
DESIGN TRADEOFFS IN
STACK COMPUTERS

A PERSONAL EXPERIENCE
PH/UP KOOPMAN, JR. - WEXFORD, PENNSYLVANIA -

Wen I started designing stack proc
essors for WISC Technologies in 1985,
little bad been published about the architec
tural requirements ofForth engines. A sub
stantial amount of architectural measure
ment had been perfonned on previous
stack-based processors (in particular the
Xerox Mesa architecture). but the behavior
of single-stack processors for executing
conventional languages is not representa
. tive of the types of things Forth processors
do. When Istarted,alllknew was thatForth
programs did a lot of subroutine calls, but
beyond that I was groping in the dark. Here
I hope to describe some of the history
behind the development of the WISC and
32-bit RTX processors in tenns of discov
eries, blunders. and serendipity. Along the
way, I will talk about the various require
mentsforimplementingahigh-speedForth
engine, and will descnoo the motivations
underlying the design of Harris' 32-bit
RTX architecture.

THE HARDWARE-FRENZY PHASE
The first phase of my continuing jour

ney to stack-computer enlightenment was
characterized by a . frenzy of designing,
building, · debugging, and programming
Forth hardware.

The WISC CPU/16
The WISC CPU/16 was my first stack

computer design (and, for that matter, my
first computer design of any type). The
.. WISC" stands for Writable Instruction
Stack Computer. It was implemented en
tirely in 741...Sxxx series 1TL components,
wire-wrapped on a single IBM-PC plug-in
board. We produced a printed circuit board
version once the design was shaken ouL
The design decisions for the CPU/16 were
made in favor of simple and inexpensive

Volume XI, Number 6

prototyping first and foremosL This led to
the decision to use a microcoded design,
withRAM chips fora writable control store
instead of a hardwired design.1 A block
diagram of the CPU/16 is shown in Figure
One.

The design had 256 elements for each
. stack, and 256 opcodes with eight possible
micro-instructions per opcode. Most in
structions took three micro-cycles to exe
cute, with subroutine calls andretums tying
up the data bus to the exclusion of other
operations. Figure Two shows the two in
struction types supported: subroutine call
and opcode. Thus, the importance of
Forth• s subroutine call was incorporated,
but the rest of the design was dictated pri
marily by the constraints of fitting every
thing onto a single board while still using
standard TIL components.

The RISC vs. CISC
battle was about to
take a new turn ...

TheNovixNC4000chip had been inti&
duced shortly before the WISC CPU/16
was built. A principle difference between
the two designs (other than the fact that the
Novix was a single chip compared to the
CPU/16 discrete implementation) was that
theNovix wasahardwiredprocessor, while
the CPU/16 was microcoded. The simplis
tic microcode implementation techniques
used on the CPU/16 caused it to take an

1. This decisim was peihaps inftuenced by the fac:t
that I did not possess an EPROM programmer, and
that available programmable logic for use in synthe
si7.ing random logic was very modest in capabili
ties-and I didn't haw a programmer for that either.

5

DP
DATA STACK

POIN1ER

OS
DATA STACK

255x16

RP
REiUAtf STACK

POINlER

255x 16

HOST
IN1ERFACE

LOW16

HlGH16

Figure One. WISC CPU/16 block
diagram.

2Kx32

average of three micro-insbllctions for
each opcode (at a cost of three clock
cycles). At similar clock speeds (which
translated into similar program memory'
speeds). one would have expected the
NC4000 to outperfonn the CPU/16 by a
factor of three to one.

Butthatdidn'thappen.Instead,the4.77
MHz CPU/16 was much slower than a 5
MHz NC4000 on programs that used
simple· operations, but competitive (al
though, probably. not quite as fast) on pro
grams that used more complex operations.
This was because complex operations,

Forth Dinumsions

I

111111'
5432109876543210
I address · ··I

Function aim
0-15 Subroutine address .

