte reads or
writes.

The core’s two main work areas, the parameter-stack
and return-stack memories, are addressed through iden-
tical stack-controller cells (Fig. 3), which generate ad-
dress pointers within 5 ns from the time that the core’s
stack, read, and write signals become valid. The ability to
quickly generate the stack addresses is critical to maxi-
mizing throughput.

The stack-controller cells can also be externally pre-
loaded from the processor’s data bus with a predeter-
mined stack address. For deep stack-memory require-

L - - - - _ 1 6

**User-configurable for depth

s " T Stack-
i Return- Parameter- €
cgg{?ctjﬁrer stack RAM stack RAM ng{?;ﬁ;r
—— emmm e m— — \ — _ _
r -] l I I Next I— 1
[Top 16 x 16-bit
| [Clock l Force | multiplier |
T enerato! core
I e l | Interrupt |
logic
	:		
l E?\tla I		Host interface J	

L —— |

4. Harris Semiconductor’s Forth-optimized, reduced-instruction-set computing
engine (Force) core can be surrounded by the stacks and various support
functions and memories to build a complete system on just one chip.

DESIGN ENTRY m Cover: Standard-cell CPU

nal processing, graphics, and image processing. (That
processor is, in fact, the first planned product to be built
with the toolbox.)

The control processor takes advantage of the Force en-
gine, the high-performance proprietary multiplier, and
the normalize-shift macrocells (Fig. 4). It can function as
a stand-alone processor but because it includes a host in-
terface, it can share external main memory with any host
processor. Provisions are also made to handle interrupts
to and from the host processor.

Highly integrated, the chip includes two 128-word
stack memories and controllers, one for the parameter

' !

Writ Stack
Address increment/ | Wrte | address
decrement logic Read
: I] Underflow
[Stack address register Underflow/
overflow-
) r detection logic :
Overflow

1

Stack address steering Top-of-stack
logic 71 limiting register

1

o (o) [e] [o] [o] (o]
Read/ Data Load Stack Clock Load
Write active offset

3. One of the key support cells in the Force toolbox
is the stack controller, which turns ordinary RAMs
into last-in, first-out stacks for the processor. Two ver-
sions of the stack controller address 64 or 256
words of memory. Multiple controllers can be cas-
caded to handle larger memory spaces.

stack and one for the return stack. The address registers
of each of these macrocells can be loaded and read as 1/0
devices. On top of that, the overflow and underflow out-
put lines from each of these macrocells drive interrupt in-
puts on the IVG.

Arithmetic hardware sits on- -chip to speed computa-

- tions. That hardware includes a 16-by-16-bit multiplier

and the normalize-denormalize-shift macrocell. The lat-
ter simplifies software development by delivering all the
normalization that modern control systems typically de-
mand for fast floating-point operations.

For control tasks, three 16-bit timer-counters on the
chip supply a programmable time base, internal timing,
or event-counting functions. These timers are clocked by
a prescaled internal clock or by external inputs. A 16-in-
put IVG macrocell obtains a fast response to internal or
external events. The internal events flagged include over-
flow or underflow conditions for the four stacks and the
three timeouts for the timers.

Provisions are also made for nine external interrupts
including a host interrupt, a nonmaskable interrupt, and
seven maskable interrupts. The interrupt mask register in
the IVG cell can enable or disable any of these interrupts
except the nonmaskable one.

The general-purpose coprocessor has the ability to ad-
dress up to 16 Mbytes of external memory for code and
data, all of which is external. Such a large range matches
the addressing capability of most general-purpose host
processors and supplies the space needed for software de-
velopment, graphics, and image-processing jobs. It also
makes possible complete flexibility with respect to memo-
ry configuration.

