
Lecture #18

Introduction To
Scheduling

18-348 Embedded System Engineering

Philip Koopman

Wednesday, 23-Mar-2016

© Copyright 2006-2016, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

2

Sewer And Pipe Inspection Camera

http://www.wastewaterpr.com/releases/view/692/RIDGID-Introduces-SeeSnake-Laptop-Interface

3

Where Are We Now?
 Where we’ve been:

• Interrupts

• Context switching and response time analysis

• Concurrency

 Where we’re going today:
• Scheduling

 Where we’re going next:
• Analog and other I/O

• System booting, control, safety, …

• In-class Test #2, Wed 20-April-2016

• Final project due finals week. No final exam.

4

Preview
 What’s Real Time?

 Scheduling – will everything meet its deadline?
• Schedulability

• 5 key Assumptions

 Application of scheduling
• Static multi-rate systems

• Dynamic priority scheduling: Earliest Deadline First (EDF) and Least Laxity

• Static priority preemptive systems (Rate Monotonic Scheduling)

 Related topics
• Blocking time

• Sporadic tasks

5

Real Time Scheduling Overview
• Hard real time systems have a deadline for each periodic task

– With an RTOS, the highest priority active task runs while others wait

– System fault occurs every time a task misses a deadline

– Mathematical analysis is accepted practice for ensuring deadlines are met
– We’ll build up to Rate Monotonic Analysis in this lecture

(Alexeev 2011, p. 5)

(Kleidermacher 2001 pg. 30)

6

Real Time Definitions
 Reactive:

Computations occur in response to external events
• Periodic events (e.g., rotating machinery and control loops)

– Most embedded computation is periodic

• Aperiodic events (e.g., button closures)
– Often they can be “faked” as periodic (e.g., sample buttons at 10 Hz)

 Real Time
• Real time means that correctness of result depends on both functional

correctness and time that the result is delivered

• Too slow is usually a problem

• Too fast sometimes is a problem

7

Flavors Of Real Time
 Soft real time

• Utility degrades with distance from deadline

 Hard real time
• System fails if deadline window is missed

 Firm real time
• Result has no utility outside deadline window, but system can withstand a few

missed results

8

“Real Time” != “Really Fast”
 “Real Time” != “Really Fast”

• It means not too fast and not too slow

• Often the “not too slow” part is more difficult, but it’s not the only issue

• Also, a whole lot faster than you need to go can be wasteful overkill

• Often, ability to be consistently on time is more important than “fast”

 Consider what happens when a CPU goes obsolete
• Is it OK to write a software simulator on a really fast newer CPU?

– Will timing be fast enough?

– Will it be too fast?

– Will it vary more than the old CPU?

• What do designers actually do about this?

9

Types of Real-Time Scheduling

 Dynamic vs. Static
• Dynamic schedule computed at run-time based on tasks really executing

• Static schedule done at compile time for all possible tasks

 Preemptive permits one task to preempt another one of lower priority

[Kopetz]

10

Schedulability
 NP-hard if there are any resource dependencies at all

• So, the trick is to put cheaply computed bounds/heuristics in place
– Prove it definitely can’t be scheduled

– Find a schedule if it is easy to do so

– Punt if you’re in the middle somewhere

[Kopetz]

11

Periodic Tasks
 “Time-triggered” (periodic) tasks are common in embedded systems

• Often via control loops or rotating machinery

 Components to periodic tasks
• Period (e.g, 50 msec)

• Offset past period (e.g., 3 msec offset/50 msec period -> 53, 103, 153, 203)

• Jitter is random “noise” in task release time (not oscillator drift)

• Release time is when task has its “ready to run” flag set

• Release timen= (n*period) + offset + jitter ; assuming perfect time precision

12

Scheduling Parameters
 Set of tasks {Ti}

• Periods pi

• Deadline di
(completion deadline after task is queued)

• Execution time ci
(amount of CPU time to complete)

• Worst case latency to complete execution Wi

– This is something we solve for, it’s not a given

 Handy values:
• Laxity li = di – ci

(amount of slack time before Ti must begin
execution)