(bits 8-15 of the address must not all be 1)

111111
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0,

1 1 1 1 1 1 1 1 opcode

aim Function . . .
8-15 All 1 , specifying an operation 1nstruct1on
0-7 Opcode

Figure Two. CPU/16 instruction format$.

3322222222221111111111 '
10987654321098765482109876543.210
I opcode address ctl I

Eunctjon .Bim
23-31

2-22
0-1

' ~~~~~~ for jump or cali (word aligned)
Program flow control · .

00 Jump 10 Call ·
01 Return 11 unused

Figure Three. CPU/32 instruction format.

such as double~precision math and m1ilti•
element stack manipulations, were imple
mented in microcode in fewer cloclc cyeles.
than the equivaJ,ent sequences in NC4000
assembly Janguage. The exeeution speed
for a mix of Forth primitives wa8justunder
one· million typical Forth operations per
Second (including complicated operations
such. as multiply and doubl~precision
math in a typical instruction mix).

As a result of my CPU/16 experience, I
think microcoded techniques are inappro
priate for a 16-bit Forth processor in most
cases; Primarily, this is because the require
ments for 32-bit wide microcode cause a
single-chip implementation to be too large
to be competitive with . a hardwired ap- .
proach. Also, the use of a microcoded ap
pioach does not provide many addition~
benefitS when the processor is restricted to '

·Forth Dimensions

.· : .

a l~bit instruction format. Howevet, the
experience showed that something inter
esting was possible-microcoded ma
chines could, perhaps, be competitive with
hardwired machine8 with similar func~
tions~ This was because flexibility of opera
tion and a high 8emantic content in. each, in-

. struction could make up for a tack of raw
speed. In other words,· the RISC ·Y;_s; CISC
battle was about to take a new tum in the
aJena of stack computers.·

The MonSter/32
WISC Technologies produced a single

prototype of a 32-bit computer that was
seen by a very few people ai the 1986
Rochester·Forth Conference. In his book
The Mythical Man-Month . (Addison
Wesley, 1982), ·.Fred Brooks describes
what he calls the "second system syn- ·

6

drome~"In this syndrome, the designetofa
system saves up scores of neat ideaS that ·
can't bC implemented in the first. system
·because of time and money constraints.
When the designer gets another crack ata ·
similar problem (the second system), all
these ideas are thrown in, usually with
disastroiJs results.

TheMonster/32 was my secQndsysteril.
The only truly good idea tJtat was included ·
was the decision to make it a 32;.bit ma
chine. Some of the ideas were. reasonably
good, but·pobrly executed. One idea• was
the inclusion of extra registers around the
ALU. This eliminated congestion caused
by having to save and restore the top-of
stackregister when using the ALU for other
calculations. Another idea was the addition
of separate hardware to increment subrou
tine return addresses independent of· the
ALU. . .

The, worst ideas had to do with the
micro-instruction fomtat and the u8e of
multiple· colinters for addressing program
memory. The64:.bitmicro-instructionshad

·a large number of interesting features, in
cluding the capability to specify. a variable

. length for each niicro-cycie. N011e of the8e
features turned out to be very useful. The
complexity of the micro-fustn1ction fonnat
did result in almost impenetrable micro~
code that was very difficult to' Write and
debug. . · . . ·.

The Mc>nster/32 was constructed u8ing
eight wire-wrapped l>Qards iri an S-100 card
cage(butwithoutusingtheS-lOObusinthe
usual manner). The wire-wrapping ex.er~.
cise itself taught me ari ifnportant lesson
about the value of simplicity, and wore out
my first electric wire-wrap gun. 2 The sys
tem was eventually operational for a periOd
of two weeks, and successfully ran a Forth
system. The foiks who saw it.operate at the
Rochester Forth coriference never did ask
why the attachment cable to the ·mM Pc
host was only a foot long; There was an in- ''
credible noise problem in the host inter-·
face, and any longer cable wouldn't work
reliably, . .