Because the core processor itself can produce only a 16-
bit address (capable of addressing 64 kbytes of code or
data memory), it is supplemented by memory-address-

| = interrupt el
ook input e halis
<~ 1, (nonmaskabie
generators l2s s l2-lp interrupt), [
lyo-l
Memory, 1 4 e | A
data,address
' ' Data Data
control stack stack Interrupt Muttiplier Timer)
(128 words) control control User drivers
G bus
. Host Force Bidirectional | .
interface core buffers
lg Return Return Current ' Address N
Host control stack stack task Normalize/ extension Co?él%:;g:lon ot
and address | (128 words) control register shift logic 9 interrupt
Data
enable
lay Is

4. A general-purpose coprocessor, with on-chip resources to handle fast integer multiplication and floating-
point math, is easily assembled from the cells in the Force toolbox. Both the parameter and return stacks, as
well as three timer-counters and an interrupt controller, are on the chip.

DESIGN ENTRY m Cover: Standard-cell CPU

PRICE AND AVAILABILITY

The Force library is a part of standard product designs.
The first such design is the coprocessor described in this
article, which will be released in the fourth quarter.
Prices for the coprocessor will be set then. It is also an-
ticipated that the Force library will be released for semi-
custom design, but no date for that has yet been set.
CIRCLE 504

extension logic to achieve the 16-Mbyte range. Thanks to
two 8-bit memory-extension registers within the address-
extension logic, independent address extension is sup-
plied for code and data to generate 24-bit addresses (16
Mbytes). Because the address extension for code and data
is independent, maximum memory flexibility is gained.
An external processor works with a host-interface ma-

crocell to gain access to the entire co-processor memory’

(16 Mbytes, if needed). This interface looks like a block of
memory to the host, making it very easy to interface to
any processor. The host interrupt to the Force processor
is put into effect by a host write to a particular memory
address. For stand-alone tasks, the host interface need
not be used. Also included on the chip is a clock oscillator
and clock generator, which supplies timing signals to the

Force core, 1/0 devices, stack RAMs, and to the rest of

the appliction system.

The core processor’s 1/0 bus is brought off-chip to
connect to specialized I/0 devices required by the job.
These 1/0 devices can also be built with the Harris—
SDA standard cell gate-array design systems. For tasks
that do not need all the internal I/0 devices, an internal-
configuration register selectively disables timers, math
hardware, or address extension hardware, making their
170 addresses available to external devices.[]

Todd Jones is a senior engineer at Harris, responsible for
Force software planning and development. He has a BS de-
gree in computer science from the University of Idaho and
an MS in computer science from the Florida Institute of
Technology.

Christopher Malinowski is a senior scientist for Harris’s
semiconductor research and development department,
and program manager for the Force project. He holds an
MS degree in nuclear electronics and a Ph. D. in solid-state
physics from Warsaw Technical University.

Stanley Zepp, a senior scientist, is Harris’s manager of
business development for the microprocessor product line.

- He holds a BEE degree from the University of Florida and

an MEE from New York University.

We’re backing you up with
products, support, and solutions!

SEMICUSTOM/CUSTOM

¢ CMOS Programmable Logic
¢ Gate Arrays

¢ Standard Cells

TECHNOLOGIES
* CMOS Digital

¢ CMOS Analog
* Bipolar Analog

LINEAR
* Op Amps
e Comparators

¢ Analog Switches

e Full Custom ¢ Dielectric Isolation ¢ Buffers
e Gallium Arsenide
¢ Radiation Hardened
DATA ACQUISITION TELECOMMUNICATION DIGITAL COMMUNICATION MICROPROCESSOR
* Analog Multiplexers * SLICs e CMOS 1553 Bus Interface * CMOS 80C86—16-Bit

e D/A Converters
e A/D Converters

e Sample-and-Hold

Amplifiers

* CVSDs

* PCM and Univ. Active Filters
e -1 and ISDN Circuits

¢ CMOS UARTs

¢ CMOS Manchester
Encoder/Decoder

* CMOS ARINC Bus Interface

* CMOS 80C88—8/16-Bit

e CMOS 80C85 RH—8-Bit

¢ CMOS 80C86 RH—16-Bit
e CMOS 8/16-Bit Peripherals

MEMORY

* CMOS RAMs

e CMOS PROMs

¢ CMOS Memory Modules

GALLIUM ARSENIDE

® Microwave FETs

* Digital ICs -

¢ Microwave Monolithic ICs

¢ Microwave Amplifiers

e Custom/Fabrication Services

RADIATION HARDENED

* SRAMs/PROMs

* Microprocessors

¢ Gate Arrays/Standard Cells
* Op Amps/Multiplexers

¢ Full Custom

Reorder Number: 6AR-8018

©Harris Corp., June 1987
Printed in U.S.A.

