
mJ HARRIS

PRELIMINARY
May 1990

Features
•Fast 100ns Machine Cycl•
• Single Cycle Instruction Execution
• Fast Arithmetic Operations

.. Single Cycle 16-bit Multiply

.. Single Cycle 16-blt Multiply Accumulate

.. Single Cycle 32-bit Barrel Shift

.. Hardware Floating Point Support

• C Software Development Environment
• Direct Execution of Forth Language
• Single Cycle Subroutine Call/Return
• Four Cycle Interrupt Latency
• On-Chip Interrupt Controller
• Three On-Chip 16-Bit Timer/Counters
• Two On-Chip 258 Word Stack•
• Multitasking Stack Controller
• ASIC Bua• for Off-Chip Extension of Architecture
• 1 Megabyte Total AddreH Space
• Word and Byte Memory Acc•H
• Low Power CMOS .••••••.•••••• 5mA/MHz Typlcal
• Fully Static •••.•••.•...••• DC to 1 OMHz Operation
• 84-Pin PGA or PLCC Package
• Available in the Harris Standard Cell Ubrary
•Pin Compatible to the RTX 2000•, RTX 2001A•

Applications
Embedded control; process control; digital filtering; image
processing; scientific instrumentation; optical scanners.

RTX 201 O Block Diagram

INTl-.r
INPUTS

RTX 2010™
Real Time Express"" Mlcrocontroller

Description
The RTX 2010 is a 16-bit microcontroller with on-chip timer,
an interrupt controller, a multiply-accumulator, and a barrel
shifter. It is particularly well suited for very high speed control
tasks which must perform arithmetically intensive
calculations, including floating point math .

Pin compatible to the RTX 2000, and RTX 2001A, this pro·
cessor incorporates two 256-word stacks with multitasking
capabilities, including configurable stack partitioning and
over/underflow interrupt control.

Instruction execution times of one or two machine cycles are
achieved by utilizing a stack oriented, multiple bus
architecture. The high performance ASIC Bus, which is
uniQue to the RTX• family of products, provides for extension
of the mlcrocontroller architecture using off-chip hardware
and application specific 1/0 devices.

RTX Mlcrocontrollers support the C and Forth programming
languages. The advantages of this product are further
enhanced through the use of the peripherals and develop·
ment system support Harris provides for the RTX family.

Combined, these features make the RTX 201 O an extremely
powerful processor, serving numerous applications in high
performance systems.

The RTX 2010 has been designed and fabricated utilizing the
Harris Advanced Standard CeU and Compiler Library. As part
of the Harris family of compatible cell libraries, the RTX 201 O
architecture can also be incorporated into customer ASIC
designs.

MAIN
MEMORY

RTX 2010

RTX .. , RTX 2000 ... RTX 2001A .. , RTX 2010•. RMI Time Eaoret1•M, Md ASIC a .. • ate Tt8de!Nrk1 o1 Hanil Corooration.
CAUTION: TheM de¥ae .,. _....,. lo eleclloatatlc dilc:Mtge. Prooer l.C. handling Proeedurea lhould be followed.
Copyright C Heme COtPQrltion t HO

·-.._. .. '· -

~-

·~

111 A ~U HJ ·.

· Pinouts
...

8~ PIN PGA PACKAGE'

A ' B. IC D E F G H. J K I L L .:. K· J H G · F D C _a . A

GNI;) M~02 MDol PCLK uos GNCI MAii MAI& o o .o o o. o·o o. o. o o 11
MAii MAUI GND UDS .PCLK MDO_I MDo2 GND Mooe MD07MOO

9 MDI MDIO

8 MDI MDt3

5 INTA NMI :'Jp

4 VCC Ell

3 E12

· I E 15 ICLK GA~ GDI GND GD07 GD.

PIN
Al

A B .. C D E F .G

RESET
WAl'1'
iCLK

.GRJW
·. GIO

. GD15
·0014
GD13
GND.

GD12
.. GDH

GD10
GD08
CID08
GD07
vcc

·. CID08
GDol
.GD04
GD03.
GND

l,.tis MAlil MAl7 MAl4 ·o o o o o o a o o o o 10
MAl4 MAl7 MAIS LOS BOOT NEW MDO:S· MOOS. VCC MD09 MDII

MAIS VCC

MA.13 MA12

MA02.MA03

GDOI MAOI

0 0
VCC MAIS:

0 0
MAl2 MAl3

0 0 0
MA09 MAIO. GND

o~ o o
MANI MDOO MD04

0 0 9
MDIO,M01Z ..

0 0 8
, MDl3 MOl4

o o· o -;
GAOi MOIS GAO

.0 o O ·BOlTOMVIEW. 0 ·o O a
MAii MA07 MA08 PINS UP . GA02 GND_TC

0 0 0 0 0 0 5
MA08 MA08 MA04 . INTSUP NMI INTA

0 0 0 0 4
MA03 MA02 E i1 VCC

0 0
MAO! GOOI

0 (j 0 0 0 .3
GD.10 GD11GD14 E.14 .E 12

. 0 0 0 0 0 0 () 0 0. 0 0 2
GDOo GD02 GDoa GD08 GD08 G012 _GDl3 .GIQ WAIT. ~ESET f; 13

VCC GOOS GD04 GND 0 0 0 0 0 0 b 0 0 0. <{:)
GND GD04 GOOS VCC GD09 GD07 GND Gl>15 GA./W ICLK · E 15

H J K I L L K J H G

·. 84 LEAD PLCC PACl(AGe

~~-~~~~.~N~•~N~O··~-~
~- . ·····~~~~~ . • ft

RTX._20to·
TOP VIEW

73
72
71
70
88
88
87
88
.85
84

·. 83

62
. ·81

80
59
Si
57
51
55

_F E

.Mooe
vce
MD07
M008
MOOS
GND.
MD04.
MD03
MD02

. MD0_1
MDC>_!·
MRIW
PC.LK
BOOT
NEW

. uoa·
LDS
GND
MA11
MA18
~A17•.

D C .. B ~ j
.. PIN·

Al ·

NOTE: All ovetUt on a lignll' MIN (fprMenla M ective LOW ·-. - .

2 ..

RTX2010
..

TABLE 1. PGA AND PLCC PIN/SIGNAL ASSIGNMENTS ..
PLCC PGA SIGNAL PLCC PGA SIGNAL LEAD PIN NAME TYPE LEAD PIN NAME TYPE 1 C6 GA02 Output; Address Bus 43 J6 MAOS Output; Address Bus · 2 A6 TCU<

..
Output 44 J7 GND Ground

; 3 AS INTA Output 4S L7 MA09 Output; Address Bus 4 BS NMI Input 46 K7 MA10 Output; Address Bus s . cs INTSUP Input 47 L6 MA11 Output; Address Bus 6· A4 vcc Power 48 LB MA12 Output; Address Bus 7 B4 E11 Input 49 KS MA13 Output; Address Bus s A3 E12 Input 50 L9 vcc Power 9 A2 E13 Input 51 ~ L10 MA14 Output; Addresa Bus 10 B3 El4 Input S2 K9 MA15 Output; Address Bus 11 A1 EIS Input 53 L11 MA16 Output; Address Bus 12 B2 RESET Input 54 K10 MA17 Output; Address Bus 13 C2 WAJT Input S5 J10 MA1S Output; Address Bus 14 B1 ICU< Input S6 K11 MA19 Output; Address Bus 1S C1 GRfiJ Output S7 J11 GND Ground 16 02 GiC5 Output 58 H10 LOS Output 17 01 GD15 . 1/0; Data Bus S9 H11 . uos Output 1S E3 GD14 1/0; Data Bua 60 F10 NEW Output 19 E2 GD13 VO; Data Bus 61 G10 BOOT Output 20 E1 GND Ground 62 G11 PCLK Output 21 F2 GD12 1/0; Data Bus 63 G9 MRfii Output 22 F3 GD11 1/0; Data Bus 64 F9 MDOO 1/0; Data Bus 23 G3 GD10 1/0; Data Bus 65 F11 MD01 VO; Data Bus 24 G1 G009 VO; Data .Bus 66 E11 MD02 VO; Data Bus 2S G2 GOOS 1/0; Data Bus 67 E10 MD03 1/0; Data Bus 26 F1 GD07 1/0; Data Bus 68 E9 MD04 1/0; Data Bus 27 H1 vcc Power 69 011 GND Ground 2S H2 GOOS 1/0; Data Bus 70 010 MD05 VO; Data Bus 29 J1 G005 liO; Data Bus 71 C11 MOOS VO; Data Bus 30 K1 GD04 1/0; Data Bus 72 B11 MD07 1/0; Data Bus
31 J2 G003 VO; Data Bus 73 C10 vcc Power 32 L1 GND Gri:>und 7'4 A11 MOOS 1/0; Data Bua 33 K2 GD02 1/0; Data Bus 7S B10 MD09 VO; Data Bus 34 K3 G001 1/0; Data Bus 76 B9 MD10 VO; Data Bus 35 L2 GDOO VO; Data Bua n A10 M011 VO; Data Bus 36 L3 MA01 Output; Address Bus 78 A9 MD12 VO; Data Bua
37 K4 MA02 Output; Addraaa Bua 79 BS M013 ·VO; Data Bua 38 L4 MA03 Output; Address Bus 80 AS MD14 VO; Data Bus 39 J5 MA04 Output; Address Bus 81 B6 GNO Ground 40 K5 MA05 Output; Addraaa Bus 82 B7 M015 1/0; Data Bus 41 L5 MA06 Output; Addrees Bus 83 A7 GAOO Output; Address Bus
42 K6 MA07 Output; Address Bua 84 C7 GA01 · Output; Address Bua

TABLE 2. OUTPUT SIGNAL DESCRIPTIONS

PLCC. RESET
SIGNAL LEAD LEVEL

DESCRIPTION OUTPUTS

NEW 60 1 NEW: A HIGH on this pin indicates that an Instruction Fetch is in progress. BOOT 61 . 1 BOOT: A HIGH on this pin indicates that Boot Memory la being accessed. Thia pin can be set OI reset by acceeeing bit 3 of the Configuration Register.
MR/W 63 1 MEMORY READ/WRITE: A LOW on this pin indicates that a Memory Write operation la in progress. uos 59 1 UPPER DATA SELECT: A HIGH on this pin indicates that the high byte of memory (MD15-M008) is being acceaaed.
LOS 58 1 LOWER DATA SELECT: A HIGH on this pin indicates that the low byte of memory (MD07-MOOO) is being ac<::eaaed.

.. GIO 16 1 ASIC VO: A LOW on this pin indicates that an ASIC Bua operation is in progreaa. GR/W 15 1 ASIC READ/WRITE: A LOW on this pin indicates tnat an ASIC Bua Write operation ia In progress. PCLK 62 0 PROCESSOR CLOCK: Runs at half the freQuency of ICU<. AJI procesaor cyclea begin on the rising edge of PCLK. Held low extra cycl• when WAIT is asaerted. · TCLK 2 0 TIMING CLOCK: Same frequency and phase aa PCLK but c0ntinuee ruMing during Walt cyci.'. INTA 3 0 INTERRUPT ACKNOWLEDGE: A HIGH on this pin indicates that an Interrupt Acknowledge oyele is in progreas.

3

~

PLCC
SIGNAL LEAD

INPUTS ·

WAIT 13 ..

ICU< 14

RESET 12

El2,El1 8,7

E15-El3 11-9

NMI 4

INTSUP 5

RTX 2010

TABLE 3. INPUT SIGNAL, BUS, AND POWER CONNECTION DESCRIPTIONS

DESCRIPTION

WAIT: A HIGH on this pin causes PCLK to be held LOW and the current cycle to be extended.
INPUT CLOCK: Internally divided by 2 to generate alloo-chip timing (CMOS input levels).
A HIGH level on this pin resets the RTX. Must be held high for at least 4 ICLK cycles (Schmitt trigger CMOS input levels).

EXTERNAL INTERRUPTS 2, 1: Active HIGH level..;sensitive inputs to the Interrupt Controller. Sampled on the rising edge of PCLK. See Timing Diagrams for detail.

EXTERNAL INTERRUPTS 5, 4. 3: Dual purpose inputs; active HIGH level-sensitive Interrupt Controller inputs; active HIGH edge-sensitive Timer/Counter inputs. As interrupt inputs, they are sampled on the rising edge of PCLK. See Timing Diagrams for detail.

NON-MASKABLE INTERRUPT: Active HIGH edge-sensitive Interrupt Controller input capable of interrupting any processor cycle. See the Interrupt Suppresaion Section (Schmitt trigger CMOS input levels). ·

INTERRUPT SUPPRESS: A HIGH on this pin inhibits all maskable interrupts, internal and external.
ADDRESS BUSES (OUTPUTS)

GA02 1

GA01 '84

GAOO 83

MA19-MA14 5&-51

MA13-MA09 49-45

MA08-MA01 43-36

DATA BUSES(l/0)

GD15-GD13 17-19
..

GD12-GD07 21-26

GD06-G003 28-31

GD02-GOOO 33-35

MD15 82

MD14-MD08 80-74

MD07-MD05 72-70

MD04-MOOO. 68-64

POWER CONNECTIONS

vcc e,27,
50,73

GND 20.32o ~.
69,81

ASIC ADDRESS: 3-bit ASIC Address Bus, which carries address information for external ASIC devices.

MEMORY ADDRESS: 19-bit Memory Address Bus, whieh carries addreaa information for Main Memory.

·.

ASIC DATA: 16-bit bidirectional external ASIC Data Bua, which carries data to and from off-chip 1/0 devices •

MEMORY DAT A: .1 &-bit bidirectional Memory Data Bua, which carries data to and from Main Memory.

PQ.., IUciply +5 Volt connectiona. A o.111F, low Impedance decoupling capacitor lhould be plaeed, vcc Ind GND. Thia ahould be located aa cloe·J to the RTX package .. pO&aible.

Paww IUpply ~d return COMectiona.

4

RTX 2010

- RTX 201 O Microcontroller
The RTX 2010 Is designed aro1,.1nd the RTX Processor core, which Is part of the Harris Standard Cell Library.
This· processor core has eight 16-bit intemal registers, an _ALU, internal data buses, an'ci control hardware to perform in· struction decoding and sequencing.

- ' -On-chip peripherals -which the RTX 201 O includes are Memory Page Controller, a.n Interrupt Controller, three Timer/ c6unters, and two Stack Controllers, Also included are a Multiplier-Accumulator (MAC), a Barrel Shifter, and a Leading_ Zero Detector for floating point support.
-

-Off-chip user interfaces provide address and data access to Main Memori .and ASIC 110 devices, user defined interrupt signals, and Clock/Reset controls.
Figure 1 .shows the data paths. between the core, on-chip peripherals, and off-chip interfaces.

• The · RTX · 201 O microcontroller is based on a two-stack -architectun~. These two stacks, which- are Last-in-.first.:.out (LIFO) memories, are called the Parameter Stack and the Return Stack. ·

OFF- QIP
USER
INTERFACES

RTX 2010

111

111 I

Two intemal registers, ll!Dl and mm, provide the top two elements of the 1 S"-bit wide Parameter Stack, while the remaining elements are contained in on-chip memory ("stack -memory'').

The top element of the Retum Stack is 21 bits wide, and is stored In . registers _D and Oiil while the remaining elements are contained in stack memory.
The highly parallel architecture of the RTX is optimized for minimal Subroutine Call/Return overhead. As a result, ·a Subro1,.1tlne Call takes one Cyele, while a Subroutine Retum is -usually Incorporated into the preceding instruction and does not add any processor cycles. This parallelism pr0vides for peak execution rates during simultaneoUs bus operations which can reach the equivalent of 40 million Forth language operations per second at a clock rate of 1 OM Hz. Typical execution rates exceed 10 million operations per second.