• Utilization factor i = ci/pi (portion of
CPU used)

13

Major Assumptions
 Five assumptions are the starting point for this area:

1. Tasks {Ti} are periodic, with hard deadlines and no jitter
• Period is Pi

2. Tasks are completely independent
• B=0; Zero blocking time; no use of a mutex; interrupts never masked

3. Deadline = period
• Pi = Di

4. Computation time is known (use worst case)
• Ci is always the same for each execution of the task

5. Context switching is free (zero cost)
• Executive takes zero overhead, and task switching has zero latency

 These assumptions are often not realistic
• But sometimes they are close enough in practice

• Significantly relaxing these assumptions quickly becomes a grad school topic
– We’re going to show you the common special cases that are “easy” to use

14

Easy Schedulability Test
 System is schedulable (i.e., it “works”) if for all i, Wi <= Di

• In other words, all tasks complete execution before their deadline

 is processor utilization (fraction of time busy) must be less than 1

• “You can’t use more that 100% of available CPU power!”

 This is necessary, but not sufficient
• Sometimes even very low percent of CPU power used is still unschedulable

• e.g., if blocking time exceeds shortest deadline, impossible to schedule system

• e.g., several short-deadline tasks all want service at exactly the same time, but
rest of time system is idle

 1
i

i

p

c

15

Remember this? Multi-Rate Round Robin Approach
 Simple brute force version

• Put some tasks multiple times in single round-robin list
• But gets tedious with wide range in rates

 More flexible version
• For each PCB keep:

– Pointer to task to be executed
– Period (number of times main loop is executed for each time task is executed)

i.e., execute this task every kth time through main loop.
– Current count – counts down from Period to zero, when zero execute task

typedef void (*pt2Function)(void);

struct PCB_struct
{ pt2Function Taskptr; // pointer to task code

uint8 Period; // execute every kth time
uint8 TimeLeft; // starts at k, counts down
uint8 ReadyToRun; // flag used later

};
PCB_struct PCB[NTASKS]; // array of PCBs

16

Remember this?

 This executes tasks in a particular order based on period and task #
• But, there is no guarantee that you will meet your deadlines in the general case!

17

Static Multi-Rate Periodic Schedule
 Assume non-preemptive system with 5 Restrictions:

1. Tasks {Ti} are perfectly periodic

2. B=0

3. Pi = Di
4. Worst case Ci
5. Context switching is free

 Consider least common multiple of periods pi
• This considers all possible cases of period phase differences

• Worst case is time that is LCM of all periods
– E.g., LCM(5,10,35) = 5 * 2 * 7 = 70

• If you can figure out (somehow) how to schedule statically this, you win
– Program in a static schedule that runs tasks in exactly that order at those times

– Schedule repeats every LCM time period (e.g., every 70 msec for LCM=10)

– This is a long-running computational problem for large task sets!

 Performance
• Optimal if all tasks always run; can get up to 100% utilization (
• If it runs once, it should always work

18

Example Static Schedule – Hand Positioned Tasks

Task
#

Period
(Pi)

Compute
(Ci)

T1 5 1

T2 10 2

T3 15 2

T4 20 3

T5 25 4

Start
Time

Task # Ci Elapsed
Time For Ti

0 T1 1 …

1 T5 4 …

5 T1 1 5-0=5

6 T2 2 …

8 T3 2 …

10 T1 1 10-5=5

11 T4 3 ...

14 Idle 1 n/a

15 T1 1 15-10=5

16 T2 2 16-6=10

18 Idle 2 n/a

20 T1 1 20-15=5

21 Idle 2 n/a

23 T3 2 23-8=15

25 T1 1 25-20=5

26 T2 2 26-16=10

Ensuring schedulability
requires hand-selecting
the start time of every
task (not the same as
the previous scheduler
code)!

19

Preemptive, Prioritized Schedulability
 To avoid missing deadlines, necessary for all the tasks to fit

• Time to complete task Tj is Wj

• (i.e., we need to find out if this task set is “schedulable?”)