Company Headquarters
2401 Palm Bay Road
Palm Bay, FL. 32905
(305) 724-7418

International OEM Sales

Europe Headquarters (UK) 44-734-698-787
Japan (Tokyo) 81-3-345-8911

National Distributors

Anthem Electronics

Falcon Electronics
Hall-Mark Electronics
Hamilton-Avnet Corporation
R.C. Components

Schweber Electronics

) In Canada
Hamilton/Avnet Corporation
Semad Electronics

" FOR YOUR INFORMATION,
"~ OURNAMEIS

Harris Semiconductor: Analog - CMOS Digital

D HarRiS

Gallium Arsenide - Semicustom - Custom

Q September 1987

@ HARRIS Gt ndard C i

HSC 250 CMOS Cell Library

Features

¢ 1.5 Micron Effective Channel Length, 2-Layer
Metal CMOS

1.2ns Typical Gate Delay Through 2-Input NAND
Up to 100MHz Flip-Flop Toggle Rate

Over 200 Primitive and Macrocell Functions
Complex Function Megacells '
Customer Definable RAM and ROM

Supported on Multiple CAE Platforms

[)

Description

The HSC 250 STANDARD CELL LIBRARY is a proven, high
performance dual-level metal library. The library offers a
broad range of predesigned and fully characterized cells,

CMOS/TTL Compatible I/0’s
Commercial-Industrial-Military Temperature Ranges
Proven Reliable and Manufacturable Process
Extensive Range of Packaging Options

Minimum 4kV ESD Protection

Screening and Qualification to Mil-Std-883 Method
5004/5005, Class B

¢ Fully Compatible with the HSC200-RH Rad-Hard
Library

macros, complex megacells and compilable R‘AM and ROM
for developing reliable, cost effective customer specific IC’s. -

Die Photo

Copyright © Harris Corporation 1987)
This information is current as of August 1887. Updates are issued semiannually.

HSC250 CMOS Standard Cell Library

Complex Function Megacells

To enhance the level of system integration, and reduce the
design cycle time Harris has developed a series of complex
function megacells. These functions consist of a family of

e Microprocessor Peripherals
82C37A
82C50A
82C50B

82C59A
82C84A

¢ Communication Elements

HD4702
HD6402
HD6406
HD6408
HD6409
HD15530
HD15531

® Other Functions
H2901

*HMU16, HMU17, HMU18
PFHMUT010. ..o

Compilable Cells

Harris has further expanded user definability by providing
high performance, module compilation. This capability allows

*Contact Factory for availability
**Available Q1, CY’'88

highly integrated microprocessor peripherals, communica-
tion elements, high performance multipliers, and bit slice ele-
ments. A list of the available megacells follows:

DMA Controller

Asynchronous Communication Element
Asynchronous Communication Element

UART/BRG

Programmable Interval Timer
Programmable Peripheral Interface
Priority Interrupt Controller

Clock Generator

Bus Controller

Programmable Bit Rate Generator

UART

UART/BRG/Modem Control

ASMA

Manchester Encoder/Decoder

Manchester Encoder/Decoder
Programmable Manchester Encoder/Decoder

4-Bit Slice ALU
16 x 16 Multipliers
16 x 16 Multipliers/Accumulator

the customer to quickly generate design specific RAM and
ROM cells.