.. It bec8me clear that, for a number of
reasons, my firsf 32-bit design was a flop.
Fred Brooks, again in The Mythical Man
Month, ·asserts that you should always be
prepared to "throw one away.;' So we did.

2. Based oo this eJJ.perience, Irate biit¢ry1JOwered •
wire-wrap guns at about two nwes ofwiie per glin.

Volume XI, NtimbeT 6

RP
RETURN STACK---+!

POINTER

CONTROL SIGNALS

DP ---+I DATA STACK
POINTER

DLO

HOST
INTERFACE

SHIFT
BIT

Figure Four. WISC CPU/32 black
diagram.

The CPU/32
I began to distill the Monster/32 experi

ence, and to decide what fonned the true
essence of an efficientWISC system, The
CPU/16 had been arbitrarily constrained to
simplicity, whereas the Monster/32 had
been allowed to grow almost limitlessly.
While there were a few good ideas to be
salvaged, overall my immensely complex
32-bit design was a waste of good silicon. I
began to see what lhad missed in the realm
of hardware design, despite my extensive
experience with Forth: within limits,
simpler is better.

At the same time, I began to combine
several ideas that had been collecting in the
back of my mind. One of them was that
CPU cycle times can be made much faster
than affordable memory speeds. Another
was that taking advantage of concurrency
in operations is a traditional way of speed
ing up computers that I had not exploited
very well in previous designs. The last
major idea was . that, since microcoded
stack machines only need eight or nine bits
to specify an opcode, much of my 32-bit
instruction memory was being wasted as
unused bits in opcode-type instructions.

3. I don't remember just how the idea came to me. My
best ideas usually come during my morning shower.
However I was not electrocuted, so this one probably
did not. ·

Volume XI, Number 6

c 10.
y
c
~ 1.0

s
I 0.1
I
N
s 0.01
T
A
u 0.001
c
T 0.0001
0 MATH

N 0.00001-t---t---+--+----+----1i----+---+--+---+-
0 4 8 12 16 20 24

STACK BUFFER SIZE

28 32 36

Figure Five. Return stack spilling overhead vs. stack buffer size.

The answer to all my collected concerns
hit like a bolt of lightning one day.3 There
were enough bits left over in an opcode in
struction to also hold a large address, so

. why not make every instruction have both
an opcode and a subroutine call? This had
the effect of reducing program size, as well
as providing for simultaneous operation of
subroutine calls and opcodes. Thus, the
resulting machine allowed control flow
(subroutine calls and returns) to proceed in
parallel with data manipulations (data stack
operations), allowing two separate opera-

. lions to be accomplished on each instruc
tion. In other words, it offered the ideal
situation for a Forth programmer: subrou
tine calls for free. Of course, in order to have
a. complete set of machine operations, a
subroutine return fonnat was required,
which also combined an opcode with the
return operation.

Not every instruction was a subroutine
call or return, so there was a need for an
instruction that incremented the program
counter as well. In my quest to simplify the
hardware, l made another discovery: the
program counter was unnecessary. By us
ing a jump instruction fonnat instead of an
increment-PC· instruction format, I could
have every instruction· point to the next
instruction to be executed (even if it was
just the next sequential instruction). This

7

reused the logic that perfonns subroutine
calls, with a modification to suppress the
push of tlte return address onto the return
stack. The instruction fonnat of the CPU/
32 is shown in Figure Three.

Other enhancements to the CPU/32,
based on experiences with the Monster/32
and the limitations of the CPU/16, included
using a latch between the bus and the ALU
to facilitate single-cycle exchange of data
between the DHI register and the Data
Stack. The microcode fonnat was trimmed
back to 32 bits, which makes microcode
simple enough to be easily comprehen
sible, and saves a large amount of memory
space. A block diagram of the CPU/32 is
shown in Figure Four.