- FIGURE 1. RTX 2010 FUNCTIONAL BLOCK ·DIAGRAM _ ·.mm~ .. s llQnilcMI 1111 <»-,•> o1 .. • o11t1e Fleeum a.. _

5

RTX 2010

RTX 2010 Operation
Control of all data path$ and the Program Counter Register;
(Iii), is provided by the Instruction DecOder. This hardware .
determines whatfunciion i.s to be performed by looking at the

.. contents ·of. the ln.sti'uctlon Register, · (mJ), and subse
quently determines the sequehce of operations through data
path eontrOI.

Instructions which do not perform memorY accesses execute
in a single clock cycle.while the next Instruction is being
fetched. ·

As shown in Figure 2, ttie instruction. is latched into mJ at the
beginning of a clock cYc:le. The instruction is then decoded
by the processor. All necessary intemal operations are
performed simultaneously. with fetching the next instruction.

. Instructions which aceess memory require two Cl~ cycles
to be executed. During the fil'$t cycle of a memory access
instruction, the Instruction is decoded, the addre&s of the
memory location to be· accessed is placed on the Memory

Address Bus <MM9-MA01), and the memory data (MD15-
MDOO), Is read or written. During t~e second cycie, ALU
operatiQns are performed, the address Qf the next instruction ·
to be executed is pla'ced on 1he Memory Address Bus, and

· the next instruction is f!/rtched, as indicated, in the bottom half
of Figure 2.

RTX Data Buses and Address Buses
The RTX core bus ·architecture provides for unidirectional
data paths and simultaneous operation of some. data buses;
This Pcirallelism allows for maximum efficiency of data flow''
intemal to the core.

Addresses for accessing extemal (O,ff-chip), memory o'° ASIC
devices ·are output via either the Memory Address Bus
(MA 19-MA01) or the ASIC Address Bus (GA02-GAOO). See
Table 3. Extemal data Is transferred by the ASIC bata Bus
(GD15-GDOO) and the Memory Data Bus (MD15-MDOO),
both of which are bidirectional. · ·

I PCLK. ..__ _ _.....,__~I·
' EXECUTION SEQUENCE WITH NO MEMORY DATA ACCESS:

' I Bl!GI#' l!ND 01' • 1 81!G/# ' I ,,,,., ,,,,., ' fll!CoNo
CLOCI(CONCUlllll!llr CLOClt · CLOClt

1
.cYCU 0 ,,.lfA,,,,,,. crcLi"!.ll .crcu

1 · PERFORM INTERNAL. OPERATIONs AND

I ' ' ~· ' ALU OPERATIONS, AS REQUIRED ' 1,

I W AODlllUOP .

INS:rllUCTION' Q' ' NEXT I
I LATCHU INTO ' 0 INSTRUCTION FETCH ' '

' llD (,) • PUCIO OIJITO ' ' I
·1 w.. Q ', '

' IUI ' I I,__ _ __,
I ' ' ' I ·.' .. ·.ASIC BUS OPERATIONS ' I!

. . ·~ . - .·

EXECUTION SEQUEl«2 rtitrH MEMORY DATA ACCESS:

I
81!G• I' ,,,,.,'

. CLOClt

~YCl.6

l u::::-~.g·
I '111"1Q. ~ ..
1. Q
,,,......_~--

AODllDI OP

·.MEMORY
LOCATION READ OR WRIT~

ia Pl.ACID ONTO MEMORY DATA
..... lllli\OI

IUI

l!ND, 01' I 81!G,;,, END "" I
/tlRflr ·1 · fll!CONO · fll!CONO

CLOClt CLOClt · · CONtiu,,,,.,r . CLOCiC I" .
crcu •I ;rcu. . OHllArlQllll . c'lcu :============:::=:=========±1

II PERFORM ALU OPERATIONS '' ' ' ' 11

I I··,
I PLACE ADDRESS OF FETcH NEXT

NEXT INSTRUcTIO.. ' INSTRUCTION I
I oNT~ ~,• MA01. · I

mu9'e 2. 1N&TRuCT10N EXEcunoN SEQUENCE

/

Hf)(~U1U

RTX Internal Registers
The core .of the RTX 2010 is a macrocell available through the
Harris Standard Cell Library. This core contains eight
16-bit internal registers, which may be accessed implicitly or
explicitly, depending upon tt,le register accessed and the
function being performed. ·

l1!m : The Top Register contains the top element of the
Parameter Stack. 6!lil is the implicit data source or destina·
tion for certain instructions, and has no ASIC address assign·
ment The contents of this register may be directed to any 1/0
device or to any processor register except the Instruction
Register. ~ is also the T input to the ALU. Input to l1!m
must come through the ALU. This register also holds the mbst
significant 16 bits of 32-bit products and 32-bit dividends.

mm : The Next Register holds the second element of the
Parameter Stack. mm is the implicit data source or desti·
nation for certain instructions, and has no ASIC address
assignment During a stack "push", the contents of mm
are transferred to stack memory, and the contents of l1!m
are put into mm. This register is used to hold the least Sig·
nificant 16 bits of 32-bit products. Memory data is accessed
through mDJ , as described in the Memory Access section
of this document.

mJ : The Instruction Register ls actually a latch which
contains the instruction currently being executed, and has no
ASIC address usignment. In certain instructions, an operand
can be embedded In the Instruction code, making DD the
implicit source for that operand (as in the case of short liter·
als). Input to this register comes from Main Memory (see
Tables 12-24 for code information).

~ : The Configuration Register is used to indicate and
control the current status/setup of the RTX microcontroller,
through the bit assignments shown in Figure 3. This register
is accessed explicitly through read <lnd write operations,
which cause interrupts to be suppressed for one c~le. guar·
anteeing that the next instruction will be performed before an
Interrupt Acknowledge cycle is "allowed to be performed.

ID : The Program Counter Register contains the address
of the next in.structlon to be fetched from Main Memory. At
RESET, the contents of ID are set to o.
O: The Index Register contains 18 bits of the 21-blt top
element of the Retum Stack, and Is also used to hold the
count for streamed and loop instructlona (see Figure 11 ~ In
addition, O can be used to hold data and can be written from
[mi . The contents of 8 may be ac:c.essed in either .the push/
pop mode in which Vllluee are moved to/from stack memory
as required, or in the rwmdlwrlte mode In which the stack
memory is not affected. The ASIC address used for O deter·
mines what ~ of operation wll be performed (see

• NOTE: Alway9 l'HCI a ''O•. Should be ... • 0 dumg Wrtle QP11llio111.

7

Table 11). When the Streamed Instruction Mode is uSed, a
count is written to 0 and the next instruction is executed that
number of times plus one (i.e. count + 1).

~ : The Multiply/Divide Register holds the divisor during
Step Divide operations, while the 32-bit dividend is in U!m
and mm . ~ may also be used as a general purpose
scratch pad register.

~ : The Square Root Register holds the intermediate
values used during Step Square Root calculations. ~ may
also be used as a general purpose scratch pad register.

On-Chip Peripheral Registers
The RTX 2010 has an on-chip Interrupt Controller, a Memory
Page Controller, two Stack Controllers, three Timer/Counters,
a Multiplier-Accumulator, a Barrel Shifter, and a Leading Zero
Detector. Each of these peripherals utilizes on-chip registers
to perform its functions. ·

TIMER/COUNTER REGISTERS

11!!J , ll!IJ , ~ : The Timer/Counter Registers are
16-bit read-only registers which contain the current count
value for each of the three Timer/Counters. The counter is
decremented at each rising clock edge of TCLK. Reading
from these registers at any time does not disturb their
contents. The sequence of Timer/Counter operations is
shown in Figure 15 in the Timer/Counters section.

I
lt!IM1

Ill I
"'1211110 •• 17154132101

L~
-

·'

RIW; Carry

R /W; Co•plH C1u•ry

R/W; 8yW Order Bl
R-• 111 0. Modea:
1 • 'Intel T.. U..-
0 • ..._,,.r ... u..•
R/W; Boot

~ ":c~":!~ ~ii:::
- an,.clle•d• .. 01;
Sel lnlerNPI OIUble;

0 • lnL Enabled;
1 • lnLO-d

Aeaerved*

NMI MOOE
1 • Relum - NMI paaltle
0 • No relum - NMI (RTX - Model

lie••-•.
ARCE; ASIC Reed Ciocte Eatend
when •t •deftd• eye• on
.... ,,... ASIC reed•

Read ON,; lnlenupt
Ollabla S•tua

Reed Only;
lnlarNPI Latclt

FIGURE 3. [iii BIT ASSIGNMENTS
Motorola"' ii 1 ragiltered trademark ol Motorola Inc.
Intel• ii a ragiltered trademark ol Intel Corporation

RTX2010

o:mJ . liilJ , liifJ : The TI mer Preload Registers are.
· write-only registers which ·contain the initial 16-bit count·
values which are written to each timer. After a timer counts
down to iero, the preload register for that timer reloads its
initial count value to that timer register at the next rising clock ·
edge, synchronously with TCl.:K. Writing .to these registers
causes the countto be loaded into the corresponding Timer/
Counter register on the following cycle.

MUL.TIPUER-ACCUMULATOR (M~Cl REGISTERS: .

~ : The Multiplier High Product Register holds the
most significant 16 bits of the 32-bit product generated by
the RTX Multiplier. If the IBC register's ROUND bit is set, this
register contains the rounded 16-bit output of the multiplier.
In the Accumulator context, this register holds the middle 16 .

. bit of the MAC.

~· : The Multiplier L.ower Product Register holds the
least significant 16 bits of the 32-bit product generated by
the RTX Multiplier. It is also the register which holds the least
significant 16 bits of the MAC Accumulator.

1i!JJD : The MAC Extension Register holds the most
significant 16 bits of the MAC Accumulator .. When using.the
Barrel Shifter, this register holds the shift count When using
the L.eading Zero Detector, the leading zero count is stored in
this register.

INTERRUPT CONTROLLER REGISTERS

ll!lll: The Interrupt Vector Register Is a read-only register
which holds the current Interrupt Vector value. See Figure 4
and Table 7.

DmJ: The.Interrupt Base/Control Register is used to store
the Interrupt Vector base address and to specify configura· ·
tion information for the processor. as indicated by .the bit
assignments in Figure·s.

IImJ : The Interrupt Mask Register has a bit assigned for
each maskable interrupt which can occur. When a bit Is set,
the interrupt corresponding to that bit will be masked. Only
the Non-Maskable lnterrupt(NMI) cannot be masked. See
Figure 6 for bit aS$ignments for this register.

.--~--------------------~--·--1m1bl15
.--~-----""'"-----------------·· -bit 14

.------------------------ - bl 13 ____________.......__ lllllb• 12 .

.--------------,..--- lllllb• 11

..---------bl 10

.------ Vector Addreu t /··'::::.

FIGURE 4. l1!m BIT ASSIGNftlENTS

• NOTE: Alwaya l'Hd. • ''O•. SllOulcl be Ml • 0 during Wrte opei._._
8

· .;_·Re.ad· only: Fatal
· Stack Error Flag

Read· only; Parameter
Stack Underflow Flag
Read· · onlv; Retum
Stack Underflow Flag

Read.· only: · Pa.ram. eter ·
Stack Oveiflow Flag
Read· only;·· Retum
Stack Ovei'flow Flag

C-------- DPRSEL: Select•
Page Register for

~a~:i:;i;Jdcceaa
= O: aelec:I l!llil

'---------'---- ROUND: ·Multiplier
Control bit; aelecta
Rounding of HS x 18
bil multiplication
= 1: Rounded 16- bl

product
· = O: Unrounditd .

32- bl pl'Oduct
in ... I') N ... Q .__ _______ CYCE)(T:. Allowa c c c c c c utendad cycle length

.\ 2 2 2 v2 2 2 I for Uaer Memory
lnatruction · cycM!a; aae

Interrupt Vactor Clock and Wail
BaM (Ma th.. Timing Diagrama

Interrupt Section). '----------- Select Tkftar.Counter
input algnala: TCLIC
or E15 • E13 (Table 8)

FIGURE 5. · Dml BIT ASSIGNMENTS

ReMrwd*

Elt
(EJdllmal Input Pin)

PSU, Parameter Stack
Underflow

"--- RSU, Aatum Stack
_____ U n~!_rftol! __

PSV, Parameter Stack
Overflow
RSV, Relum Stack
Overflow

......_.;_._.;_. ___ E12

·----- ------~t~_____.. ________ TCI 1

'----------"--....... TCI 2
E13

'---------.;_.-'--.................... -- E14
· -~--- eii·

'-------'--'--------- SWI

FIGURE t. ·IZiiJ BIT ASSIGNMENTS

STACK CONTROLLER REGISTERS

Eml) : The Stack Pointer Register holds the stack pointer
value for each stack.· Bits 0-7 represent the next available
stack memory location for the Parameter Stack, while bits
8-15 represent the next civail~ple stack memory location for
the Retum Stack. These stack pointer values must be
accessed together, ~s Imm . See Figure 7.

~ : The Stack Overflow Limit R19gister is a write-only
register which holds the overflow limit values (0 to 255) for
the Parameter Stack (bits 0-7) and the Return Stack (bits 8-
15). These values must be written together. See Figure a.
EI!IiJ : The Stack Underflow Limit Register holds the
underflow limit values for the Parameter Stack and the Retum
Stack. In addition, this register is utilized to define the use of
substacks for both stacks. These values must be accessed
together. See Figure 9.

PSP, Parameter Stack
Polntar

ASP, Retum Stack
Pointer

FIGURE 7. mili) BIT ASSIGNMENTS

l1s114113112i111101e1~ 815141312111 ol
\ ' /'----~,--__,

f
PVL: Paramet•r
Stack Overflow Limit:
Number of worda from

~ top of current aubatack

RVL: Return Stack
Overftow Limit:
Number of worda from
top of current aubatack

FIGURE 8. m'!m BIT ASSIGNMENTS

* NOTE: Alwaya rtlld u "O''.. Sllo!Md be Ht • 0 dumg Wrlte operalionl.

•

9

PSF: Parameter Stack
Start Flag

Parameter Substack bits:
• 00: eight 32 word stack&
• 01: lour 84 word stacks ·
• 10: two 128 word alacks
• 11: ona 258 word stack

PSU: Parameter
Slack Underflow Limit
0 - 31 words from
bottom of subslack

RSF: Return Slack
Start Flag

'-----..-..c.---- Return Substack bits:
• 00: eight 32 word stacks
• 01: lour 64 word stacks
• 10: two 128 word stacks
• 11: ona 256 word slack

'------------- RSU: Return Slack
Underflow Limit
0 - 31 words from
bottom of subatack

FIGURE 9. mmJ BIT ASSIGNMENTS

RTX 2010

MEMORY PAGE CONTROLLER REGISTERS

DJm : The Code Page . Register containe th8 value for the
current 32K-word Code page. See Figure 10 for bit field
assignments.

mm : The Index Page ReglsteF extends the Index Register.
(O) by 5 bits; i.e.when a Subroutine Retum is performed, the mm contains the Code page from which the subroutine was
called, and comprises the 5 most significant bits of ttie top
element of the Retum Stack: See Figure 11. During non
subroutine operation, writing to D causes the current Code
page value to be written to mm. Reading or writing directly
to Wlil does not push the Retum. Stack.

l!Im : The Data Page Register contains the value for the
current 32K-word Data page. See Figure 12 for bit field
assignments,

Imm : The User Page Register contains the value for the·.
current User page. See Figure .13 for bit field assignmen~.

l!lmJ : The User Base Address Register contains the ba8e
address for User Memory Instructions. See Figure 13 for bit
field assignments.