• If true, we are schedulable; if false we aren’t

• Note that this is W = time to complete task
– It’s not R = time to start execution of task (response time)

– For cooperative scheduling, Wi = Ri + Ci

– BUT, for preemptive scheduling W can be longer because of additional preemptions

 In other words, schedulable if task completes before its period
• Always true if time to complete task Tj doesn’t exceed period

• True because we assumed that Pi = Di

jjj PW :
?

20

What’s Latency For Preemptive Tasks?
 For the same 5 assumptions

• And prioritized tasks (static priority – priority never changes)
– Note that equation includes execution time of task, not just response time

• Note that in this math we are including the C term for task m in the summation
• Highest priority task has only blocking time B as latency
• Start the recursion with task 0, which could always execute first
• Schedulable if:

 This math is complex, and easy to get wrong
• Is there an easier way to make sure we can’t mess this up?

mj

j j
j

im
im

m

C
P

W
BW

CBW

0

,
1,

00,

1

jjj PW :

21

Remember the Major Assumptions
 Five assumptions throughout this lecture

1. Tasks {Ti} are perfectly periodic

2. B=0

3. Pi = Di
4. Worst case Ci
5. Context switching is free

22

EDF: Earliest Deadline First
 Assume a preemptive system with dynamic priorities, and

{ same 5 restrictions }

 Scheduling policy:
• Always execute the task with the nearest deadline

– Priority changes on the fly!

– Results in more complex run-time scheduler logic

 Performance
• Optimal for uniprocessor (supports up to 100% of CPU usage in all situations)

– If it can be scheduled – but no guarantee that can happen!

– Special case where it works is very similar to case where Rate Monotonic can be
used:

» Each task period must equal task deadline

» But, still pay run-time overhead for dynamic priorities

• If you’re overloaded, ensures that a lot of tasks don’t complete
– Gives everyone a chance to fail at the expense of the later tasks

23

Least Laxity
 Assume a preemptive system with dynamic priorities, and

{ same 5 restrictions }

 Scheduling policy:
• Always execute the task with the

smallest laxity li = di – ci

 Performance:
• Optimal for uniprocessor (supports up to 100% of CPU usage in all situations)

– Similar in properties to EDF

– If it can be scheduled – but no guarantee that can happen!

• A little more general than EDF for multiprocessors
– Takes into account that slack time is more meaningful than deadline for tasks of

mixed computing sizes

• Probably more graceful degradations
– Laxity measure permits dumping tasks that are hopeless causes

24

EDF/Least Laxity Tradeoffs
 Pro:

• If it works, it can get 100% efficiency (on a uniprocessor)
• Does not restrict task periods
• Special case works if, for each task, Period = Deadline

 Con:
• It is not always feasible to prove that it will work in all cases

– And having it work for a while doesn’t mean it will always work

• Requires dynamic prioritization
• EDF has bad behavior for overload situations (LL is better)
• The laxity time hack for global priority has limits

– May take too many bits to achieve fine-grain temporal ordering
– May take too many bits to achieve a long enough time horizon

 Recommendation:
• Avoid EDF/LL if possible

– Because you don’t know if it will really work in the general case!
– And the special case doesn’t buy you much, but comes at expense of dynamic

priorities

25

Remember the Major Assumptions
 Five assumptions throughout this lecture

1. Tasks {Ti} are perfectly periodic

2. B=0

3. Pi = Di
4. Worst case Ci
5. Context switching is free

 Problems with previous approaches
• Static scheduling – can be difficult to find a schedule that works

• EDF & LL – run-time overhead of dynamic priorities

• Wanted: an easy rule for scheduling with:
– Static priorities

– Guaranteed schedulability

26

Rate Monotonic Scheduling
1. Sort tasks by period (i.e., by “rate”)
2. Highest priority goes to task with shortest period (fastest rate)