Another important insight in the design
of the CPU/32 was the balance achieved
between program memory speed and proc
essor speed. RISC processors strive. to
execute one instruction per clock cycle.
That implies that memory must be cycled
as quickly as the clock in order to provide
a steady stream ofinstructions. In a simple
and streamlined processor, that means that
programs must reside in fast memory.
Usually, the required memory chips are so
expensive that even high-end RISC sys
tems must use them sparingly as cache
memories. Many Forth applications have
traditionally been in the areas of real-time

Forth Dimensions

· control.. Many real~time control applica
tions cannot afford the Unpredictability of
cache memory. Many others can't afford
the cost of even a single bank of fast mem
ory. chips for any purpose. So, taldng ad-·
vantage of the fact that a microcoded ma
chine can have a higher instriiction seman-.
tic content (i.e., it can accomplish more
work per insttuction), I designed the CPU/

· 32 to execute an insttuction every -two
micro~ycles, with each memory bus cycle

· talcing two clock cycles. Assuming that
ooth micro-cycles of every insttuction are
well employed, this allows twice the proc
essing power for a given memory speed
than m1 approach of one instruction per
clock cycle. .

The CPU/32 was originally built on
reused S-100 boards from the Monster/32,
with 74.ALSxxx logic and some· 74Fxxx
logic for speed-critical sections. The use of

. ·. "F' logic caused enough noise problems
that the wire-wrapped version never ran at
speed, so we produced a printed circuit
board ve(Sioi::t before debugging was com
pieted. This five-board version eventually
ran at a 6 MHZ micro..cycle rate, and. exe
cuted approximately three million Forth
operations per second.

TheRTX32P· .
ThefirushedCPU/32 was demonstrated

at the 1987 Rochester Forth Conference. At
that conference, Harris Semiconductor was
promoting iis RTX 2000 processor, a red(}.
sign ohhe NC4000~ They were intrigaed
by the possibilities for the CPU/32 as a 32-
bit member of the RTX family. So, in July
of 1987' I visited Melbourne Florida and . .

transferred the schematics of the CPU/32
into their standard cell design system. In 31
days, the desigri was. entered and verified
with_ the help ofone Harris engineer.4 The
product of this effort was, in January of
1988, an implementation .that was func
tioriallyidei:tticat tOtheWe.eprlnted circuit
boards of the CPU/3icore processor, re-

. ducedto two chips operating at an 8.3 MHz
miero-cycle rate. The two chips were the
data chip (with the ALU, data stack, and
half die microcode memory) and the con
trol chip (with the memory addlessing
fogic, the return staek, and the other half of
the microcode memory). ··

The reason for a two~chip set instead of

4; That includes the week~ I took off to visit Walt
J)i.sney world.

FQrthDimensions

· · a single-chip processor implementation
was to alfow maximum fleltibility with the·
. finished system. 2K words of microeode
. memory were included on-chip; since 256
opcode8 seemed. to be more than I could
possibly use.5 When asked.how ·big ·the
stacks should be, lreplied; "Gee, how much
will you give me?" So, the chips ended up
with 512 elements by 32 bits each for data
and return stacks. This resulted in three
things: it allowed Harris to make the big
gest chip they have ever attempted, it made
for a poor yield, and it produced chips
which have logic on one quarter and mem
ory in the other three. But, all these results
were in keeping with the experimental
nature of the project.

THE ANALYSIS PHASE
After the successful production of the

CPU/32, I began to define and build a
commercial version of the architecture for
inclusion ill the RTX J>(oduct family. This
exercise involved optimiiing the architec
ture to fit the design constraints of CMOS
chip technology as well as evoiving the
architecture to improve performance and

. better address the needs of the marketplace.
.· In the summer of 1987, I foolishly

agrOOd to simultaneously refine the archi
tecture fot Harris and write a boQk about
stack computer architecture. I did survive
the summer, and found that the synergy
between the two i:asks was amazing~ The
book reqqired me to. think abOut measuring .
and describing the essence Qf stack ma
chines. The design task required me to
think about efficiency and architectural
refinemenL Bytheendofthesummer,lhad .
reached a number o(conclusions about
tradeoffs in stack machine design.