I aml. I
11511411311211111019 181718 15 141312 I 1 10 I

Re.eived* y 1· 1
MA1.9 ... ~~-------......------'
MA 18 <1111"'!~----------~-----l
MA17 <11~1------------,---'"------'
MA18 <11~1-------,.--------------'

FIGURE 10. ·Im BIT ASSIGN_l"'ENTS

Bit Aulgnmenla Durtng Subroutine Operation•

mm a
20 19 18 17 18 15 14 13 12 11 101 9 18 T 8 5 4

~ Type of Relum
• I: lnbinupt Retuma:
• O: Subroutine Reluma:

'-----• Deina• Relum Addl9•
..__ ____ _....;. ___ "'---'---- Where DPRSEL H la

alo19d · durtn9 lntenvpt
or lubroutt11e Cal

Ueed tor t.inporary.
atoraee of wa•blea,
loop c:Ounta, and ·
1t19am counla

Currant Code
Page value

FIGURE 11. a AND mm BIT ASSIGNMENTS

* Nole: Alwa'8 r9lid M "0". Should lie Ill • 0 du""- Wrle CIPMlilina

Initialization of Registers
Initialization of the on:.Ochlp registers occurs when a HIGH
level. on the RTX RESET pin Is held for a period longer than
four ICLK cycles. While the RESl:T input is HIGH, the TCLK
and PCLK clock outputs are held reset in the LOW state.

Table 4 shows initialization values and ASIC addresses for
the on-chip registers .. As indicated, both the ID and the mm are cleared and execution begins at page 0, word 0
when the processor is reset ·

The RESET has a Schmitt trigger input, which allows the use
of a simple RC network for generation of a pawer-on RESET
signal. This h~ps to minimize the circuit· board space
required for the RESET circuit.

To ensure reliable operation even In noisy embedded control
environments, the RESET input Is filtered to prevent a reset
caused by a glitch of less than one ICLK cycle.

Reaeived* ---------'

10

MA19 4-----'-----------~
MA18 4--------------------' MA17 4---------'------~-~

. MA18 4--------------------J
.FIGURE 1.2. l!IiD BIT ASSIGNMENTS

I am i
11511411311211111011 18171. I 5 14 13 I 2 I 1 I 0 I

USER PAGE.
REGISTER

Reeeived * _______ _.Y I
MA19 4~1---'------------~
MA184~1--~--------------'
MA17 4~1-------------'"------'
MA18 4..,;;1------......_-__._~---------l

USER BASE.
ADDRESS
REGISTER 1511·411312111101818

MA11- MA06---'------'

MAOl 4----<

MA03 ----.{

MA02 -----\...,~~------..,....+-+-+-~

MA01 ----.{

· · Not uaed ti' generate .
<thla addreu

15 11411311211111019 18 7 8 5 4 3 12 I 1 10
INSTRUCTION ..

REGISTER L---------===---'-------~
FIGURE 13. l!JID AND DJm1 BIT ASSIGNMENTS

RTX2010

TABLE 4. REGISTER INITIALIZATION AND ASIC ADDRESS ASSIGNMENTS

HEX INITIALIZED
REGISTER ADDR CONTENTS DESCRIPTION/COMMENTS

~ .()()()() 0000 0000 0000 Top Register

mDI 1111 1111 1111 1111 Next Register

mJ 0000 0000 0000 0000 Instruction Register

D OOH 1111 1111 1111 1111 Index Register
01H
02H

mi 03H 0100 0000 0000 1000 Configuration Register: Boot=1; Interrupts disabled; Byte Order:O.

LE 04H 1111 1111 1111 1111 Multlply/Dlvlde Register

6ID 06H 0000 0010 0000 0000 Square Root Register

cm 07H 0000 0000 0000 0000 Program Gounter Register

DE1 08H 0000 0000 0000 0000 Interrupt Mask Register

Emil 09H 0000 0000 0000 0000 Stack Pointer Register: The beginning address for each stack is set to
a value of 'O'.

mml OAH 0000 0111 0000 0111 Stack Underflow Umlt Register

mil OBH 0000 0010 0000 0000 Interrupt Vector Register: Read only; this register holds the current
Interrupt Vector value, and is initialized to the· "No Interrupt'' value.

m!JD OBH 1111 1111 1111 1111 Stack Overflow Umlt Register: Write-only; Each stack limit is set to its
maximum value.

mm OCH 0000 0000 0000 0000 Index Page Register

IJliiJ OOH 0000 0000 0000 0000 Data Page Register: The Data Address Paga is aet for page 'O',
..

1mm· OEH 0000 0000 0000 0000 User Paga Register: The User Address Paga is setfor page 'O'.

t!iiJ OFH 0000 0000 0000 0000 Coda Paga Register: The Code Address Page is set for page 'O'.

mm 10H 0000 0000 0000 0000 Interrupt Bua/Control Register

lmiiJ 11 H 0000 0000 0000 0000 User Bue Addrns Register:. The User base address is set to 'O'
within the User pege.

lmD 12H 0000 0000 0000 0000 MAC Extension Register

wm1wm 13H 0000 0000 0000 0000 Timar/Counter Register O: Set to time out after 65536 clock periods
oreventa.

llBl/mll 14H 0000 0000 0000 0000 Timar/Counter Register 1: Set to time out after 65536 clocf(periods
or events.

ms1ma 15H 0000 0000 0000 0000 Timar/Counter Register 2: Set to time out after 65536 clock periods
or events.

(ml) 16H 0000 0000 0000 0000 Multlpllar Lower Product Register

lmiil 17H 0000 0000 0000 0000 Multiplier High Product Register

11

RTX 2010
. .

Dual.Stack Architecture ..
The RTX 201 o features a dual stack archlteeture. The two
256-word stacks are the Parameter Stack and the Return
Stack, both of which may be accessed in parallel by a single
instruction, and which minirriii~.ovemead In paSsing parame
ters between subroutines. The functional structure of each of
these stacks is shown in· F'igure 14.

.

The P.arameter Stack is used for temporary storage of data
and for. passing parameters between subroutines. The top
two elements of this stack are contained in the. ~ and
mD) registers of the processor, and the remainder of this
stack is 16cated . in stack memo,.Y .. · The stack memory
assigned to the Parameter Stack is 256. words deep by
16 bits wide.

The Return Stack is used .for storing return addresses when
performing Subroutine Calls, cir for storing values temporarily.
Because the RTX 2010 uses a separate Return Stack, it ean
call and return from subroutines and interrupts with· a
minimum of overhead. The Return Stack is 21 bits wide. The
16-bit Index Register, O , and the 5-bit Index Page
Register, IIim , hold the top element of this stack, while the
remaining elements are loC:ated in stack memory. The stack
memory portion of the Return Stack Is 21 bits wide, by .256
words deep ..

The . data on the Return Stack takes on different meaning,
depending upon whether the Retum Stack is being used for ·
temporary storage of data or to hold a retum address during a
subroutine operation (Figure 11~. .

-----------~-------::::

RTX 2010 STACK CONTROLLERS
. ; -· . .

the two stacks of the RTX 2010 are controlled by identical
Programmable Stack C0ntr6llers.

. . - .

The operation of· the. Programmable Stack Controllers
depends on. the contents of three registers. These registers
are EI;m , the Stack Pointer Register, E:Yll) ·, the Stack
Overflow Limit Register, and EI!lll.; the Stack Underflow
Umit Register (see Figures 7, 8, and 9). ·

. Emil contains the location of the next stack memory location
to be. accessed in a stack push (write) operation. A~er a push, ..
the m;m is incremented (post-increment operation). In a
stack pop (read) operation, the stack memory location with an
address one less than the~ wjll be accessed, and then
the ~ will be decremented (pre-decrement operation). At
start-up, the first stack location to have data pushed into it is
locatian zero.

. . .

Upper arid lower limit values for the stacks. ar.e sef into the
Stack Overflow Limit Register and in the Stack Underflow·
.Umit Register. These values allow interrupts to be generated
prior to the oecurrence of stack overflow or underflow error
conditions (see section on Stack Error Conditions for more
detail). Since the RTX 2010 can take up to four clock cycles ·
to respond. to an interrupt, tt')e values set In these registers
should include a safetY margin which allows valid stack
operation until the processor executes the. interrupt serv_ice
routine.

STACK MEMORY
(ON- CHIP)

PSP

-----"-----.:....---1 I

l:\\\\:~::,\:>r::,,:,,,,,,~,:::::::::::::::::':·:''''''·''''''''''''''''':::::::n:':':::::::::;:.·., •• •·::1

FIGURE 14. DUAL STACK AR.CHITECTURE

12

. ~·

. .

MIA ~VIV

SUBSTACKS

Each 256-wo.rd stack may be subdivided into up to eight
32 word substacks, ·four 64 ·word substacks, or two 128
word . substacks. This is accomplished under hardware
control for simpllfled management of multiple tasks. Stack
size.is selected by writing to bits 1 and 2.e>f the.lmii).for the
Parameter Stack, and bits 9 and 10 for the Return Stack. ·

Substacks are implemented by making bits 5-7 of the EDD
(for the Parameter Stack) and bits 13-15 of the lmllJ (for
the Return· Stack) control bits. For examplEt, if there were
eight 32 word substacks implemented _in the Parameter
Staek, bits 5-7 of tl')e Emil are not incremented, but instead
are used as an offset pointer into the Parameter Stack to
indicate ·the beginning point (i.e. substack ·number) of each
32 word substack implemented. Because of this; a
particular substack is selected by writing a ·value which
contains both the stack pointer value and the substack

··number to the Elllll.
. .

each stack has a Stack Start Flag (PSF and RSF) which ls
used for stack error detection (not for the stack pointer). For
the Parameter Stack, the Start Flag is bit zero of the Emil ;
and for the Return Stack it is bit eight. If the Stack Start Flag
is one, the stack starts at the bottom of the stack or
substack (location O). If the Stack Start Flag is zero, the
substack starts in the.middle of the stack. An exception to
this.occurs if the overflow limit in mil ls set for a location
bele>w the middle of the· stack. In this case, the stacks
always start at the bottom locations. See Table f$ for the
possible stack configurations. Manipulating the Stack Start

. Flag provides a mechanism for creating a virtual stack in
memory which is .maintained by Interrupt driven handlers.

Possible applications k>r substacks Include use as a
recirculating buffer (to ~low qi.lick access for a series of
repeated values such · ·as coefficients for polynomial
evaluation or a digital filter), or to log a continuous stream of
data until a triggering event (for analysis of data before and
after the trigger withOUt having·~ store all of the Incoming
data). The. latter application could be uSed lri a digital
oscilloscope or logic analY!ei' •

. STACK ERROR CONDITIONS

Stack errors include overflow, underflow, and fatal errors.
Overflows occur wheri an attempt_ la made to push data
onto a full stack, Since the stacks wrap around, the result Is
that existing data on theatacl(wlU be overYirltten by the new
ciata when an overflow oceure. UnderflOws occur when an
attempt Is made to pap data off an empty stack, causing
invalid data to be read ffom the stack. In both cases,·a buffer

·.·

zone may be set up by Initializing mil and Emil so that
stack error in1'rrupts are . generated· prior to an actuai

· overfl0w or underflow. The limits may be determined from
· the contents of .Emil and Imm using Table 5: nie state of
all stack errors may be determined by examining the five
least significant bits of mm . where the stack error flags
may be read but not written to. All stack error fl;1gs are
cleared whenever a new value is written to £mm .
FATAL STACK ERROR: each stack can aiso experience a ·
fatal sta.ck error. This error condition occurs when an
attempt is made to push data onto or to pop. data off of the
highest location of the substack. It does not generate an
interrupt (since the normal stack limits can be used to
generate the interrupt). The fatal errors for the stacks are
logically OR'ed together to produce bit O of the lntemipt

· Base Control Register, and they are cleared ·whenever
EDD is written to. T.he implication of a fatal error is that data.
on the stack may have bee.n corrupted or that invalid ·data
may have been read from the stack. · ·

RTX 2010 Timer/Counters.
. .

·The RTX 2010 has three 18-bit timers; each ofwhich can
be configured ··to perform timing or event counting. AIJ
decrement synchronously with the rising 8dge of TCLK,
Timer registers are readable in a single machine cycle;

The timer selection bits of the mm determine whether a
. timer is to be configured for external event. counting or

Internal time-:base timing. This cQnfigures the respeCtive
counter clock Inputs to the on:-:chip TCLK signal for in.ternal
timing, or to the El5-El3 input pins for external signal event .
counting. EIS, El4, and E13 are synchroni:ied internally with
TCLK See Table 8 for Tlmer/CIQCk selection by II!IB bit
values. ·

The timers (11B!J , IDB and BB) are all free-running,
· and when they time OUt, they reload automatically with the
programmed initial value from their respeetr.ie Ti!11Eir
Preload Registers· (Dim - 11iiJ , ·Dill - lllJ , and lliJ :... BB), thel'.I continue timing or counting.

Eac;h timer pr(Wldes an output to the Interrupt Controller to
Indicate when a time-out for the timer has occurred.

The RTX 2010 can determine the state of a timer at any time
either by reading the timer's value, or upon a time-out by
using the timer's Interrupt (s_ee the Interrupt Controller sec·
tion for more Information about how ·timer interrupts are
handled). Flgure.15 shows the sequence ·of Timer/Counter
operations.

..

13.

,.
RTX 2010

TABLE 5, STACK/SUBSTACK CONFIGURATIONS FOR GIVEN CONTROL BIT SETTINGS

CONTROL BIT SETTINGS PARAMETER STACK CONFIGURATION -

STACKr:tANGE
SVR SUR STACK SIZE LOWEST ADDRESS HIGHEST ADDRESS

VT VII V5 V4 U2 U1 uo WORDS T II 5 4 3 2 1 0 T II 5 4 3 2 1 0
x x x 0 0 0 •. x 32 P7 P6 PS 0 0 0 0 0 P7 P6 PS , , 1 , ,
x x x , 0 0 0 32 P7 P6 PS 0 0 0 0 0 P7 P6 PS. 1 , , , ,
x x x , 0 0 , 32 P7 P6 PS 0 0 0 0 0 P7 P6 PS , , , , ,
x x 0 x 0 , x 64 P7 P6 0 0 0 0 0 0 Pi P6 , , , , , ,
x x , x 0 , 0 64 P7 P6 0 0 0 0 0 0 P7 P6 , , , , , ,
x x , x 0 , , 64 P7 P6 0 0 0 0 0 0 P7 P6 , , , , 1 ,
x 0 x x 1 0 x , 26 P7 0 0 0 0 0 0 0 P7 1 1 , 1 , 1 ,
x , x x 1 0 0 , 28 P7 0 0 0 0 0 0 0 P7 , , 1 1 , 1 1
x , x x 1 0 1 , 2S P7 0 0 0 0 0 0 0 P7 , 1 1 , 1 , 1
0 x x x , , x 2S6 0 0 0 0 0 0 0 0 , 1 1 , 1 1 , , , x x x 1 , 0 2S6 0 0. 0 0 0 0 0 0 1 1 , , , , , , , x x x , 1 , 2S6 0 0 0 0 0 0 0 0 , , , , , , , ,