Compilable to 16K
Compilable to 64K

HSC250 CMOS Standard Cell Library

Absolute Maximum Ratings

ST o LYY =T 1= -0.5Vto 7.0V

1Yo LWL 7@ 10 (o TH Y o1 =T - VSS -0.5V

VCC +0.5V

14T 01U 3T Yo LY @ W1 =5 10mA

) Vi<OorVi>VCC

Output Diode CUITENtot i ittt ittt e e st te e e e ananansanannennennnns 10mA

VO <0orVO > VCC

Power Dissipationociuiii i i e e i 1000mwW
Continuous Supply Pin Current

VO C O GIN D . ..ttt ittt it ittt e et ataae e e eaaanasssennnnneessanananssesnnnnnasennnnn 100mA

Storage Temperature

=T (AP -400C to +1250C

(07T 1 11 -659C to +150°C

Continuous Current Per OUEPULttt it ittt et itatet e eantanseennnnnreannnnns 10mA

CAUTION: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and func-
tional operation of the device at these or any other conditions beyond those indicated under “Recommended Operating Conditions” is not implied. Exposure to
absolute maximum rated conditions for extended periods may effect device reliability.

NOTE: All applied voltages are with reference to GND (VSS).

Recommended Operating Conditions
D.C. Electrical Specifications VCC =5V + 10% Tp = Operating Temperature Range

symeoL | PARAMETER | mn [max | unir CONDITIONS
VCC Operating Supply Voltage 4.5 5.5 \
Ta Operating Temperature
Commercial 0 70 oC
Industrial -40 85 oC
Military -55 125 oC
VIH Input High Voltage TTL 22 N VCC =55V
CMOS 70% VCC
VIL Input Low Voltage TTL 0.8 \" VCC =4.5V
CMOSs 30% VCC
] Input Current
Standard -1.0 +1.0 HA VIN =VSS = 0.0V
Pull Up -500 +10 VIN=VCC =5.5V
Pull Down -10 +500
Pull Up* -50 uA VI=22V VCC=55V
Pull Down* +50 uA VIi=0.8V
IOH Outputvoitage C o v/ oS 6.0 mA VOH =2.4V; VCC = 4.5V
IoL Output Voltage: e/t -60 mA | VOL=0.4V;VCC =45V
10Z Output Leakage -10.0 +10.0 pA VSS = VOL =0.0V;
VCC =VOH = 5.5V
ICCSB Stand-By Supply okl uA I=0;10=0
CI** Input Capacitance 10.0 Typical pF VI=VCC or VSS; f = 1MHz
CO** Output Capacitance _ 10.0 Typical pF VO =VCC or VSS; f=1MHz
CIO** Input/Output Capacitance 15.0 Typical pF VO =VCCorVSS; f=1MHz

* Maximum input current for which specified VI will be maintained.
** Characterized at initial design and after any major design or process changes. Maximum values may vary by package type.
*** Customer design dependent.

HSC250 CMOS Standard Cell Library

Sales Offices

U.S. HEADQUARTERS
Harris Semiconductor
2401 Palm Bay Road
Palm Bay, Florida 32905
TEL: (305) 724~-7418

EUROPEAN HEADQUARTERS
Harris/System Limited
Semiconductor Sector

Eskdale Road

Winnersh Triangle

Wokingham RG11 5TR
Berkshire

United Kingdom

TEL: 0734-698787

- FAR EAST HEADQUARTERS

Harris K.K.

Shinjuku NS Bldg. Box 6153
2-4-1 Nishi-Shinjuku
Shinjuku~Ku, Tokyo 163 Japan
TEL: 81-3-345-8911

DISTRIBUTORS IN U.S.A.

Anthem Eiectronics
Falcon Electronics
Hall-Mark Electronics

Hamilton/Avnet Corporation
Schweber Electronics

) HARRIS

SEMICONDUCTOFt. PRODUCTS DIVISION

DISTRIBUTORS IN CANADA
Hamilton/Avnet Corporation
Semad Electronics

Reorder Number: 7DS-0097