Stack Size · ,
One of the big unknowns in producing

the RTX. 32P was how big~.to make_ the
stacks. Before, I had been limited either by

. the need to keep chip count fow or by
standard . high-speed ·memory chip sizes.
On theRTX 32P, I guessed at 512stackele
ments.

I guessed wrong. Simulations of several
Forth programs show that many programs
never used more than four or five stack
elements. Of those that used inore ·stack .
elements, all showed a small variability in

s. Of course this means that they were completely
filled with mostly worthless junk.almost immedi
ately.

8

stack size across reasonably large periOds
of time. In order to reduce haroware costs,
it is advantageous to.exploit this behavior
and ,:educe on-chip stack sizes to the mini
mum possible.

An interesting line of thought to pursue
is to assume that on-chip stacks are so
expensive that they will be smaller than
required. Also assume that there is some

. mechanism (say, a finite state machine tha.t
monitors stack overflows and underflows)
that will copy elements to and from mem~
ory as required. The question to ask, then, is
how much does this copying cost in terms
of program performance degradation? Fig
ure Five shows the results of a simulation
for the return stack on a number of pro
grams. The vertical axis indicates the amor~

· tized costs of staclc spills in terms of wasted
memory cycles per instruction executed in
the course of the program. Notice that this
axis has a logarithmic scale; The horiz0ntal
·axis specifies the size of the on-chip stack
buffer. The amazing thing is that; for a stack·
size of 16 elements, the cost is less than one
percent..for a stack size of 16 to 32 ele
ments, the cost reduces tb essentially zero.

. Data stack be~vior is similar •..
The right answer, then, to how big

stacks should be is 16 or 32 elements, no
more.InthecaseofamultitaSkiiigenviron
ment, it is advantageous to have a parti~
tioned stack that allocates 16 or 32 stack .
elements for each task in order to eliminate
context-switching overhead.

Hardwired vs. Microcoded
Performance.

With the design of the RTX 32P, the
hardwired control vs. microcoded control
issue became ripe for detailed study. The
RTX 2000 and the RTX 32P represent two
processor8 desigried to accomplish snnilar
tasks using .. similar technology. One is
hardwired, the other microcoded. The
question is, which is faster? ·

I collected statistics on instruction exe
cution frequency for Forth progtams. But, I
dido 't simply gather numbers for the obvi
ous primitives such as DUP, +,and SWAP.
Instead, I tot>k an IBM PC Forth compiler
that was optimized to ·the point that any-·
thing worth speeding up was. written .in·
assembly language. This became my set of
Forth ''primitives"; that is, the basic build
ing blocks used by real Forth code in real .
programs. Not surprisingly, these primi- ·
tives included many double-precision op
erations (including ''2-type" stack opera~·

VQlume XI, Number 6 ·

tions), and slow instructions such as multi
ply and divide. After I had measured the
instruction execution frequencies for sev
eral programs, I multiplied the frequency
times the number of clock cycles required
for each of the RTX 2000 and RTX 32P
processors. I assumed that RTX 2000 pro
grams were operating on 16-bit data, and
that RTX 32P programs were operating on
32-bit data. The result was surprising.