CONTROL BIT SETTINGS RETURN STACK CONFIGURATION
STACK RANGE

SVR SUR STACK SIZE LOWEST ADDRESS HIGHEST ADDRESS
V15 V14. V13 V12 U10 U9 ua WORDS. T II 5 4 3 2 1 0 7 II 5 ,,

3 2 1 0

x x x 0 0 0 x 32 P1S P14 P13 0 0 0 0 0 P1S P14 P13 1 1 1 , ,
x ·x x 1 0 0 0 32 P1S P14 P13 0 0 0 0 0 P1S P14 P13 1 1 1 1 1
x x x 1 0 0 1 32 P1S P14 P13 0 0 0 0 0 P15 P14 P13 1 1 1 1 1
x x 0 x 0 1 x 64 P1S P14 0 0 0 0 0 0 P15 P14 1 1 1 1 1 1
x x 1 x 0 , 0 64 P1S P14 0 0 0 0 0 0 P1S P14 1 , , 1 1 ,
x x 1 x 0 , 1 84 P1S P14 0 0 0 0 0 0 P1S P14 1 1 1 , 1 1
x 0 x x 1 0 x , 2S P1S 0 0 0 0 0 0 0 P15 1 1 1 1 1 , ' ,
x 1 x x , 0 0 12B P1S 0 0 0 0 0 0 0 P1S , 1 1 1 1 1 ,
x 1 x x , 0 1 12B P1S 0 0 0 0 0 0 0 P15 , , , , 1 1 ,
0 x x x , , x .2SS 0 0 0 0 0 0 0 0 1 1 1 1 , 1 , , , x x x , , 0 2SS 0 0 0 0 0 0 0 0 , 1 ~ 1 , , 1 , , x x x 1 1 1 2S6 0 0 0 0 0 0 0 0 , 1 1 ' 1 , , , ,

CONTROL llT Sl!TTINGS PARAMETER STACK CONFIGURATION
SVR SU~ FATAL LIMIT UNDEAl'LOW LIMIT OVERFLOW LIMIT

VT VII V5 V4 U2 U1 UO 7 • 5 ' 3 2 1 0 7 • 5 ' 3 2 1 0 7 • 5 ' 3 2
x x x 0 0 0 x P7 PS PS , , 1 , 1 P7 Pe P5 0 ue U5 U4 U3 P7 Pe P5 0 V3 V2
x x x 1 ·o 0 0 P7 Pe P5 0 , 1 1 , P7. Pe P5 , ue us U4 U3 P7 Pe P5 0 V3 V2
x ·X x 1 0 0 1 P7 Pe P5 , 1 1 1 1 P7 PS P5 0 ue U5 U4 U3 P7 Pe P5 , V3 V2
x x 0 x 0 1 x P7 Pe 1 , 1 1 , , P7 Pe 0 U7 ue U5 U4 U3 P7 Pe 0 V4 V3 V2
x x 1 x 0 1 0 P7 Pe 0 1 1 1 1 1 P7 Pe 1 U7 ue U5 U4 U3 P7 Pe 0 V4 V3 V2
x x 1 x 0 1 1 P7 Pe 1 1 1 1 1 1 P7 Pe 0 u7 ue U5 U4 U3 P7 P6 1 V4 V3 V2
x o. x x 1 0 x P7 1 1 1 1 1 1 1 P7 0 0 U7 ue U5 U4 U3 P7. 0 V5 V4 V3 V2
x 1 x x 1 ' 0 0 P7 0 1 , 1 1 1 1 P7 1 0 U7 us us U4 U3 P7 0 VS V4 V3 V2
x 1 x x 1 0 1 P7 1 1 1 1 1 1 1 P7 0 0 U7 ue us U4 U3 P7 1 V5 V4 V3 V2
0 x x x 1 , x 1 1 1 1 , 1 1 1 0 0 0 U7 ue us U4 U3 0 ve VS V4 V3 V2 , x x x 1 1 0 0 1 , , , 1 , 1 1 0 0 U7 us U5 U4 U3 0 VS V5 V4 V3 V2
1 x x x 1 1 , , 1 , 1 1 , 1 1 0 0 0 U7 ue U5 U4 U3 , ve V5 V4 V3 V2

CONTROL llT Sl!TTINQ PAAAMl!Tl!A STACK CONFIGURATION
SVA SUR fl'ATALLIMIT UNDERFLOW LIMIT OVERFLOW LIMIT

V15 V14 V13 V12 U10 UI U8 1 • I 4 3 2 1 0 7 • 5 4 3 2 1 0 7 • 5 4 3 2
x x x 0 0 0 x P15 P14 P13 1 1 ' , 1 , P15 P14 P13 0 U14 U13 U12 U11 P15 P14 P13 0 V11 x x x , 0 0 0 P11 P14 P13 0 1 , 1 1 P15 P14 P13 , U14 U13 U12 U11 P15 P14 P13 0 V11
x x x 1 0 0 1 P15 P14 P13 1 1 1 1 1 P15 P14 P13 0 U14 U13 U12 U11 P15 P14 P13 1 V11 x x 0 x 0 1 x P11 P14 1 1 1 1 1 1 P15 P14 0 U15 U14 U13 U12 U11 P15 P14 0 V12 V11 x x 1 x 0 1 0 P15 P14 0 1 1 1 1 1 P15 P14 1 U15 U14 U13 U12 U11 P15 P14 0 V12 V11 x x 1 x ·o 1 1 P11 P14 1 1 1 1 1 1 P15 P14 0 U15 U14 U13 U12 U11 P15 P14 1 V12 V11 x 0 x x 1 0 x P15 1 1 1 1 1 1 , P15 0 0 U15 U14 U13 U12 U11 P15 0 V13 V12 V11 x 1 x x , 0 0 P15 0 1 1 1 1 1 1 P15 , 0 U15 U14 U13 U12 U11 P15 0 V13 V12 V11 x 1 x x 1 0 , P15 1 1 1 1 1 1 1 P15 0 0 U15 U14 U13 U12 U11 P15 1 V13 V12 V11
0 x x x 1 1 x 1 1 1 1 1 1 1 1 0 0 0 U15 U14 U13 U12 U11 0 V14 V13 V12 V11
1 x x x 1 1 0 0 1 1 1 1 1 1 1 1 0 0 U15 U14 U13 U12 U11 0 V14 V13 V12 V11
1 x x x 1 1 1 1 1 1 , 1 1 1 1 0 0 0 U15 U14 U13 U12 U11 1 V14 V13 V12 V11

NOTES: 1. Ella Stack Pointer Regilt•, BrlD: Sick Overflow Aegiater, mmJ: Jllck Underflow Aegiat•
2. PO .. P1 5: lllllD Bia, VO .. VI 5: mil Bia, UO .. U15: m!lil Bila
3. The Overflow Uml la the ltack meinory addreu at which an overflow condition will occur during a stack write ~lion.
4. The Underflow Limit la the at.:k memory addl'HI below whidl an underftow condition wHI occ;11r during a llack rud oPeration.
5. The Fltll Limit la the ai.ck memory addraa at which a fatal error condition will occur durl'lg a alack rUld or write operation.
e. Si.ck error. condition• re~ in ·an.ct until a new value la written to Iha E!DID.

V10
V10
V10
V10
V10
V10
V10
V10
V10
V10
V10
ViO

1 0

V1 VO
V1 VO
V1 VO
V1 VO
V1 VO
V1 VO
V1 VO
V1 VO
V1 VO
V1 VO
V1 . VO
V1 VO

1 0

V9 vs
V9 vs
V9 VB
V9 VB
V9 VB
V9 vs
V9 VB
V9 VB
V9 VB
V9 vs
V9 VB
V9 VB

7. Smcka and lub·atacka are clrculr. aft• wri11n9 lo Iha hlgaet location in the alllck, the next location to be wrlllen lo will be Iha lownt location; .after
relldlng Iha lownt location, the highell locallOn will be relld neat. ·

14

. .

K
I

VI
::::>
al
(.)

iii
'<

RTX2010

TCLK• · TCLK
. RISING

EDGE

l_!
I

mm I
REGISTER · I

I
I

.PRELOAD
REGISTER.

mm
PRELOAD.
REGISTER

1111

PRELOAD
REGISTER

IDi1

LOAD ll!D
TIMER/COUNTER

LOAl) II.II
TIMER/COUNTER

LOAD IDB
TIMER/COUNTER

RISING
EDGE

L-1

EXECUTE
. COUNT

EXECUTE
COUNT

EXECUTE
COUNT

ACTIVATE
TIMEOUT

INTERRUPT

ACTIVATE
·TIMEOUT
INTERRUPT

FIGURE 15. RTX2010 TIMER/COUNTER OPERATION

. . .

TABLE I. TIMER/CLOCK SECTION

IGl!1 BIT VALUES TIMER CLOCK SOURCE

BIT09 BITOI mm .. Im
0 0 TCLK TCLK TCLK

·.
0 . 1 TCLK TCLK El3

. 1 0 TCLK El4 .. El3

INTA CYCLE OR
ASIC READ COMMAND

INTERRUPT

w
I

I
I

I

1 1 EIS E14 El3 ·

15

INTERRUPT!

RESET

INTERRUPT

RESET

INTERRUPT

RESET

RTX 2010

RTX 2010 Interrupt Controller
The RTX 2010 Interrupt Controller manages interrupts for the
RTX 2010 Microcontroller core. Its sources include two on
chip peripherals and six external interrupt inputs. The two
classes of on-chip peripheralis.that produce interrupts are the
Stack Controllers and the Tinier/Counters.

INTERRUPT CONTROLLER OPERATION

When one of the interrupt sources requests an interrupt, the
Interrupt Controller checks whether the interrupt is masked in
the Interrupt Mask Register. If it is not, the controller
attempts to interrupt the processor. If processor interrupts are
enabled (bit 4 of the Configuration Register), the processor
will execute an Interrupt Acknowledge cycle, during which it
disables interrupts to ensure proper completion of the INT A
cycle.

In response to the Interrupt Acknowledge cycle, the Interrupt
Controller places an Interrupt Vector on the internal ASIC
Bus, based on the highest priority pending interrupt The
proces5or performs a special Subroutine Call to the address
in Memory Page O contained in the vector. This special
subroutine call is different in that it saves a status bit on the
Return Stack indicating the call was caused by an interrupt.
Thus, when the Interrupt Handler executes a Subroutine
Return, the processor knows to automatically re-enable
interrupts. Before the Interrupt Handler returns, it must
ensure that the condition that caused the interrupt is cleared.
Otherwise the processor will again be interrupted
immediately upon its return.

Processor Interrupts are enabled and disabled by clearing
arid setting the Interrupt. Dlsabl• Flag. When the RTX is
reset, this flag is set (bit 04 of the mi) •1), disabling the
interrupts, This bit is.a write-only bit that always reads as O,

allowing interrupts to be enabled in only 2 cycles with a
simple read/write operation in which the processor reads the
bit value, then writes it back to the same location. The actual
status of the Interrupt Disable Flag can be read from bit 14 of
t!llJ. -
During read and write operations to the Configuration
Register, ((!liJ), interrupts are inhibited to allow the
program to save and restore the state of the Interrupt
Enable bit.

In addition to disabling interrupts at the processor level, all
interrupts except the Non-Maskable Interrupt (NMI) can be
individually masked by the Interrupt Controller by setting the
appropriate bit in the Interrupt Mask Register (lli!im).
Resetting the RTX 201 O causes all bits in the IIliJil to be
cleared, thereby unmasking all interrupts. · <:::3' 1 ' , Ld
The NMI on the RTX 2010 has two modes of operation which V' ' _--,. ,y ,{

are controlled by the NMl_MODE Fla it 11 of • : ~·~ '' ;=c.. L

When this bit is cleared (0), the can not be mask (and
can interrupt any cycle. This allO fast resp e to the
NMI, but does not allow a return. from interrupt to operate
correctly. This is the NMI mode that is implemented on the
RTX 2000 and RTX 2001A. NMl_MODE is cleared when the
processor is Reset. When NML MODE is set (1), a retum
from the NMI serviee routine . will result in the processor
continuing execution in the state it was in when it was

· interrupted. When in this second mode NMI may be inhibited
by the processor during certain critical operations (see
INTERRUPT SUPPRESSION), and may, therefore; not be
serviced as quickly as the first mode of operation. When
servicing an NMI with NMl_MODE set to 1 (reflected by bit
12 of the mil being set), further NMls and maskable
interrupts are disabled until the NMI Interrupt Service Routine
has completed, and a - retum from· interrupt has been
executed.

TABLE 7. INTERRUPT SOURCES, PRIORITIES AND VECTORS

IJliID VECTOR ADDRESS BITS
PRIORITY INTERRUPT SOURCE SENSITIVITY BIT 01 08 07 08 OS

O(High) NMI Non-Mukable lnt9m.lpt Po.Edge N/A 0 1 1 1 1

1 El1 Ex..,,., lnt9rrupt 1 High Lev9I 01 0 1 1 1 0

2 PSU Parwn ... Stack Under11ow HighL8Y91 02 0 1 1 0 1

3 RSU Return Slack Underftow Hlghlev91 03 0 1 1 0 0
4 PSV PuMleter Stack Overflow High level 04 0 1 0 1 1

5 RSV Return Stllck Over1low High Level OS 0 1 0 1 0

6 - emm.t. lntMupt 2 High Level 06 0 1 0 0 1 i c_

7 TCIO Timer/Counts o Edge 07 0 1 0 0 0

8 TCl1 Timer/Count• 1 Edge 08 0 0 1 1 1

9 TCl2 Timer/Count• 2 Edge 09 0 0 1 1 0

10 El3 ext.m.i 1n19nupt 3 High Level 10 0 0 1 0 1

11 El4 ExWn• lntMupt 4 High Level 11 0 0 1 0 0

12 El.5 ExterNI Interrupt 5 High Lev9I 12 0 0 0 1 1

13(low) SWI Sottw.e lntMupt Hlghlev91 13 0 0 0 1 0 '/

NIA None Nolnttnupt NIA NIA 1 0 0 0 0

16

RTX 2010

The Interrupt Controller prioritizes Interrupt requests and
generates ari Interrupt Veetor for the highest priority interrupt
request.The address that the vector points to is determined
by the source of the interrupt and the contents of the

. Interrupt Base/Control Register (mI!JI). See Figure 4 for
the Interrupt Vector Register bit assignments. Because
address bits MA19-MA16 are always zero in an Interrupt
Acknowledge cycle, the entry point to the Interrupt' Handlers
must reside on Memory. Page zero.

Because address bitS MA04-MA01 are always zero in an
Interrupt Acknowledge cycle, Interrupt Vectors are 32 bytes
apart. This means that Interrupt Handler routines that are 32
bytes or less can be compiled directly Into the Interrupt Table.
Interrupt Handlers greater than 32 bytes must be compiled
separately and called from the Interrupt Table.

The rest of the vector is generated as indicated in Table 7. To
guarantee that the Interrupt Vector will be stable during an
INTA cycle, the Interrupt Controller inhibits the generation of a
new Interrupt Vector while INTA is high, and will not begin
generating a new Interrupt Vector on either edge of INT A.

The Interrupt Vector can also be read from the Interrupt
Vector. Reg1St8f (mm) directly. This allows interrupt
requests to be monitored by software, even if they are
disabled by the . processor. If no interrupts are being
requested, bit 09 of the mm will be 1.

EXterrial interrupts E15-El1 ·are active HIGH level-sensitive
inputs. (Note: When used as Timer/Counter inputs, E13-El1
are edge sensitive). Therefore, the Interrupt Handlers for
these interrupts must clear the source of interrupt ·prior to
retuming to the interrupted code. The external NMI, however,
is an edge- sensitive input which requires-a rising. edge to
request an interrupt The NMI Input also has a glitch filter
circuit which requires that the signal that Initiates the NMI
must last at least two cycles of ICU<. ·

·Finally; a mechanism ls provided by which an interrupt can be
requested by using a software command. The Software
Interrupt (SWI) is requested by executing· an instruction that
will set an intemal flip-flop attached ·to one input of the
Interrupt Controller. The SWI is reset by executing an
instruction that dears the flip-flop. The flip-flop is accessed
by 1/0 Reads and Writes. ·

Because the SWI Interrupt may not be Serviced Immediately,
the instructions which Immediately follow the SWI instruction
should not depend on whether or not the lntem4)t has been
serviced, and should CIUee • one- or two-cycle Idle condl·
tion (TypicallY, this ls done wllh one or two NOP instructions) •.