• Tie breaking can be done by shortest execution time at same period

3. Use prioritized preemptive scheduler
• Of all ready to run tasks, task with fastest rate gets to run

 Static priority
• Priorities are assigned to tasks at design time; priorities don’t change at run

time

 Preemptive
• When a high priority task becomes ready to run, it preempts lower priority

tasks
• This means that ISRs have to be so short and infrequent that they don’t matter

 Variation: Deadline Monotonic
• Use min(period, deadline) to assign priority rather than just period
• Works the same way, but handles tasks with deadlines shorter than their period

27

Rate Monotonic Scheduling (RMS)
 Assume a preemptive system with static priorities, N tasks, and

{ same 5 restrictions } +

(“CPU load less than about 70%”)

 Why not 100%?
• Two tasks with slightly different periods can drift in and out of phase

• At just the wrong phase difference, there may not be time to meet deadlines

 Performance:
• Provides a guarantee for schedulability with CPU load of ~70%

– Even with arbitrarily selected task periods

– Can do better if you know about periods & offsets

• BUT – if you load CPU more than 69.3%, you might miss deadlines!

(2 1) ; ln(2) 0.693 for large NNi

i

c
N

p

28

Example of a Missed Deadline at 79% CPU Load

 Task 4 misses deadline
• This is the worst case launch time scenario

 Missed deadlines can be difficult to
find in system testing
• 5 time units per task is worst case

– Average case is often a bit lighter load

• Tasks only launch all at same time once
every 224,808 time units

LCM(19,24,29,34) = 224,808
(LCM = Least Common Multiple)

29

Harmonic RMS
 In most real systems, people don’t want to sacrifice 30% of CPU

• Instead, use harmonic RMS

 Make all periods harmonic multiples
• Pi is evenly divisible by all shorter Pj

• This period set is harmonic: {5, 10, 50, 100}
– 10 = 5*2; 50 = 10*5; 100 = 50*2; 100 = 10*5*2

• This period set is not harmonic: {3, 5, 7, 11, 13}
– 5 = 3 * 1.67 (non-integer), etc.

 If all periods are harmonic, works for CPU load of 100%
• Harmonic periods can’t drift in and out of phase – avoids worst case situation

 }p dividesevenly {p ; 1 ijp ij p
i

i

p

c

30

Practical Harmonic Deadline Monotonic Scheduling

 This is what you should do in most smaller embedded control systems
• Assumes you need a preemptive scheduler

 Use Min(period,deadline) as the scheduling logical “period”
• Ensures that deadline will be met even if shorter than period

• But, set aside resources just as if tasks really were repeating at that period

• This is the part that makes it “deadline” monotonic

 Use harmonic multiples of logical period
• Every shorter period is a factor of every longer period (e.g., 1, 10, 100, 1000)

• Avoids worst case of slightly out-of-phase periods that all clump together at just
the wrong time

• Speed up some tasks if needed to get harmonic multiples
– E.g., {1, 5, 11, 20} => {1, 5, 10, 20}

– Results in lower CPU requirement even though some tasks run faster!

 Watch out for blocking!

31

Example Deadline Monotonic Schedule

Task # Period
(Pi)

Deadline
(Di)

Compute
(Ci)

T1 5 15 1

T2 16 23 2

T3 30 6 2

T4 60 60 3

T5 60 30 4

Task # Priority

T1 1 1/5 = 0.200

T3 2 2/6 = 0.333

T2 3 2/16 = 0.125

T5 4 4/30 = 0.133

T4 5 3/60 = .05

TOTAL 0.841

743.0)(841.0

5 N ;)12(

not

N
p

c N

i

i

Not Schedulable!
(might be OK with fancy math)

32

Example Harmonic Deadline Monotonic Schedule

Task # Period
(Pi)

Deadline
(Di)

Compute
(Ci)

T1 5 15 1

T2 15 23 2

T3 30 5 2

T4 60 60 3

T5 60 30 4

Task # Priority

T1 1 1/5 = 0.200

T3 2 2/5 = 0.400

T2 3 2/15 = 0.133

T5 4 4/30 = 0.133

T4 5 3/60 = .05

TOTAL 0.916

1916.0

60} 30, 15, {5, periods armonic ; 1

 H
p

c

i

i

Schedulable, even though usage is higher!