Despite the fact that most instructions
on the RTX 2000 execute in a single clock
cycle and that all instructions on the RTX
32P execute in two or more clock cycles,
the RTX 32P required only ten percent
more clock cycles than the RTX 2000 to do
the same amount of work. In other words,
clock-for-clock, the two processors did
about the same amount of work. Part of the
reason for the RTX 32P's good perform
ance was the fact that its microcoded op
codes mapped well onto the high-level
Forth operations used in real programs.
Another part of the reason was that many of
the subroutine calls counted as instruc
tions, but were executed "for free" by the
RTX 32P when combined with opcodes in
the same machine instruction. Note that,
although the program execution speed is
similar, the RTX' 32P accomplishes the
same amount of work in half the memory
accesses as the RTX 2000, since it accesses
memory every two clock cycles. This dif
ference allows it to use much slower
memory for comparable processing
speeds.

The result of this comparison is that it is
not clear that the RISC approach of hard
wired instructions and single-clock-cycle
execution offers a compelling benefit over
microcoded designs in terms of program
execution speed for stack machines. This
means that designing a 32-bit processor
with hardwired control may result in
suboptimal use ofavailable memory band
width. For reasons previously stated, this
should not be interpreted as meaning that
16-bit Forth chips should be designed with
microcoded control-the area costs are just
too high, and the lack of bits in the instruc
tion format to support simultaneous opcode
and subroutine call execution makes the
potential payoff too low.

c--The Realities of the Marketplace
Forth is Good But, Forth doesn't al

wayi; Sell. The fact is, C is becoming the
·language of choice in many application
areas, including real-time control. Also,

Volume XI, Number 6

architectural features required to support C
go a long way towards supporting Ada for
the military market. So, the RTX family is
migrating to a position in which C is the
primary language for many users. Forth
then becomes the "assembly language" for
the system, used for optimizing critical
routines.·

Aside from minor quirks of C (such as
signed and unsigned characters, requiring
optional signed byte extension on byte
fetches), the only importantC structure that
is incompatible with Forth-based stack
machines is the stack frame. C semantics
assume thatanything in the stack frame is
addressable as a normal memory element.
Furthermore, C stack frames grow too big
to fit into any reasonably sized on-chip
stack buffer. So, a stack processor must
have some efficient method of supporting a
stack frame. At a minimum, this means
having a dedicated frame pointer on-chip,
as well as the capability for using frame
pointer-plus-offset addressing. The RTX
2000 design incorporated a movable User
Area pointer that can fulfill this require
ment (an improvement over the NC4000,
which had a fixed User Area location). The
RTX 32P did not have this capability, but
you can be assured that the commercial 32-
bit RTX chip will.

For Forth users, the frame pointer can
provide unexpected benefits. Many Forth
programmers have advocated the use of
local variables of some sort as a way of
improving code organization and readabil
ity. A frame pointer mechanism makes an
ideal implementation vehicle for a local
variable stack, as well as providing a clean
interface between C procedures. and Forth
subroutines.

Conclusions
I've described some of the history be

hind the sequence of processors leading up
to the 32-bit RTX chip now in develop
ment. Along the way, I've tried to give
some insight into why the processors have
been designed the way they have, and into
stack machine design issues in general.
While the information has been presented
as a personal history, it should provide
some idea of the essential elements of de
signing stack computers.

In the real world, design of a good
architecture is seldom done entirely
through the sole use of wisdom and knowl
edge, and is never done right on the first try.
Happenstance, and the background and
ed4cation of the designer have much to do
with the process. More important than the
ability to. get it right the first time is the
ability to recognize mistakes, try new
ideas, andretain the best of the old while in
corporating the best of the new.

I would like to take this opportunity to
acknowledge the involvement of two
people without whom this history could not
have taken place. Glen Haydon provided
insight, encouragement, and financial sup
port for the WISC Technologies proces
sors. Dave Williams has been personally
responsible for the acceptance and survival
of the RTX 32-bit technology at Harris
Semiconductor.

Philip Koopman Jr. is a senior scientist
at Harris Semiconductor .