If an interrupt condition oa::Ura. but "goes away' before the
processor has a c:hlnce to .vice I, a "No Interrupt" vector ·
is generated. A "No lnWrupt" vectlor Is also generated if
an Interrupt 'Acknowledge cycle takeS less than two cycles
to execute and no · other Interrupt concs1tl0ns need to be
serviced. ·

To prevent unforseai errc>rs, It- Is recommended that valid
.. code be supplied at every Interrupt Vector loCation, including

the "No lntern.ipf' vector, which should always be initialized
with valid code. · ·

It is recC>n:imended that Interrupt Handlers save and restore
the contents of tiiJ .
INTERRUPT SUPPRESSION

The RTX 201 o allows maskable interrupts and Mode 1 NMls
(the NMl_MODE Flag in bit 11 of the om. is set) to be .
suppressed, delaying them temporarily while critical
operations are in progress. Critical operations are instruction
sequences and hardware operations that, if interrupted,
would result in the .loss of data or misoperation of the
hardware.

Standard critical operations during which interrupts are.
automatically suppressed by the processor include Streamed
instructions (see the description of the D register), Long Call
sequences (see "Subroutine Calls and Retums"), and loading om . In addition tQ this, extemal devices can also suppress
maskable interrupts during critical operations by applying a
HIGH level on the INTSUP pin for as long as required.

Since the Mode 0 NMI (the NML.MODE Fl~g in. bit 11 of the om ls cleared) can cause the processor to perform an
Interrupt Acknowledge Cycle in the middle of these critical
operations, thereby preventing a normal retum to the
interrupted instruction, a Subroutine Retum should be used

· with care from a Mode 0 NMI servi~. routine. The Mode O
NMI should . be used only to indicate critical

· system errors, and the Mode O NMI · -handler should
re-initialize the system.

Interrupts which have oceurred while interrupt suppression is
·in effect will be recognized on a priority basis as soon as the
supprEissiQn terminates, ·provided the condition which
generated the Interrupt stiU. exists.

STACK ERROR INTERRUPTS

Th.e Stack Controllers request an Interrupt whenever a stack
overflow or underflow cOndition exists. These interrupts can
be deared by rewriting SJii1 . See the section on "Dual
Stack Architecture" for more information. regarding how the
limits set into EfJiJ and m!IiJ are used.

STACK OVERFLOW: A stack overflow occurs when data is
pushed onto the stack location. pointed to by· the m!Ji1 , as

· determined in Table 5. After the processor is reset. this is
· location 255 In either the Parameter Stack or Retum Stack. A
stack ovarllow interrupt request stays.in effect until cleared.
by writing a new value to the SJii1 . In addition to generating
an Interrupt, the state of the stack overflow flags may be read
out of the II!Iill'. bit 3 for the Parameter Stack, and bit 4
for the Retum stack. See Figures 5, 7 and 8.

STACK UNDERFLOW: The stack underflow limit occurs .··
when data is popped off the stack locatldn immediatel.y below
that pointed to by the Sl!lil, as determined in Table 5. The
state of the stack underflow error flags may be read out of
bits 1 and 2 of the II!1il for the Parameter and Retum stacks
respectively. In the reset state of the Sl!lil , an underflow will
be generated at the same time that a· fatal error is detected.
An underflow buffer region can- be set up by selecting an
underflow limit greater than zero by writing the
corresponding value into the BDiiJ . The stack ·underflow
interrupt request stays in effect until a new value ls written
into the mil , at which time It ii cleared.

'I

17

.. RTX 2010

TIMER/COUNTER INTERRUPTS

The timers generate edge-sensitive interrupts whenever they are decremented to O. Because they are edge-sensitive and are cleared during an Interrupt Acknowledge cycle or during the direct reading of ll!JD by software, no action is required by the handlers to clear the interrupt request.

The RTX 2010 ALU
The RTX 201 O has a 16-bit ALU capable of performing standard arithmetic and logic operations:.

• ADD and SUBTRACT (A-8 and B-A; with and without carry)

• AND, OR, XOR, NOR, NANO, XNOR, NOT

The 1im1J and m!J:1 registers can also undergo single bit shifts in the same cycle as a logic or arithmetic operation.
In Figure 16, the control and data paths to the ALU are shown. Except for umil and mm , each of the intemal core registers can be addressed explicitly, as can other intemal registers in special operations such as in Step instructions. In each of these cases, the input would be addressed as a device on the ASIC Bus.

. . When executing these instructions, the arithmetlC/logic operand (a) starts out in Dml and Is placed on the T-bus. Operand (b) arrives at the ALU on the Y-bus, but can come from one of the following four sources: W!3I ; an lntemal register; an ASIC Bus device; or from the 5 least significant bits of IID . The source of operand (b) is determined by the instruction code ·in IID . The result of the ALU operation is placed into Dml .

PROGRAM
MEMORY

+
1111 5 leHt

Significant
Bit•

NOT!!: Data Patlla 119 repre•ntecl by lolid Une.; Control P111t11 111 repreeenled by dulled linee.

ASIC Bu•
D•vic•

. I
I
I
I
I
I

Step Arithme~ic instructions which are performed through the ALU are divide and square root Execution of each step of the arithmetic operation takes one cycle, a 32/16-bit Step Divide takes 21 cycles, and a 32/16-bit Step Square Root takes 25 cycles. Sign and scaling functions are controlled by the ALU function and shift options, which are part of the coded instruction ·contained in WJ . See Table 24 and the Programmer's Reference Manual for details.
Unsigned Step Divide operation assumes a double precision (32-bit) dividend, with the most significant word placed in iI!lil ' the less significant word in mm ' and the divisor in lii!J . In each step, if the contents in iI!Jil are equal to or greater than the contents in mm (and therefore no borrow is generated), then the contents of mm-are subtracted from the contents of lmil . The result of the subtraction is placed into iI!Jil . The contents of IEi and mm are. then jointly shifted left one bit (32-bit left shift), where the value shifted into the least significant bit of mm is the value of the Borrow bit on the first pass, or the value of the Complex Carry bit on each of the subsequent passes. On the 15th and final pass, only mm is shifted left, receiving the value of the Complex Carry bit into the LSB. Dml is not shifted. The final result leaves the quotient in mm . and the remainder in Dml·

During a Step Square Root operation, the 32-bit argument is assumed to be in liml and mDJ , as. in the Step Divide operation. The. first step begins with mm containing zeros . The Step Square Root Is performed much like the Step Divide, except that the Input from the Y-bus Is the logical OR of the contents of EllJ and the value In mm shifted one place to the left (2• mm). When the subtraction is performed, EU) Is OR'ed Into imJ , and Em Is shifted one place to the right. . At the end of the operation. the square root of the original value is In mm and W!3J , and the remainder Is In IE:il .

I _____ _

FIGURE US. ALU OPERATIONS-CONTROL PATHS AND DATA FLOW

18

•' RTX 2010 Floating Point/DSP On Chip
Peripherals·
THE RTX 2010 MULTIPLIER"'ACCUMULATOR

The Hardware Multiplier-Accumulator (MAC) on the RTX
201 o . functions as both a . Multiplier, ·and a Multiplier
Accu mulator. When used as a Multiplier alone, it multiplies
two 16-bit numbers, yielding a 32-bit product in one clock
cycle. When used as a Multiplier-Accumulator, it multiplies
two 16-bit numbers, yielding an intermediate 32-bit
product, which is then added to the 48-bit Accumulator.
This entire process takes place in a single cloc~ cycle.

The Multiplier-Accumulator functions are activated by 1\0
Read and Write instructions to one of the ASIC Bus
addresses assigned to the MAC.

The MAC's input operands come from three possible
sources (see Figure 17):

(1) The IIml and mm registers.

(2) The Bmi register and memory (Streamed mode only -
see the Programmer's Reference Manual).

(3) Memory and an input from the ASIC Bus (Streamed.
mode only - see the Programmer's Reference Manual).

These inputs can be treated as either signed (two's
complement) or unsigned integers, depending on the form
of the instruction used. In addition, if the ROUND option is

·selected, the Multiplier can round the result to 16 bits. Note
thatthe MAC instructions do not pop the Parameter Stack;
the contents of Bmi and WDI remain in~act.
For the Multipler, the product is read from the Multiplier
High Product Register,~. which contains the upper
1 6 bits of the product, and the Multiplier Low Product ·
Register, ~. which contains the lower 1 6 bits. For the
Multiplier-Accumulator, the accumulated product is read
from the Multiplier Extension Register, li!a3iJ, which
contains the upper 16 bits, the lmGJ, which contains the
middle 16 bits, and the mIEJ, which contains the low. 16
bits. The registers may be read in any order, and there is no
requirement that all registers be read. Reading from any of
the three registers moves it's value into ll!m. and pushes
the original value in iiim· Into m!3J. If the read is from
~ or mI!iJ, the original value of mm is lost. I.e. It is
not pushed onto stack memory. This permlts overwriting ttie
original operands left in ll!m and lm£D, which are not
popped by the MAC operations. If the read is from lmiJ,
the original value of mm Is pushed onto the stack. In
addition to this, _,,Y of the three MAC registers can be
directly loaded from IDJI. This pope mm Into il!m and
the Parameter Stack Into mDi
If 32-bit precision la not required, the multiplier output may·
be rounded to 18 bits. Thie Is accomplished by setting the
ROUND bit in the Interrupt BaM/Control Register, IJll!I,

to 1. The ROUND operation rounds the lower 16 bits of the
results into the upper 16 bits in the following manner:

(1) If the most significant bit ifjhe ~is set (1), the~
is incremented. -

(2) If the most significant bit of the~ is not set (0), the
li!a!il is left unchanged.

The result is rea.d from mmiJ into emi. Following the read,
the contents of U!lil and mm should be exchanged,
then a "Drop Top of Stack" instruction should be executed
to discard one of the original operands. The ROUND bit
functions independently of whether the signed or unsigned
bit is used.

The multiply instructions disable interrupts during the
multiplication cycle, and for the next cycle. Reading ~.
or~ also disables interrupts during the read, and for the
next cycle. This allows a multiplication operation to be .
performed, and both the upper and lower registers to be
read sequentially, with no danger of a non-NMI interrupt
service routine corrupting ·the contents of the registers
between reads (for compatibility with the RTX 2000). The
multiply-accumulate instructions do not disable interrupts
during instruction execution.

For additional information on the RTX 201 o MAC see the
Programmer's Reference Manual.

THE RTX 2010 ON-CHIP BARREL SHIFTER AND
LEADING ZERO DETECTOR

The RTX 2010 has both a 32-bit Barrel Shifter and a 32-bit
Leading Zero Detector for added floating-point and DSP .
performance. The input to the Barrel Shifter and Leading
Zero Detector is the . top two elements of the ·Parameter
Stack, the il!m and mm registers.

The Barrel Shifter uses a five bit count stored in the mil
register to determine the number of places to right or left
shift the double word operand contained in the II!m and mm registers. The output of the Barrel Shifter is stored in
the ~ and mI!il registers, with the top 1 6 bits in ~
and the bottom 1 6 bits in ma . . .
The Leading Zero Detector Is used to Normalize the double
word operand contained in the lmil and mm registers.
The number of leading zeroes in the double word operand
are counted, and the count stored In the mE1iJ register. The
double word operand Is then logically shifted left by this
count, and . the result stored in the ~ and .~
registers. Again the upper 16 bits are in ~ and the
lower .16 bits are in ma This entire operation is done in
one cJock cycle with the normalize instruction.

19

..
DATA STACK ASIC BUS

MAC
18x18x48

MXR MHR . ;

RTX 2010

NEXT

32 BIT LZD

5

c:c a. ::c 0 18 2 ...
+
+

MLR

* 'FIGURE 17. RTX 2010 FLOATING POINT/DSP LOGIC

20

I •
32 BIT BRL SHIFTER

..
RTX 2010 ASIC Bus Interface
The RTX 201 o ASIC Bus services both internal processor
core registers. and the on-chip peripheral registers, and eight
external off""chip ASIC · Bus lc>cations. All ASIC Bus
operations require a single cycle tO-execute and transfer a full
16-blt word of data. The e>Ct!iln'l~I ASIC Bus maps into the 18st
eight locations of .the 32 location ASIC Address Space. The
three least significant bits of the address are available as the
ASIC Address Bus. The addresses therefore map as shown
in Table 8.

TABLE 8. ASIC BUS MAP

ASIC BUS SIGNAL

GA02 GA01 GAOO ASIC ADDRESS

0 0 0 18H

0 0 1 19H

0 1 0 1AH

0 1 1 1BH

1 0 0 1CH

1 0 1 1DH

1 1 0 1EH

1 1 1 1FH

RTX 2010 Extended Cycle Operation
The RTX 201 o bus cycle operation can be optionally
extended for two types of accesses:

(1) USER Memory Cycles

(2) ASIC Bus Read Operations

The extension of normal RTX 2010 bus cycle timing allows
the interlace of th• processor to some peripherals, and slow
memory devices, without using externally generated wait
states. The bus cycle Is . extended by the same amount
(1 TCLK) as It would be if one wait state was added to the cy
cle, but the control signal timing is somewhat different (see .
Timing Diagrams). In a one wait state bus cycle, PCLK is High
for 1/2 TCLK period, and Low for 1-112 TCLK periods O.e.
PCLK is held Low for one. additional TCLK period). In an
extended cycle, PCLK is High for 1 TCLK period, and Low for
1 TCLK period (i.e. both the High and Low pOrtlons of the
PCLK period are extended by 1/2 TCLK period).

Setting th8 Cycle Extend bit (CYCEXT), which is bit 7 of the mm register, will cause extended cycles to be used for all
accesses to USER memory. -Setting the ASIC Read Cycle
Extend bit (ARCE), which i, bit 13 of the lliJ register, wUI
cause extended cyclee fD be used for al Read accesses on
the eXternal ASIC &a Bolh the CYCEXT bit and the ARCE
bit are deared on Reset.

RTX 2010 Memory Access
THE RTX 2010 MEMORY BUS INTERFACE.

The RTX 201 o can address 1 Megabyte of memory, divided ·
into 16 non-overlapping pages of 64K byteS: The memory
page accessed depends on whether the memory access· is
for Code (instructions and literals), Data, User Memory, or·
Interrupt Code. The page selected also depends on the
contents of the Page Control Registers: the Code Page Reg·
lster (mm), the Data -Page Register (l!Iim), the User
Page Register (1!Jim), and the Index Page Register
(Wlil). Furthermore,· the User Base Address Register
(l!lliiJ) and the Interrupt Base/Control Register (mI!1)
are used to determine the complete address for User Memory
accesses and Interrupt Acknowledge cycles. External
memory data is acce8sed through lmt3J .
When executing code other than an Interrupt Service routine,
the memory page is determined by the contents of the (Blm .
Bits 03-00 generate address bits MA19-MA 16, as shown in
Agure 1 o. The remainder of the address (MA 15-MA01)
col')'les from the Program Counter Register (ID). After
resetting the processor, both the ID and the (Blm are
cleared and execution begins at page 0, word o. ·
A new Code page is selected by writing a 4-bit value to the
mm . The value for the Code page is input to the mm
through a preload procedure which withholds. the value for
one dock cycle befOre loading the l!iD to ensure that the
next instruction is executed from the same Code page as the

· instruction which set the new Code page. Execution
Immediately thereafter will c6ntlnue with the next instructiOn
in the new page. ·

An Interrupt Acknowledge cycle is a special case of an
Instruction Fetch cycle. When an Interrupt Acknowledge
cycle occurs, the contents of the mm and ID are saved on.
the Retum Stack and then the DmiJ Is deared to point to ·
page O. The Interrupt Controller generates a 16-bit address,
or "vector'', which points to the code to b8 executed to .
process the interrupt. To determine how the Interrupt Vector .
is formed, refer to Agure 4 for the register bit as5ignments, ··
and also to the Interrupt Controller section.