33

 Rate monotonic, but task blocking can occur
• Bk is time task k can be blocked (e.g., interrupts masked by lower prio task)
• For highest priority task

– Can ignore lower priority tasks, because we are preemptive
– But, need to handle blocking time (possibly caused by lower priority task)

• For 2nd highest priority task
– Can ignore lower priority tasks, because we are preemptive
– Have to account for highest priority task preempting us
– Need to handle blocking time

» Possibly caused by lower priority task
» But, can’t be caused by higher priority task (since that preempts us anyway)
» Does this sound a lot like the reasoning behind ISR scheduling???

Handling Non-Zero Blocking

)12(1 1

1

1

1

1
1

p

B

p

c

)12(2 2

2

2

2

2

1

1
2

p

B

p

c

p

c

34

Rate Monotonic With Blocking
 Rate monotonic, but task blocking can occur

• Bk is blocking time of task k (time spent stalled waiting for resources)

• Worst case blocking time for each task counts as CPU time for scheduling
• Note that B includes all interrupt masking (ISRs and tasks waiting for CLI)
• Harmonic periods make right hand side 100%, as before
• Need on a per-task basis because blocking time can be different for each task

 Performance:
• In worst case, time waiting while blocked is counted as burning additional CPU

or network time
• This is yet another reason to use skinny ISRs!
• If low priority task gets a mutex needed by a hi prio task, it extends B!
• If RTOS takes a while to change tasks, that counts as blocking time too

k largefor 0.7)12(;

k

k

k

ki i

i

ki
ik k

p

B

p

c
k

[Sha et al. 1991]

35

Applied Deadline Monotonic With Blocking
 Use min(period, deadline) for each task as logical period

• Use harmonic logical periods

• Assign tasks by priority

• Otherwise, same as for deadline monotonic

 For each task,

periods harmonicfor ; 1;

1

1

1

3

3

3

3

2

2

1

1
3

2

2

2

2

1

1
2

1

1

1

1
1

 k

k

ki i

i

ki
ik p

B

p

c
k

p

B

p

c

p

c

p

c

p

B

p

c

p

c

p

B

p

c

36

But Wait, There’s More
 WHAT IF:

1. Tasks {Ti} are NOT periodic
– Use maximum fastest inter-arrival time

2. Tasks are NOT completely independent
– Worry about dependencies (another lecture)

3. Deadline NOT = period
– Use Deadline monotonic

4. Worst case computation time ci isn’t known
– Use worst case computation time, if known
– Build or buy a tool to help determine Worst Case Execution Time (WCET)
– Turn off caches and otherwise reduce variability in execution time

5. Context switching is free (zero cost)
– Gets messy depending on assumptions
– Might have to include scheduler as task
– Almost always need to account for blocking time B

37

Review
 Real time definitions

• Hard, firm, soft

 Scheduling – will everything meet its deadline?
•
• All Wi Pi

 Application of scheduling
• Static multi-rate systems

• Rate Monotonic Scheduling
– if harmonic periods; else more like 70%

– Works by assigning priorities based on periods (fastest tasks get highest prio

 Related topics
• Earliest Deadline First (EDF) and Least Laxity

• Blocking

• Sporadic server

38

Review
 Five Standard Assumptions

(memorize them in exactly these words – notes sheet too):
1. Tasks {Ti} are perfectly periodic

2. B=0

3. Pi = Di
4. Worst case Ci
5. Context switching is free

 Statically prioritized task completion times:

mj

j j
j

im
im

m

C
P

W
BW

CW

0

,
1,

00,

1

39

Review
 Schedulability bound for Rate Monotonic with Blocking

periods harmonicfor ; 1;

1

1

1

3

3

3

3

2

2

1

1
3

2

2

2

2

1

1
2

1

1

1

1
1

 k

k

ki i

i

ki
ik p

B

p

c
k

p

B

p

c

p

c

p

c

p

B

p

c

p

c

p

B

p

c

