
Lecture #17

Concurrency

18-348 Embedded System Engineering

Philip Koopman

Monday, 21-March-2016

© Copyright 2006-2016, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

2

Example application – Remote Keyless Entry

Lear Encrypted Remote Entry Unit

[Biham et al.
CRYPTO 2007]

http://money.cnn.com/2013/03/07/news/
companies/subaru-recall/index.html?
source=cnn_bin

5

Where Are We Now?
 Where we’ve been:

• Interrupts

• Context switching and response time analysis

 Where we’re going today:
• Concurrency

 Where we’re going next:
• Scheduling, real time system practicalities

• Analog and other I/O

• Robustness, safety

• Bluetooth & CAN

• Test #2

• Last project

6

Preview
 Buffer management

• Buffering and FIFOs

 Reentrant code
• Making sure code can be executed by multiple threads concurrently

 Atomic Actions
• Making sure that an operation can’t be interrupted

 Semaphores
• Mutex to implement mutual exclusion of critical regions

• … and some example concurrency hazards …

7

Concurrency Problems In General
• One CPU can have many tasks

– Tasks take turns, sharing the CPU and memory

– CPU rapidly switches between tasks (“multi-tasking”)

• Concurrency defects often result from defective resource sharing
– Need to ensure that two tasks

don’t both try to change a global
variable at the same time,
e.g. via disabling interrupts
to prevent task switching

– Defects may be due to subtle
timing differences, and are
often difficult to reproduce

(Wind River)
(Sullivan 1991, p. 7)

8

Buffer Management
 Buffers are used to temporarily store data

• Used to collect pieces while they are being assembled

• Used to hold assembled pieces while they are being disassembled

• Used to hold incoming data until it can be processed

• Used to hold outgoing data until it can be transmitted

• Used to hold data too big to fit in registers during processing

 Example: transmit buffer
uint8 buff[80];

1. Put message to be transmitted into buff[] (up to 79 chars plus null byte)

2. Tell transmit routine to start transmitting at buff[0]

3. Wait until transmission is completed

4. Go to step 1 for next message

• Don’t forget to check for over-running max length!!!!

9

Single Buffer Message Transmitting
 To transmit multiple messages via Serial Port

volatile uint8 buff[80]; // message buffer
volatile uint8 buff_owner=1; // who owns buffer? 1 is task 1; 2 is task 2
// no concurrency issue -- task can’t reclaim buffer until after other task uses it

 Task 1 – transmit the next message:
1. for(;;) // transmit messages forever
2. { while(buff_owner == 2){sleep;} // wait for other task handoff
3. buff[] = next message ; // copy next message to buff
4. buff_owner = 2;
5. }

 Task 2 – actually send the bytes:
1. while (still messages to transmit)
2. { while(buff_owner == 1) {sleep;} // wait until data ready
3. send message byte at a time;
4. buff_owner = 1;
5. }

 But, only one task can get work done at time

10

Double Buffering
 Single buffering means one task is always waiting

• Task 1 produces data – waits for task 2 when done with a buffer
• Task 2 consumes data – waits for task 1 when done with a buffer

 Double buffering idea:
• Two buffers Buffer A and Buffer B

• Phase 1:
– Task 1 owns Buffer A Task 2 owns Buffer B
– Task 1 fills Buffer A Task 2 consumes Buffer B
– Wait until both Task 1 and Task 2 are done

• Swap – each task trades buffers with the other task
• Phase 2:

– Task 1 owns Buffer B Task 2 owns Buffer A
– Task 1 fills Buffer B Task 2 consumes Buffer A
– Wait until both Task 1 and Task 2 are done

• Swap – each task trades buffers with the other task
• Go to Phase 1

11

FIFO (Queue)
 To decouple producer and consumer, use a FIFO

• FIFO = “First In First Out”

• Multiple items

• Item inserted, waits until previous items removed, then that item is removed

 Speeds are independent as long as they don’t get too far ahead/behind
• Producer can produce faster or slower than consumer

– FIFO has fixed size, so too many items too quickly will overflow FIFO!