The page for data access is provided. by either mm or
Imm , as shown in Agures 10 and 12. Data Memory Access
Instructions can be used to access data in a memory page .
oth8r than that containing the program code. This is done by
writing th8 desired page number Into the Data Page
A (Imm) and Setting bit 5 (DPRSEL) of the lllii
register to 1. H l!1iil is set to equal l!li1il ·, or if DPRSEL • o, ·
data wiU be accessed In the Code page. The status of the
DPRSEL bit Is saved and restored as a result of a Subroutine
call or Retu0m. When the RTX 2010 Is reset, l!lilil. points to
page 0 and DPRSEL resets to 0, selecting the miiJ .

21

RTX 2010

USER MEMORY consists of blocks of 32 words that can be.
located anywhere in memory. The word being accessed in a
block is pointed to by the five least significant bits of the User
Memory instruction (see Table 20), eliminating the nead to
explicitly load an address into ll!lll before reading or writing
to the location. Upon RTX 201 O reset, tmiil is cleared and
points to the block starting at word o, while l!Jlm is cleared
so that it points to page O. The word in the block is pointed to
by the five least significant bits of the User Memory
instruction and bits 05-01 of the Imm . These bits from
these two registers are logically OR'ed to produce the
address of the word in memory. See Figure 13.
WORD AND BYTE MAIN MEMORY ACCESS
Using Main tv1emory Access instructions, the RTX 2010 can
perform either word or single byte Main Memory accesses,
as well as byte swapping within 16-bit words.

Bit 12 of the Memory Access Opcode (see Table 19), is used
to determine Whether byte or word· operations are to be
performed (where bit 12 • 0 signifies a word operation, and
bit 12 • 1 signifies a byte operation). In addition, the
determination of whether a byte swap is to occur depends on
which mode (the "Motorola-Like" or the "Intel-Like") is in
effect, and on whether an even or odd address is being
accessed (see Figures 18 and 19).

DATA ACCESS (16 • BIT) m l!Jl1 ADDRESS
BIT 12 BIT 2 EVEN.000

WORD WRITE

0 0

0

0 0

0

.o

0

0

0

0

0 --
FIGURE 11. MEMORY ACCESS (WORD)

Whenever a word of data is read by a Oata Memory operation
into the processor, it is first placed in the m:Di register.
By the time the instruction that reads that word of data is
completed, however, the data may have been moved, option
ally inverted, or operated on by the ALU, and placed in the ll!lll register. Whenever a Data Memory operation writes to
memory, the data comes from the mm register.
The Byte Order Bit is bit 2 . of the Configuration Register,
(Bil (see Figure 3 in the "RTX lntemal Registers Section).
This bit is used to determine whether the default ("Motorola
Like") or byte swap ("Intel-Like") mode will be used in the
Data Memory aceesses.

Word Access is designated when the ml bit 12 = O in the
Memory Access Opcode, and can take one of two forms,
depending upon the status of (Bil , bit 2.

When (Bil bit 2 = 0, the "Motorola-Like" mode of word .
access (also known as the "Big Endian" mode) is designated.
This mode of word access is to an even address (AO= O) and
results in an unaltered transfer of data, as shown in Figure 18.
Word access to/from an odd address (AO • 1) while in this
mode wlll effectively cause the Byte Order Bit to be
complemented and will result In the bytes being swapped.

DATA ACCESS (8 - BIT) llD (ID ADDRESS
BIT 1 BIT 2 EVEN.ODD

BYTE WRITE ,.
0

U#C-

~ "
11 0

BYTE READ
11

0
' v

0

11
0

BYTE WRITE
11

A

' 0 0
0 .. ~

BYTE READ
11

'

0 0
0 .,.,_

F1GURE 11. MEMORY ACCESS (BYTE}

22

..
RTX 2010

When the mil Bit 2 = 1, the "Intel-Like" mode. of word
access is designated (also known. as the "Little Endian"

· mode). Access to an even address (AO = 0) results in a data
· transfer in which the bytes are ~apped. Word access to an

odd addres8 (AO = 1) while in this 'mode will effectively cause
the Byte Order. Bit to be complemented with the net resu.lt
that no byte swap takes place .when the data word is trans
ferred. See Figure.18.

Byte Access. is designated when the llD bit 12 = 1. in the
Memory Access Opcode, and can also take one of two forms,
depending on the value of mil Bit 2.

When the mil Bit 2 = 0, a Byte ·Read from an even address
in the "Motorola-Like" mode causes the upper byte (MD15-
MD08) of memory data to be read into the lower byte position
(MD07-MDOO) of 1m£i1, while the upper byte (MD15•
MD08) is set to O. A Byte Write operation accessing an even
address will cause the byte to be written from .the lower byte
position (MD07-MDOO) of mDI into the upper byte position
(MD15-MDOS) of memory. The data in the lower byte position
(MD07-MDOO) in memory will be left unaltered. Accessing an
odd address for either of these operations will cause the Byte
Order Bit to be complemented, with the net. result that no
swap will occur. See Figure 19.

When mil Bit 2 • 1, memory is accessed In the "Intel-Like"
mode. Accessing an even address in this mode means that a
Byte Read operation will cause the lower byte of data to be
transferred without a swap operation. A Byte Write in . this
mode. will also result in an unaltered byte · transfer.

. Conversely, accessing an odd address .for a byte operation
while in the "Intel-Like" Mode will cause the Byte Order Bit to
. be complemented. In a Byte Read C)peratlon, this will result
in the upper byte (MD 15-MDOS) of data being swapped lntO
the lower byte Position (MD07-MDOO), while the upper byte
is set to 0 (MD 15-MDOB set to 0). See Figure 19. A Bvt•
Write operation accessing an odd address will cause the
byte to be swapped from the lower byte position (M007-
MOOO) of the. P.rocessor register Into the upper byte position
(MD 15-MDOB) of the ·Memory location. The data in the lower
byte position (MD07-MOOO) in that Memory location wiU be
left unaffected. · ·

NOTE: T~ .featl.lree .,. fOr MM! Memory data ICC- oftly, Md ._ no
affect on ill9truction fe~ long uier.11, or UMf Dlla Memory.

SUBROUTINE CALLS AND RETURNS

The RTX can. perform both Hshorf'. subroutine calls and
"long" subroutine calls. A short subroutine call Is one for
which the subroutine code II located within the same Code
page as the Call lnstrucllon, and no processor cycle time Is
expended In reloading l'9 amD .
Performing a long ·aubroutlne. cal lnvolvee transferring
execution to a different Code page. Thia requiril that the
. (!iii be l~ed with the new .Code page as described lr'i the

Memory Access Section, followed immediately by the
Subroutine Call instruction. This adds two additional.cycles to

. the execution tlrrie for the Subroutine Call.

For all instructions except Subroutine Calls ·or Branch
instructions, bit 5 of the instruction ·code represents· the .
Subroutine Retum Bit If this bit is set to 1, a Return is
performed whereby the. retum address· is popped . from the
Return Stack, as indicated in Figure 11. The page for the
retum address comes from the mm . The contents of the D
register are written to the ID , and the contents ot the mm
are written to the mm so that execution resumes at the point
following the Subroutine Call. The Return Stack is also
popped at this tirrie. ·

RTX 2010 Software
The RTX 201 O is designed around the sanie architecture
as the RTX 2000, and is a hardware implementation of
the Virtual. Forth Engine. As such, it does not rE!Quire the
.additional assembly or machine language software
development typical of most real-time microcontrollers. ·

The Instruction set for the RTX 2010 TForth compiler
combines multiple high level instructions into single machine
instructions · without having· to rely on either pipelines or
caches. This optimization yields an effective throughput
which Is faster than the processor's clock speed, while
avoiding the unpredictable execution behavior exhibited by
most RISC processors ~uaed by pipeline flushes and cache
misses.

2010 COMPiLERS

Harris offers- a complete ANSI C cross development
environment for the RTX 2010. The environment provides a ·
powerful, user-friendly set of software tools designed to help
the developers of embedded real-time control systems get
their designs to market quickly. The environment includes the
optimized ANSI C language compiler, symbolic menu driven
C language debugger, RTX assembler, llriker, profiler, and
PROM programmer interface. ·

The RTX· 2010 TForth complier from Harris translates
Forth-63 source code to RTX 2010 machine instructions.
This compiler also provides support for all-of the RTX 2010 ·
Instructions specific to the processor's registers, Peripherals,
and ASIC Bus. See the tables in the following sectiOns for
instruction set Information. ·

RTX Microcontroller Family
Compatibility ·
The RTX 2010 Is pin and. instruction set compatible with the
RTX 2000 and RTX 2001 A. The instl'Uctlons added to the
RTX 2010 (see Table 25) are NOP instructions on the earlier
prbceuors. The Stack size and stack controller are different
on the three processors. therefore, code that modifies stack

- registers may not be directly portable. .

23

~ .

·. NOTATl_ONS .·

m-n111tl ·

m-writ•

g-writ•

u-l'fJad

u-writ•

SWAP

DUP

OVER···

DROP

Inv

lllu-_op

•hilt

d

D

R

RTX 2010

TABL~ 9~ INSTRUCTION SET SUMMARY

Read data (byte or Word) from memory loeation addressed by contents of U!Iii regist• into 11,ilij register.
Write con\enta (byte or word) of taDi register into memory location addreSaed by contents of U!Iii register.
Read data from the ASIC addrees (address field ggggg of instruction) into U!Iii register. A react ofone ot the on~hip peripheral registers can be done. with a g-1YJlld command.

Write contents. of llmi register to ASIC address (address fielcl ggggg ot instruciion). A write to one of the .· on-chip peripheral registers can be done with a g-writ• command. ·

Read contents (word only) ofuser Space location (acldresa field uuuuu of instruction) into Q!Iij l'e(lister.
Write contents (word only) of Q!Iij register into User Space location (addi'esa field uuuuu ofinstrUction).

Exchange contents of m and taDi registers

Copy contema ofllmi register to taDi register, pushing previoua contenta of~ onto Stack Memory.
Copy contents of~ regiatei' to ll!li register, pushing original contents of lliD to lm£.li regiater.and original contents of~ register to Stack Memory. · · ·

POp Parameter Stack, diacarding original c:Ontenta of IJ'.Q regiater, leaving the original contaita of 11!3i in ll!li and the ciriginal c:Ontenta of th9 top Stack Memory location _in~ · -

Pei'form 1 'a complement on contents of lliDj regiater, if i bit in inlllrucllon la 1.
Perfonn at:JPraciriate _oooo or ... ALU~ from Table 23 on i:ontenta of ilmi .,,d 1B!3iregtaterJ.
Perform appFoprtate ahift operation<-- fielc:I of instruction) from Table 24 on contenta oflliDi and/or~ reglatent. ·· ·

Puah 8hOrt literal d from ddddd field of. inatruction onto Parameter Stack (wh .. ddddd cont.ina the 8ctual . value of the Short liter81): The original contaita of lliD are puahed into~ and the original contents of ~are i:>Uahed onto Stack Memorv. · · . ·
Puah long literal D froin next aeciuanti81 location in program memol'Y onto Parameter Stack. . The original cont.nta of lliD are puahed intO ~ and the origirial contenta ot ~are puah8d onto Stack Memory.

Perform a f:!etum From Subroutine if bit • .1 '.

Bit field• containing x'a n ignored by the proceeaor.

TABLE 10; !NSTRUCnON FIEGISTER.BIT_FIELDS (BY FUNCnOt;il)

FUNCTION CODI! DEFINlnON Add,... field for ASIC Bua 1oeat1ona
llllllllil Add.-. field forUaer Space memory locatiOna

lllitltl ALU function• (M9 Table 23) -tldildd . Sharl literal• (contllnfnG a value from o to 31 > Shift Functions(... Table 24)

24

RTX2010

TABLE 11. R.TX 2010 II AND!il!ACCE$S OPERATIONS*

OPERATION RETURN ASIC
(9-read, BIT ADDRESS
9-writ•) V:ALUE ,999911. REGISTER FUNCTION

Read mode 0 00000 D Pushe,s the contents of D into llmi (with no POP of tl'ie Return Stack)
Read mode 1 00000 D Pushes the contents of D into llmi. then pertorms a Subroutine Return
Write mode 0 00000 D Pops the contents of llmi into D (with no push of the Return Stack)

. Write mode 1 00000 D Performs a Subroutine Return, then pushes the contents of llmi into D
Read mode 0 00001 II Pushes the contents of D into llmi. popping the Return Stack

. Readmode 1 00001 D Pushes the contents of D into 11!1fi without POPPing the Retu.rn Stack, tlieri
executes the Subroutine Return

Write mode 0 00001 D Pushes t.he contents of llmi Into D popping the Parameter Stack
Write mode 1 00001 D Performs a Subroutine Return, then pushes the eontents of llmi into D
Read mode 0 00010 D Pushes the conten~ of D ahlri&d left by one bit, Into llmi

(the Return Stack la not popped) . . .
Read mode '1 00010 a Pushes the contents of D shifted left by one bit, into llmi (the Return

Stack is not p()pped), then performs a Subr'Qutine Return
Write mode· ,. 0 00010 D Pushes the contents of llmi Into D .. a "stream" count, Indicating that

the next instruction la to be performed a specified number of times;
: the Parameter Stack ia p()pped

Write mode 1 00()10 D Performs a Subroutine Return, then pushee the atreem count Into D
Read mode 0 00111 ID Puahea the contents of ID Into 11iJii
Read mode 1 00111 ID Puahea the cont.nts of II! Into ID, then performs a Subroutine Return ·
Write mode 0 00111 'ID Performs a Subroutine Call to the address contained in llmi. popping the Paramet• Stack · · · ·
Write mode •1 00111 ID .. Pulhea the cont9nta of lliD onto the Return Stack .before executing

the Subroutine Return
. . . - : • S.. the RTX Programmer'• Reference Manual for a comp.lele l~ting ol typical aoftware function•.

15141312

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 .1 1

1 0 1 1

TABLE 12. 2010RESERVED1/0 OPCODES

.1.NSTRUCTION CODE

11 10 8 8 7 8· 5 4 .3 2 1 0

0 0 0 0 1 0 R 0 1 ' 1 0 1 '
'·

0 0 0 0 0 0 R 0 1 1 0 1

0 0 0 0 ' 1 0 A 1 0 0 0 0
0 0 0 0 0 0 R 1 0 0 0 0

0 0 0 0 1 0 R 1 0 1 ' 1 0

0 0 .0 0 0 0 R 1 0 1 1 0

OPERATION

'Seltict!ilD
'SelectClllJ

SetSOFTINT

Clear SOFTINT

Increment 1i£1
· oecre"1ent m

TABLE 13. SUBROUTINE CALI. INSTRUCTIONS

INSTRUCTION CODI OPERATION
15141312 1.1108 8 7 8 5 4 3 2 0
o a a a

Subroutine Call Bit _J
(Bit 1 5 • 0: Call,
Bit 15 • 1: No Call)

a a a a • • • •

25

.... ,, Call wOrd·addr...
aua ...a U.. Uao, in the page ·
1nc:t1catec:1 by 1111 Thia addruli is ··
produced wh8" the ~·
perfOrma a l9ft lhllt on the addr.U in · ·
"8 iMtruction CCide. '.

, , 15141311

Subroutine Retum Bit*
· (Bit 5, R = o: No return

R = 1: Return)

15141312

0 0 0

0 0 0-

1 0 0

1 0 0 .1

Branch Addre'8*

RTX 2010

TABLE 14. SUBROUTINE RETURN

INSTRUCTION CODE

1110 I. 8 7 I 5 4 3 2 1 0

. OPERATION

R - - - I Retum from subroutine

t

• Does ·not apply to Subroutine Call or Branch . Instructions; A
Subroutine Retum can be combined with any other instruction
(as implied here by hyphens).