ADVERTISERS INDEX

Forth Interest Group .. 44
Harvard Softworks . 16
Inner Access .. 18
Institute for Applied Forth Research 38
Journal of Forth Application & Research36, 37
Laboratory Microsystems18
Miller Microcomputer Services ... 24
Next Generation Systems ;14
Silicon Composers .. 2, 26

9 Forth Dimensions

i
i
I
i

F 0 R T H
D I M E N s I 0 N s

-DESIGN TRADEOFFS INSTACK COMPUTERS
PHIUP KOOPMAN; JR,

5 .

When the author started, all he knew was that Forth programs did a lot of subroutine calls. Here he describes the dis
coveries, blunders, and serendipity that led to the WISC and 32-bit RTX processor8, including the requirements of
a high-speed Forth engine and the motivations underlying Harris' 32-bit architecture.

ill
SC32: A 32-BIT FORTH ENGINE - JOHN HAYES

10
A group at Johns Hopkins University has designed a series of microprocessors that directly execute Forth, to which
the SC32 is th.e latest entry. Three key aspects are described: elimination of run-time interpretation, an instruction set
optimized for Forth, and an internal data path that supports stack-based programming. -PHASE ANGLE DIFFERENCE ANALYZER - C.H. TING

15
The Phase Angle Difference Analyzer determines the delay and phase difference between two simultaneous analog
signals. The signals are digitized, then the results are analyzed by an NC4000 microprocessor. The system samples
at a rate of 400 KHz, a speed unattainable by most commercial CPUs. -ANS FORTH: HARDWARE INDEPENl)ENCE -JOHN R. HAYES

23
One of Forth's strengths is its usefuliless in "strange" environments, but the Forth-83 Standard mandates byte-.
addressed memory, 16-bit operations, and two's"complement number representation. Yet, when programming for
profit, a portable program has a larger potential market than a non-portable program .

••
FORML CONFERENCE 1989 - PETER MIDNIGHT

27
ForemostForth programmers from around the world ostensibly gathered to discuss object-oriented programming but,
as the author points out, the real purpose of FORML is to bring t<'>gether serious Forth users and to propagate their
enthusiasm, ideas, and information. · · -SORT CONTEST RESULTS - DENNIS RUFFER

29
Several months ago, these pages announced a sort contest sponsored by this GEnie Sysop. Now the results are in, and
we have a winner ... Also included is code and commentary from Forth-wizardly Wil Baden.

Editorial
4

Advertisers Index
9

-
Besto/GEnie

35

FIG Chapters
40,42-43

Volume XI, Number 6 3 Forth Dimensions

EDITORIAL

Forth Hardware
This iSsue oontains the top three articles

selected from those we received in re
sponse to our call for articles about Forth
hardware .. It was a successful experbnent,
in my jaded editorial eyes, because it
brought us a number of very good manu
scripts (only three of which are presented in
this issue-we will publish· others, with
therr authors' permissfon, in upcoming
issues). There was an interesting split deci
sion· in the.judging, calling for .editorial
arbitration, but Phil Koopman's "Design
Tradeoffs in Stack Computers" received a
unanimous vote .. for first place. Second
place werit to John Hayes for ''The SC-32:
a 32-Bit Forth Engine," while third place
went to Dr. C.H. Ting's "Phase Angle
Difference Analyzer." Cash awards will be
sent to those three authors in recognition of
their co11tribQtions. We are honored and
pleased to bring you their work.

Times ruive changed since Glen Hay
don and Chuclc Moore closeted themselves . .
in Glen's computer-riddled crow's nest,
densely wire-wrapped boards lying like
disemboweled mazes atpp the gurneys they
used for workbenches. Chuck left to de
velop what would become the NC2000 for
NoVix (a device that will probably be re
membered only as the first real Forth chip).
Well, the hardware bug bit some of the best
minds in the Forth world, and it bit them
hard. Perhaps they sensed, as Jack Woehr
suggested in the last issue, that Forth as we
have known it all these years is-at its most
metaphysical roots-an evolving descrip
tion of an ultra-efficient· microprocessor .
architecture. Or perhaps it was just that
Fbrth's way of seducing us into hardware
intimacy ied us to believe we could do
anything.