• Consumer can consume faster or slower than producer
– FIFO might get empty if consumer is slower than producer for too long

ConsumerProducer FIFO

12

FIFO Implementation
 Usually implemented with circular accesses to an array

• “head pointer” – the head of the queue = next item to be removed
• “tail pointer” – the tail of the queue = most recent item inserted
• One way to implement: when head == tail, FIFO is empty

– Lab assignment uses another way, involving an empty/full flag

#define FIFOSIZE 10
volatile int fifo[FIFOSIZE]; // one int per element
volatile uint8 head = 0, tail = 0; // init to empty FIFO

bool insert(int x) // insert; return 1 if success; 0 if fail
{ int newtail;

// access next free element; wrap around to beginning if needed
newtail = tail+1; if (newtail >= FIFOSIZE) { newtail = 0; }

// if head and tail are equal, fifo would overflow
if (newtail == head) {return(FALSE)}; // FIFO is full

fifo[newtail] = x; // write data before updating pointer
tail = newtail; // … otherwise remove might get stale data
return(TRUE);

}

13

Reentrant Code
 Reentrant code can have more than one thread executing it at a time

• i.e., can be “entered” more than once at a time
– A bit different than “shared variables” – it’s about the code, not just a data location

• Originated in memory-limited mainframes to re-use subroutines…
… still relevant for OS code, and for multi-threaded code
… and can still be relevant for shared library code
… and definitely relevant for small-memory-size embedded systems

 Important for embedded systems for:
• ISRs that re-enable mask bit (don’t do this if you can avoid it!)
• Shared code, such as:

– Math libraries with statically allocated memory
– Exception handlers with statically allocated memory
– Methods to handle data structures

• Recursive code (don’t do this if you can avoid it!)
• Usually not important for ordinary “main loop” application code

• Question: are global variables reentrant?

14

Example Reentrancy Problem
 Compute nth Fibonacci number (1, 1, 2, 3, 5, 8, 13, 21, …)

• We’re using this because it doesn’t require exact timing to show the problem

uint16 fib(uint16 n)

{ uint16 sum;

if (n < 2) return (n);

sum = fib(n-1);

sum += fib(n-2);

return(sum);

}

• Produces this correct output

N fib(N)
0 0
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34
10 55
11 89
12 144
13 233
14 377
15 610
16 987
17 1597
18 2584
19 4181
20 6765

15

Let’s Introduce A Reentrancy Problem
static uint16 sum; // temporary global holding variable

// compute nth fibonacci number using recursion

uint16 fib(uint16 n)

{ if (n < 2) return (n);

sum = fib(n-1);

sum += fib(n-2);

return(sum);

}

 Problem is with variable sum
• fib(n-1) stores value in sum

• fib(n-2) trashes sum with recursive call

N fib(N)
0 0

1 1

2 1

3 2

4 2

5 4

6 4

7 8

8 8

9 16

10 16

11 32

12 32

13 64

14 64

15 128

16 128

17 256

18 256

19 512

20 512

16

Sometimes Subtle Code Changes Are All It Takes
 With Code Warrior this code works (but is asking for trouble!)

• Luckily, C compiler doesn’t update sum until after addition – but that is just luck!

uint16 fib(uint16 n)
{ static uint16 sum;

if (n < 2) return (n);
sum = fib(n-1) + fib(n-2);
return(sum);

}

 BUT, this code fails:
• C compiler decides to update sum rather than keep it in a register before the add

uint16 fib(uint16 n)
{ static uint16 sum;

if (n < 2) return (n);
sum = fib(n-1);
sum += fib(n-2);
return(sum);

}

17

General Rules To Avoid Reentrancy Problems
 Assembly language

• All scratch variables have to go on the stack

• No references to statically allocated memory (unless protected by semaphores)
– This includes globals, static keyword variables, and I/O registers

 Reentrancy problems are common in assembly language
• We know that using the stack for temp variables is a pain to write

• BUT, if you use a “DS” defined variable, you risk reentrancy problems

 Reentrant C programs must have at least:
• No global variables (globals also compromise modularity)

• No use of keyword “static” for local variables

• No use of pointers (some might be OK, but asking for trouble)

• No reference to variables outside scope of current procedure

 If you writing “good” C, reentrancy problems are unusual
• Mostly because putting values on stack is easy, and “static” keyword is rare

• But they can still happen, and are very difficult to debug!

18

Atomic Actions
 An “atomic action” is one that can’t be stopped once it is started

• Execution of a single instruction, e.g.:
INC 3,SP

• A sequence of actions completed in hardware, e.g.:
SWI ; stacks many register values

<HW Interrupt> ; stacks many register values

LDD TCNT ; load both bytes of TCNT; hardware
; prevents TCNT changing during the load

• Execution of a non-interruptible piece of code, e.g.:
SEI ; mask interrupts
LDAA 0,SP
ADDA #7
STAA 0,SP
CLI ; enable interrupts

19

Do C Compilers Generate Atomic Actions?
 Which of these is an atomic action?