TABLE 15. BRANCH INSTRUCTIONS

INSTRUCTION CODE OPERATION

1110 I 8 7 I 5 4 3 2 1 0

0 b b a a .a a a a a a a DROP and branch if il!m = 0

b b a a a a a a a • a Brancli ifllim..;O
0 b b a a.a a a a a a a. Unconditional branch ·. ·

b b a a ii a a a a a a · Branch and decrement D if D .;. O;
Pop0if0•0

·· * See the ProgrWn"1tr'I Alf1renc1 Menual for further information regarding th• brUch add,.. field. ·

TABLE 11. REGISTER AND 1/0 ACCESS INSTRUCTIONS

INSTRUCTION CODE · OP~TION
15141312 1110 • 8 7 I 5 4 3 2 1 0

1 0 1 1 0 0 0 i 0 0 .A g g g g g .· g-rNdDROP inv

1 0 1 1 1 1 1 I 0 0 A g g .g g g g-r .. d Inv

1 0 1 1 c c c c 0 0 R g g g g g g-rNdOVER alu-op
1 0 1 1 0 0 0 I 1 0 A g g g g g OUPg-writ• Inv

1 0 1 1 1 1 1 I 1 0 R g g g g g g-writ9 Inv

1 0 1 1 ,' c c c c 1 0 R g g g g g g-r .. dSWAP · alu-op

. TABLI! 17. SHORT LITERAL INSTRUCTIONS.

'INSTRUCTION CODE OPERATION

1s 141a11 1110. I 7 I 5 4 3 2 1 0

1 0 1 1 0 0 0 I x 1 R d d d d d dOFiOP Inv

1 0 1 1 1 1 .1 I 0 1 R d d d d d d Inv

1 0 1 1 c c c c 0 1 R d d d d d' 'dOVER alu-op

1 6 1 1 1 1 1 I 1 1 R d d d d .d dSWAPOAOP inv

1 0 1 1 c c c c 1 1 Fi d d d d d dSWAP alu-op

28

..

15141312

1 1 Ci 1

1 1 0 1

1 l 0 1

1 1 0 1

1 . 1 0 1

RTX 2010

TABLE 18. LONG LITERAL INSTRUCTIONS

INSTRUCTION CODE . OPERATION

(1 ST CYCLE) . (2ND CYCLE)
1110 9 ,8 7 8 5 4 3 2 1 0

0 0 0 x 0 R x x x x x DSWAP

1 .1 1 0 0 R-x x x x x DSWAP

c c c c .0 0 R.x x x x x DSWAP

1 1 1 0 R x x x x x DSWAP

C·. C · C p 1 0 R x x x x x DSWAP

TABLE 19. MEMORY ACCESS INSTRUCTIONS

INSTRUCTION CODE

inv

SWAPinv

SWAP OVER alu-op

DROPinv

alu..;op

OPERATION

(1STCYCLE) (2ND CYCLE)
15141312 1110 9 8 7 8 5 4 3 2 1 0.

1 1 s

1 1 1 8

1 1 1 8

1 8

1 1 8

1 1 1 s

1 1 1 s

1 1 1 8

1 1 1 8

1 1 1 8

1 1 1 •
1 •

t

0 0 0

1 1 1

c c c c

0 0 0 p

1 1 p_

a a a p

0 0 0

1 1

c c c c

0 0 0 p

1 p

a a • p

t

0 0 R x

0 0 R x

0 0 R x

0 1 R x

0 R d

0 1 R d

1 0 R x

0 R x

1 0 R x

R x

R d

R d

x x x x

x x x x

x x x x

x x x x

d d d d

d d d d

x x x x

x x x x

x x x x

x x x . x

d d d d

d d d d

If .(p • O), perform either ·

If s = 0, Memory ia acceaaed bY word
If s • 1 , Memory ia acce11ect by byte

(SWAP DROPI or ~
{OVER SWAP1

m-reedSWAP

m-rudSWAP

m-reedSWAP

{SWAP DROPI DUP.
m-reedSWAP

inv

SWAPinv

SWAP OVER alu-op

NOP

(SWAPDROPlm-rNdd NOP

(SWAP DROPI DUP m-l'Nd NOP
SWAP d SWAP alu-op

OVER SWAP m-writ• inv

OVER SWAP m-write · DROP inv

m-rud SWAP alu-op

{OVER SWAPI SWAP NOP
OVER m-writ•

(OVER SWAP} m-write d NOP ..

(OVER SWAP} SWAP OVER NOP
m•writ• d SWAP alu-op

.Note: SWAP d SWAP• d ROT

·,.

27

RTX 2010

TABLE 20. USER SPACE INSTRUCTIONS

INSTRUCTION CODE OPERATION

15141312 1110 9 8 7 8 5 4 3 2 0

1 1 0 0 0 0 0 0 0 R u u u u u u-read SWAP inv ..
1 1 0 0 1 1 1 0 0 R u u u u u u-readSWAP SWAPinv

1 1 0 b c c c c 0 0 R u u u u u u-readSWAP SWAP OVER alu-op

1 1 0 0 0 0 0 0 R u u u u u DUP u-writ11 inv

1 1 0 0 1 1 1 1 0 R u u u u u DUPu-writ• DROPinv

0 0 c c c c 0 R u u u u u u-r1111dSWAP alu-op

TABLE 21. ALU FUNCTION INSTRUCTIONS

INSTRUCTION CODE OPERATION

15141312 11 10 9 8 7 8 5 4 3 2 1 0

1 0 0 b 0 0 0 0 R 0 8 s 8 8 invshift

0 0 0 0 R 0 s s 8 s DROPDUP inv shift

0 0 c c c c 0 0 R 0 8 8 s 8 OVER SWAP alu-op shift

1 0 . 1 0 0 0 0 0 R 0 8 8 8 8 SWAP DROP inv shift

1 0 1 0 1 1 0 R 0 8 8 8 8 DROP invshift

0 0 c c c c 0 R 0 8 8 8 8 alu-op shift

0 0 0 0 0 0 R 0 8 8 s 8 SWAP DROP DUP invshift

1 0 0 1 1 1 0 R 0 8. 8 8 s SWAP invshift

1 0 0 c c c c 0 R 0 8 8 8 8 SWAP OVER alu-op shift

0 1 0 0 o-o 1 R 0 8 • • • DUP invshift

1 0 .1 0 1 1 R 0 • • • • OVER Inv shift

0 0 c c c c R 0 • • ii 3 OVER OVER alu-op shift

TABLE 22: STEP MATH• FUNCTIONS

INSTRUCTION CODE OPERATION

I
15141312 1110 t I 7 I 5 .. 3 2 1 0

1 0 1 0 - 1 (See the Programmer's Reference Manual)

• TneM instruction• perform multi-atep IMlh .functlona auch • niultlpllcldlon, dl'lialon and aquare root. functions. Uae of either the Stremnecl lnatruc:tion mode Of

muking. of interrupta ia rwc:ommended to e1IOld -~ rMUlla when performing Slep Math opermiona. The following i8 a aummary ol thele 0perationa:

Unsigned Division:
Load dividend into l1ml and mDI
Load divisor Into 1mJ
Execute single st9p form of 02- Instruction 1 time
Execute opcode A41A 1 time
Execute opcode A45A 14 tlmea
Execut.e opcode M58 1 time

The quotient la In UDEii , the remainder In l1ml

Square Root Operations:
Load value Into lum and mDI
Load 8000H Into mi1
Load 0 Into lmJ
Execute single step form of 02* instructiOn 1 time
Execute opcode AS1.A 1 time
Execute opcode ASSA 14 times
Execute opcode ASS8 1 time

The reiot is in mDI , the remainder in umJ

28

SHIFT
8888

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

* 1101

1110

1111

Where:T15
Tn
TO
N15

RTX 2010

TABLE 23. ALU LOGIC FUNCTIONS/OPCODES

cc cc BBB FUNCTION

0010 001 AND

0011 NOR

0100 010 SWAP-

0101 SWAP - c With Borrow

0110 011 OR

0111 NANO

1000 100 +

1001 +c With Carry

1010 101 XOR

1011 XNOR

1100 110 -
1101 -c With Borrow ·

TABLE 24. SHIFT FUNCTIONS

STATUS
i1!J1 REGISTER

NAME .FUNCTION OF c T15 Tn

No Shift CY Z15 Zn

0< Sign extend CY Z15 Z15

2• Arithmetic Left Shift Z15 Z14 Zn-1

2'*c Rotate Left Z15 Z14 Zn-1

cU2/ Right Shift Out of Carry 0 CY Zn+1

c2/ Rotate Right Through Carry zo CY Zn+1

U2/ Logical Right Shift 0 0 Zn+1

2/ Arithmetic Right Shift Z15 Z15 Zn+1

N2'* Arithmetic Lett Shift of laDI CY Z15 Zn

N2'*c Rotate 11J3i Lett CY Z15 Zn

02• 32-bit Arithmetic Left Shift Z15 Z14 Zn-1

D2'*c 32-bH Rotate Left Z15 Z1.4 Zn-1

cUD2/ 32-bH Right Shift Out of Cany 0 CY Zn+1

cD2/ 32-bH Rotate Right Through Carry TNO CY Zn+1

UD2/ 32-bH Logical Right Shift 0 0 Zn+1

02/ 32-bit Arithmetic Right Shift Z15 Z15 Zn+1

* See the Programmer'• Reference Manual

-Moat significant bit of ID
-Typical bit of llmi
-1.eaat aignitlcant bit of ID
-Moat aignifl!:aftt bit of !DD

c -Carry bit
CY -Carry bit before operation
Zn -ALU output

TO

zo
Z15

0

CY

Z1

Z1

Z1

Z1

zo
zo
TN15

TN15

Z1

Z1

Z1

Z1

Nn -Typical bit of ID:Eli
Z1 5 -Moat aignlflcant bit 15 of ALU output
TNn -Original value of typical bit of llDi

NO -Leaat significant bit of 1n!31

29

1m13i REGISTER

N15 Nn NO

TN15 TNn TNO

TN15 TNn TNO

TN15 TNn TNO

TN15 TNn TNO

TN15 TNn TNO

TN15 TNn TNO

TN15 TNn TNO

TN15 TNn TNO

TN14 .TNn-1 0

TN14 TNn-1 CY

TN14 TNn-1 0

TN14 TNn-1 CY

zo TNn+1 TN1

zo TNn+1 TN1

zo TNn+1 TN1

zo TNn+1 TN1

...

:

RTX 2010

TABLE 25. MAC/BARREL SHIFTER/LZD INSTRUCTIONS ·

INSTRUCTION CODE

15 14 13 12 11 1,Q 9 8 7 8 5 4

1 O 1 .~ • 0 0 0 G 0 ~ 0
.1011 000 OORO

1 O 1 0 0 0 0 0 R 0

O 1. 1 0 0 0 I 0 0 R 0

1 0 1 1 0 .0 0 0 0 R 0
1011 000 OORO
1 o 1 1 0 0 0 .i 0 0 R 1

1 0 1 1 0 0 0

1011 000

1011 000

1 0 1 0 0 0

0 0 .R 1

1 0 R. i

00 R

0 R.

OPERATION

3 ·2 1 0

1 0 0 0 Forth 0 =
1 O O 1 Double Shift Right Arithmetic
1 0 1 0 OOuble Shift Right Logic;:al

1 1 0 _ 0 Ci.ar MAC Accumulator

1 1. 1 · o Double Shift Left Logical

.1 1 1 Floating Point Normalize

0 0 0 1 Shift MAC Output Raga Right

0 0 o .streamed MAC BatWeen Stack and Memory_
0 0 1 . 0 Streamed MAC BetWaan ASIC Bua al'.'ld Memory.
o o 1 .. Mixed Mode Multiply

0 o Unsigned Multiply.
0 1 1, 0 0 .0 1 · O R 1 0 1 1 · 1 Signed Mul.tlply

.-1 0 1 1

0 1 1

0 1 1

1 0 1·1

1 6 1 - 1

1 0 1 1

1 0 1 1

0 1 1

1 0 .1

0 1 1

0 0 0

0 0 0 .i

0 0 0

0 0 0 I

1. 1 1

1 1 1

1 1

1 1

1 l 1 I.

1 1 1

o o R 1

0 0 R 1

0 0 R

0 0 R. 1

0 0 R

0 0 R .1

6 O o Signed Mpy and Subtract from Accumulator
O 1 · O Mixed. Mode Multiply Accumulate
· o 1 1 o Unsigned Multiply Accumult1t•

0 1 1 Signed Multiply AC:cumulata

0 0 1 0 Raad MXR Register .
0 1 1 0 Raad MLR Register

OOR1 .0 1 1 Raad MHR Register

1 0 R.

1 O R 1

0 R

0 . 0 1 0 Load MXR Register ·

0

0 1

30

o Load MLR Register

Load MHR Register

.i

Specifications RTX 20 10 ·

Absolute Maximum Ratings
s~pply Voltage .. ' ...•..•• ,••.•..............•.. +a.ov
Input, Output, or 1/0 Voltage Applied ... GND - 0.5V to VCC + o.sv
Storage Temperature Range ..•• ; • . . . • -·ssoc to + 1 sooc
Maximum Package Power Dissipation'··• • 2 Watts
0ja• ,••.•... :; : ..•..•.. 41 oc;w (PGA Package)
0jc•••..•...... , •.•..••....•.•.. 170C/W (PGA Package)

Gate Count .•••.•.•.•. · .• · •...•.•....•• ·•........... 28,000
Junction Temperature .••••..•................. , + 175oc
Lead Temperature (Soldering, Ten Seconds) • +3oooc

CAUTION: Stnlsses aboWI ltrau listed .in the "Absolute Ma•imum Ratings" may cause permanent damage to Ille de11ice. This is a stress only rating and operation of ttie de11ice at these or any oltrer conditions abo11e those indicated in Ille operation section. of. the specification is not implied.

· Operating Temperature Range: Operating Conditions
RTX 2010 (Industrial) : . • -4ooc to +asoc Operating Voltage Range ••.........•..•...... , . +4.5V to +.5.5V RTX 201 o (Commercial)•••........•.• ooc to+ 1ooc Maximum Rise and Fall Tlmes For El5-E13 20ns

D.C. Electrical Specifications vcc = sv, :10%, TA .. -4ooc to +asoc (Industrial) Temperature Range VCC = 5V, :i:51!&, TA= ooc to +700C (Commercial) Temperature Range

SYMBOL PARAMETER MIN

VIH Logical One Input Voltage NMI, RESET, ICU< VCCx0.7

Other Inputs 2.0

VIL Logical Zero Input Voltage -
VOH· High Output Voltage 3.5

VCC-0.4

VOL Low Output Voltage -
II Input Leakage Current -1

110 1/0 Leakage Current -10

ICCSB . Standby Power Supply Current -
1ccop· Operating Power Supply Current -

NOTES: 1. Typieal ICCSS: 10,.A. The ATX 2010 II a atatiC CMOS part.
Th-fora ICCSB > o 11 due to 1aa11age currenta. ·

2. Operating aupply currant ia proportional to lraquaney. Typical
ICCOP: 5mA/MHz.

3.•Typieal Hya fol AESE'i'ancl NMI pina ~ 400mV.