In any case, soon we had a selection of
interesting devices to tinker with. Industri~

Forth Dimensions

ous efforts (some realized and some not)
sprang out of small shops and universities,
and there were Zilog's Super8 and
Rockwell's R65F11. These actually be
came bread-arid-butter hardware for some
. Forth programmers.

Re-enter Glen Haydon, who had
teamed up with Phil Koopman, Jr. Soon the
Haydons' loft was streaming put schemat
ics, and the two of them were selling wire
wrap kits and PC boards as the promis.ing
WISC (i.e., writeable instruction set com
puter) CPU/16 and CPU/32. These were
stack-based devices whose native instruc
tion sets could be changed about as easily as
a Forth ·definition, and they blazed right
along at fine speed. Phil also dove into a
doctoral program; his resume must have .
left the entrance examiners a bit breathless,

. unless they are accustomed to candidates
who have already implemented working
examples of a promising, untried micro~
processor architecture. Much of.his inter~
· estingresearch has been published as Stack
Computers, The New Wave.

. The kicker is that the CPU/16 and /32
drew the attention of Harris Sem1conduc
tOr. Harris negotiated for the rights to de
velop this iechnology; and since then have
invested considerably in its success. They
incorporated the WISC. concepts In their
standard cell library and produced theRTX
4000 microprocessor; the RTX 2000 is
their Novix successor.

This string of developments, which
continues to urifold, offers hope for the
future employment of Forth programmers:
if any large chip maker manages to pinpoint
the conjunction of Forth' s strengths and the
market's evolving needs, there could be a
deCided upswing for hardware experts,
systems vendors,· developers, conswtants,

.· and plain-old programmers. Already,

(ContinU£d on page 34.)

4

.Forth Dimensions
Published by the

Forth Interest Group
Volume XI, Number 6

March/April 1990
~ditor

Marlin Ouver8on
Advertising Manager

Kent Safford
Design and Production

Berglund Graphics

F orthDimensions welcomes editorial mate
rial, letters to the editt>r, and comments from its
readers. No responsibility is assumed for lici:u
racy of submissions.

Subscription to Forth Dimensions is in-·
duded with membership in the Forth Interest
Group at $30 per year ($42 overseas. air). For
membership, change of address, and to submit
itemsforpublication, the address is: Forth Inter
est Group, P.O. Box 8231; San Jose, California
95155. Administrative offices and .advertising.
sales: 408-277-0668. .

Copyright© 1990 by Forth Interest Group,
Inc. The material contained in this perfodical
(but not the code) is copyrighted by the individ
ual authors of the articles and by Forth Interest
Group, Inc., respectively. Any reproduction or
use of this periodical as it is eompiled or the ar
ticles, except reproductions for non-commer
cial purposes, without the written permission of .
Forth Inteiest Group, hie. is a violation oftlie
Copyright Laws. Any code bearmg a copyright
notice, however, can be used only with pennis."
sion of the copyright holder.

About the Forth Interest Group .
The Forth Interest Group is the. associatipn.

. of programmers, managers, and engineers who
create practical, Forth-based solutions to real~
world needs .. Many research hardware and soft
ware designs that will advance the general state
of the art. FIG provides a climate of intellectual ..
exchange and beiiefits intended to assist each of

· its members: Publication8, conferences, semi
nars, telecommunications,: and area chapter
meetings are among its activities.

"Forth Dimensions (ISSN 0884-0822) is
published bimonthly for $24/36 per.year by the
Forth Interest Group, 1330 S. Bascom Ave.,

· Suite D, San Jose, CA 95128. Second-class
postage paid at San Jose, CA. POSTMASTER: ·
S~d address changes to Forth Diniensio;u,
P.O. Box 8231, San Jose, CA 95155."

Volume XI, Number 6