Capacitance (TA • +250C; All m&Uur9menta refwred to device GND)

SYMBOL ~AMMETER TYP

a ~ . ·Input c.Pacltance 10

eto .l/O~. 10

31

MAX UNITS COMMENTS

- v Teated at vcc .a s;sv

- v Teated at VCC a 5.SV

0.8 v Teated at VCC = 4.5V

- v IOH • ,-4mA, VCC • 4.SV

- v IOH • -1 OOµA, VCC = 4.SV

0.4 v IOL • 4mA, vcc ""'4.sv

1 !IA Vl,•VCC0rGND, VCC = 5.5V

10 !IA VO • VCC or GND, VCC = 5.5V

500 µA VI •VCCorGND (Note1)

10 mA VI •VCCorGND;
f (ICU<) ,. 1 MHz; Outputs
Unloaded (10 • 0); (Note 2)

UNITS TEST CONDITIONS

pF f• 1MHz

pF f• 1MHz

:

Specifications RTX 20 7 0

A.C. Electrical Specifications vcc = 5V, :1:10%, TA== -4ooc to +a5oc (Industrial) Temperature Range
VCC = 5V, :1:5%, TA• ooc to +1ooc (Commercial) Temperature Range

CLOCK, WAIT AND TIMER TIMING (Notes 1 and 2)

..
SYMBOL PARAMETER

REQUIREMENTS

11 ICLKPeriod

12 ICLK High Time

13 ICLK Low Time

14 WAIT Set Up Time

t5 WAIT Hold Time

16 El High to El High

17 El High Time

ta EILowTime

RESPONSES

t11 ICLK to TCLK High

t12 TCLK Low Time

t13 TCLK High Time

115 ICLK to PCLK High

116 PCLK Low Time

t17 PCLK High Time

119 ICLK to TCLK Low

t20 ICLK to PCLK Low

NOTES: 1. High and low Input for A.C. 1 .. t
ICU<. NMI, and PIESET: 4.0V and 0.4V
Othllr lnpute: 2.4V end 0.4V

2. Output load: 1 OOpF.
3. Teeted with 11 • 11(mln). For 11 > 11(mtn),

add 11 - 11 (min}.

8MHz

MIN MAX

62 -
24 -
2.4 -
5 -
3 -

t1 x4 -
10 -
10 -

3 30

52 -
64 -
3 30

52 -
64 i -

- 35

- 30

10MHz

MIN MAX UNITS COMMENTS

50 - ns

20 - ns

20 - ns

5 - ns

3 - ns

t1x4 - na External Clock/Timer Input

10 - na External Clock/Timer Input

10 - na External Clock/Timer Input

3 30 na

40 - na Note3

52 - na Note3

3 30 na

40 - na Note3

52 - na Note3

- 32 na

- 28 na

32

'

·.

Specifications RTX 2010

A.C. Electrical Specifications (Continued) vcc .. 5V, :::10%, TA• -400C to +esoc (Industrial) Temperature Range
VCC = 5V, z5%, TA .. OOC to +1ooc (Commercial) Temperature Range

MEMORY BUS TIMING (Notes 1 and 2)
.

..
SYMBOL PARAMETER

. R.EOUIREMENTS

t21 MD Setup Time

t22 -MD Hold Time

RESPONSES

t26 PCU< to MA Valid

t28. MA.HoldTime

t29 PCLK to MR/W, UOS,
· LOS, NEW and BOOT Valid

t31 MR/W, UDS, LOS, NEW and
BOOT Hold Time

t32 PCLK to MO Valid

t33 MD Hold Time

134 MD Enable Time

t35 PCLK to MD Disable.Time

NOTES: 1. High and low input level• for A.C. IHt
ICU<. NMI, and RESET: 4.0V and 0.4V
Other lnputa: 2.4V and 0.4V

2. Output load: 1 OOpF,

8MHz

MIN MAX

16 -
4 -

- 51

20 -
- 50

20 -

- 16

20 -
-2 -
- 50

3. Output enable Md dlabl• timea are chatKt•lzed only.

4 .. THted with t1 • apecifled minimum and t2 • 0.5-tt.
For t2. > 0.5"11 (min), add t2 - (0.5-tt (min)) to thll apecllcallon.

5. Teated with. t1 al apeciti9d minimum and 12 • 0.5"11.
For t2 < 0.5•t1(min), aubtract (0.5*t1(min))- t2 from thia ·~
cation.

10MHz

MIN MAX UNITS COMMENTS

12 - ns Read Cycle

4 - na Read Cycle

- 43 na Note4

20 - na Notes

- 44 na Note4

20 - na Note5

- 14 na Write Cycle

20 - na Write Cycle, Note 5

-2 - na Write Cycle, Note 3

- 44 na Write Cycle, Notes 3, 4

33

.

.. •.

· Specifications RTX 201 O.

A;c. Electrlcal Specifications (Continued) vcc • 5V, ±10%, TA= -40oc to +85oC (Industrial) Temperature Range
VCC = 5V •. :i:5%, TA= ooc to +700C (C9f11mercial) Temperature Range .

ASIC BUS AND INTERRUPT Tl.MING (Notes 1 and 2)

IMHz . •.
SYMBOL PARAMETER MIN MAX

REQUIREMENTS

t40 GD Read Setup to PCLK

t41 GD Read Setup to GIO

t42 GD Read Hold from Gi6

t43 GD Read Hold from PCLK

t44 El/NMI Setup Time

t46 INTSUP Setup Time

t47 INTSUP Hold Time

RESPONSES

t48 PCLK High to ffiO Low

t49 GiOLowTime

t50 ICU< High to ffiO Low

t51 _ . ICU< High tQ GIO. High

t52 PCLK to GA Valid -

t54 . GIO to GA Hold Time .

t58 PCLK to GRffl\Jalid

t58 GiO to GRiW Hold Time

t81 . GD Enable Time

t62 GD Valid Time.

t63 GiO to GD Hold Time

t85 GIO to GD Dlaable Time

t67 PCLK to INTA High Time

t68 INTA Hold Time

t69 G'iQ High Time

NOTES: 1 .. Higll and loll! lnpiit .,. tai A.C. t..t
·· ICU<, NMI 1nC1 REIET: 41N 0.4V.

Other lllPUll: ~ 0.4V .

2. O\dpul loMI: ,_..

60

60

0

0

30

22.

0

52

52

-
-
-

12

-

12

-2

-
12

-
-
0

82

3. O\dpul lnCI I-.. dlarKterlHd Only.

-
-
-
-
-
-
-

-
-

35

35

49

-
50

-
.
18

-
50

25

-
-

4. TMted Wiii 11 II . epeclled min....._ and 12 • 0.5'11.
_FOi 12>0.5ot1(mln).edd12.- (0.5'11(min)I to tl'lla epecliciliafl. ·.

5. Tnted wlh 11 el tPeclfild minimum Md 12 • 0.5• 11.
F0t 12 < 0.5•11 (min). eubtl'llCI (0,5'11 (min)) - 12 from tllie 1pecifi.

8. TMlecl wlh 11 • 11(mln). For 11 > 11(mln), lldd 11. - t1(mln).

34

10MHz

MIN MAX UNITS ·COMMENTS

50 - ns Read Cycle
-50 - ns Read Cycle

0 - ns Read Cycle

0 - ns Read Cycle.

25 - na INT/NMI Cycle

20 - na

0 - na

46 - na Note a
40 -· na ·Notes

- 30 na

- 32 na

- 40 n~ Note4

12 - na Notes

- 42 na Note4

12 - na Notes

· .. -2 - na Wrlt9 Cycle; NOta 3

- ,,
na Write Cycle

12 - na Write Cycle, .Note 5

- 44 na ·Write Cycle, Notes 3, 4

- 25. na INTACycle
..

0 - .na INTA.Cycle

50 - na Note8

..

RTX 2010

t PULSE WIDTH t PULSE WIDTH ·

1.5V

i--~.--------.,..,

I I
I I tSETUP tHOlD

1.SV

I I
OUT CJ--... ...,.-. I TYPICAL 2.4V ..,....~~"""""'"""'"---.-+------.+........-"""""..,....,...

INPUT 0.4V ~ _1._sv_· .,..__1_.sv___..,..._..._."'"""..;:.o..;"'"

*TEST HEAD
CAPACITANCE

I
I

I
t I

IOI.. I
I - - - I
: eauwALENT aRcurr I ___________J

TYPICAL
OUTPUT

TYPICAL
DATA

OUTPUT

tVAUD

1.5V

1.7V 1.7V
1.3V 1.3V

.Note: Values Are Subject to Change
FIGURE 20. TEST CIRCUIT FIGURE 21. A.C. DRIVE AND MEASURE POINTS - CLK INPUT

NOTE: For A.C. testing input rise and fall tim• are d.riven Ill 1 volt/na

Timing Diagrams

ICUC

111

TCU<

GIO-------------- ,.--NOTE 3---/ "°---------" ..
NOTES:

1 . NORMAL CYCLE: Thia wav"- Clnc:tlMI a normal PCt.K cycle and a PCLK cycle wlltl a Walt state.
2. EXTENDED CYCLE: Thia wavetonn deac:rible a PCLK cycle for a USER memory acc ... OI" an extarn81 ASIC Bua raad cycle when Iha CYCEXT bM or ARCE bit ii Mt.

3. EXTENDED CYCLE: Thll w..,.._ deacribea a GIO cycle for an external ASIC But rud when the ARCE bit la Mt.

FIGURE 22. CLOCK AND WArT TIMING

EIS· El3

ta

FIGURE 23. TIMER/COUNTER TIMING

35

·"
Timing Diagrams (Continued)

'Prue

LDS
uos

·NEW
BOQI
MR/W

MO
IN

MD
OUT

RTX 2010

t34

)))))))))

--

NOTES: 1. If both LOS and uos are low, no memory acceu ie taking plac. in ihe current cycle. Thi• only occurs during stream&d instructions that do not
access memory.

· 2. Curing a streamed single cycle instruction, the Memory Cata Bus ii driven by the protHaQI'.

FIGURE 24. MEMORY BUS TIMING

ICU< / ' =:t ' ~ ' /
150 \-.- 151

GIO

148 148

PCl.K

152
--154

GA

158 --1sa

GR/W

GD ..
181

GD
OUT))))))_)))

NO.TES: 1. GIO. remaln1 high fat rm.m.1.ASIC bue cyclel.

2. GAIW goee IOw MCI QD II driven tor ell ASIC write cycl11, lnclUding internal on11.

3, Ouring non-ASIC write cyclee. GD. II not driven by the ATX 201 O. Ther.fore, It. ii recommended that all GO pine bl pulled to VCC or GNO to
minini.ze power 1upply CU"9nt and nolle.

FIGURE 25. ASIC BUS TIMING

38

•

111Jt ~u 10

Timing Diagrams (Continu•d)

e1 e2 e3 e4 e5

PCLK

El

INTSUP

INTA

MA

FIGURE 28. INTERRUPT TIMING: WITH INTERRUPT SUPPRESSION

NOTES: 1. Event• in an interrupt aequenee are u follows:
el. The Interrupt Controller umplea I.he interrupt requeat inputs on Iha riaing edQa of PCLK. If NMI riaea between e1 aJ'1(1 e5, lhe interrupt vector will be for NMI.
e2. If any interrupt requeat1 were 1ampled, the Interrupt Controller issue• an interrupt reque1t to Iha core on the falling edge of PCLK.
83. The C!)re 1ample1 the 1tata of the interrupt requHll from the Interrupt Controller on the falling edge of PCLK. If INTSUP ;ti high, maskable interrupt• wil not be detected at lhia time.
84. Whan 1he core umplea an interrupt requeat on the falling edge of PCLK, an Interrupt Acknowledge cycle will begin on the next rising edge of PCLK. . .

e5. Following the detection of an interrupt requ•t by the core, an Interrupt Acknowledge cycle begina. The Interrupt vector will be based on the highaal priority interrupt r1qua1t active at thia iima.
2. 144 ia 'only requit9d to datennine when the Interrupt Acknowledge cycle wUI occur.
3. Interrupt raqua1t1 1hould be held active until the Interrupt Acknowledge cycle for that interrupt occurs.

e1 •2 e5

. PCU<

144

El
148

INTSUP

INTA

MA

FIGURE 27. INTERRUPT TIMING: WITH NO INTERRUPT SUPPRESSION .

37

,.
RTX 2010

Timing Diagrams (Ccmtinued)

· PCLK

NMI

INTA

MA

·FIGURE 28. NON-MASKABLE INTEARUPTTIMINQ

NOTES: 1. · Event• in en interrupt eequence are a followe:
e1 . The Interrupt Controller umpl• the interrupt requHt input• on the riling edge~ PCLK. If NMI rilel ~ e1 Md e5, ihe Interrupt vector will be for NMI. .

· 82. If any inte~pt requ8111 were .. mpled, the Interrupt Controller iuue1 en lntirrupt req;;.lt to the c:ore on .the falling edge ol PCLK,
.83, The c:ore sample• the 1tate of the Interrupt reque111 frOll'I the Interrupt Controller on th• falling edge of PCLK. It INTSUP ii high, makable·

lnterruptl wll not be detec:tld at thia lime.
84. When the c:ore umpl• an interrui:ll requ•t on the falling ldge of PCLK, an Interrupt Ack~ledge cycle will begin on the next riling edge of PCLK. . . .

e5. Following the detection ol an interrupt ·requ•t by the core, an Interrupt Acknowledge cycle beglna. The lnt9f'NPt ~r wMI be based on tne ·· highell priorly nterrupt reque1t active at thia time. ·
2. 144 ii only required to determine when the Interrupt Acknowledge cycle wUI occur.
3. Interrupt requeete 1hould be held active until the Interrupt Acknowledge cycle for that interrupt occure.

38

Packaging

·~·

~I~

HIA ;tUTU

84 PIN GRID ARRAY

TOP VIEW

r---1.140~
I . . . l.1a0 I

m Harrls

RTX 2010

L~
Index Mark

BOTTOM VIEW

~-+-<Ml•@@@@@@@@@
@@@@@@©©©@©K
@© ©©© @@J
@© @@ H
©@© ©@)@G
©@© @)@)@)F
©©© ©@©E
@© ©© 0
©© ©©© @@c
@©©©©©©©©©@e

©©©.©©©©©@®.•
J • 5 s 1 a 9 io 11. I

.080 MAX I
....I i- 003 MIN

. Min
NOTE: All Dlmenlione are Mu , DilMNlona .. In Inches.

39

SIDE VIEW

.100 SSC

_J
""1. ~

.020

L~
120

. ..

Packaging (Continued)

1.185 1.150
1.1'15 1.158

RTX 2010

84 LEAD PLCC

TOP VIEW

-l '-.o5o asc

SIDE VIEW

L
~J-
.021

ill
.2iJO

1.090
iTIO

J
NOTE: All Dlmensiorw are ?!!!!. , Dimension• are in inch•. Mu

Ordering Information
COMMERCIAL/INDUSTRIAL

RTX 2010 G

FAMILY
RTX (Real Time Express)

PART NUMBER

PACKAGE TYPE _____ __.
G:PGA
J: PLCC
X: Unpackaged

I -10

T
SPEED/PERFORMANCE

10: 10MHz
8: 8MHz

TEMPERATURE RANGE
I: Industrial -4QOC to +asoe

C: Commercial OOC to +700C
X: +250C

Ha"is s.,,,iconductor product• .,. sold bl' dftcriptioll oni.,. Harrie Semiconductor ,.._s the riflht to male• ch•flfl• in circuit design and/or specifieations at an11 tim.• without notice. According#!', the ,..., ia cautioned to 'l9fill' that data llhHt• .,. cutrent before placing ordera. Information furnished bl' Harris is beli•'led to be accuraM and reliable. HOwever, no ,.•Ponlibilil'f i• auumed bl' Harri• °' ita aullaidial'ia for ita use; nar for an,, infringementa of parents or ottler rights of third paniM which ma11 ,.au# from ita uM. No. lir»n .. ia granted bl' implication Of olllarwiaa undat MJI' patent ot palant riflht• ol Harris or its subWiariea.
· · . '

40