• foo = foo + 1;

• foo += 1;

• foo++;

 Trick question – it all depends on the context, CPU, and compiler!
• For example, in this code:

foo += 1;

bar += foo;

• Compiler might increment foo in memory
OR
load foo, increment, then store, keeping in register for adding to bar.

• There is no guarantee of atomicity in source code!

20

HC12 With Code Warrior Examples
 foo++; // is atomic for uint8

16: foo++;

0011 6282 [3] INC 3,SP

 bar++; // is NOT atomic for uint16
// HC12 doesn’t have 16-bit memory INC

18: bar++;

0014 ee80 [3] LDX 0,SP

0016 08 [1] INX

0017 6e80 [2] STX 0,SP

 baz += 2; // is NOT atomic for any data size
20: baz += 2; // what if we did: baz++; baz++;

0019 e682 [3] LDAB 2,SP

001b cb02 [1] ADDB #2

001d 6b82 [2] STAB 2,SP

21

Uses For Atomic Actions
 Accessing changing hardware values

• E.g., getting all 16 bits of TCNT without a change between bytes
• E.g., changing SCI parameters or TCNT parameters and ISR vectors all at once

 Accessing values changed by ISRs
• E.g., getting time of day that is updated by ISR

 Accessing a variable shared among tasks
• For example, a single counter of errors or events for a single task would be:

events++;
• But if shared among multiple tasks, would have to be:

#define CLI() {asm cli;}
#define SEI() {asm sei;}
…
SEI(); // be careful to minimize blocking time!
events++;
CLI(); // does this disable or enable interrupts?

// …. Are you 100% sure without looking it up?

22

Top Concurrency Bug In The Field
uint32 timer; // assume initialized to current time

void main(void)
{ … initialization …

for(;;)
{ do_task1();
do_task2();

}
}

void do_task1()
{

x = timer; // Sometimes x doesn’t get a clean value!
. . . .

}

void interrupt 16 timer_handler(void) // TOI
{ TFLG2 = 0x80;

timer++;
}

23

24

Fix To The Top Concurrency Bug In The Field
volatile uint32 timer; // assume initialized to current time

void main(void)
{ … initialization …

for(;;)
{ do_task1();
do_task2();

}
}

void do_task1()
{

DisableInterrupts();
x = timer; // Access to timer is made atomic
EnableInterrupts();
. . . .

}

void interrupt 16 timer_handler(void) // TOI
{ TFLG2 = 0x80;

timer++;
}

25

What About Really Long Atomic Actions?
 Masking interrupts to update a 16 bit counter is probably OK

• But not to do a really long computation on a shared data structure!

• For example:
– Inserting a linked list element

– Computing an FFT on a data set

– Access to an A/D converter or the UART to send multiple bytes

• Why? Because the longest interval of masked interrupts is Blocking Time B

 For longer accesses to shared data structures, need a semaphore
• Semaphore is a way to ensure only one task accesses data at a time

– Even if task switches occur during the data access

– In the general case there might be multiple users of multiple shared resources

• Special case is Mutex (“Mutual Exclusion”) – single shared resource

• Critical section – a region in the code where it accesses a shared resource
– Needs protection (often via a mutex) to avoid concurrency problems

26

Conceptual Build-Up To Implementing A Mutex
 Starting point below

• Don’t want to do this – interrupts disabled for too long

Mystruct foo; // foo is shared by multiple tasks

… somewhere in a task …

SEI();

foo.a = <newval>;

foo.b = <newval>;

foo.c = <newval>;

…

foo.zy = <newval>;

foo.zz = <newval>;

CLI();

27

Add A Flag To Control Access (a Mutex)
 Add a binary variable indicating “free” (0) or “locked” (1)

• THIS VERSION DOESN’T WORK (why?)

Mystruct foo; // foo is shared by multiple tasks
uint8 foo_mutex = 0; // 0 means nobody using

// 1 means in use (locked)

… somewhere in a task …
while(foo_mutex==1){;} // wait while it is busy
foo_mutex = 1; // acquire resource

foo.a = <newval>;
…

foo.zz = <newval>;
foo_mutex = 0; // free resource

28

Try Making Mutex Update Atomic
 THIS VERSION DOESN’T WORK EITHER (why?)

volatile Mystruct foo; // foo is shared by multiple tasks

volatile uint8 foo_mutex = 0; // 0 means nobody using

// 1 means in use (locked)

… somewhere in a task …

while(foo_mutex==1){;} // wait while it is busy

DisableInterrupts();

foo_mutex = 1; // acquire resource

EnableInterrupts();

foo.a = <newval>;

…

foo.zz = <newval>;

foo_mutex = 0; // free resource

29

Try Making Test And Set Of Mutex Atomic
 THIS VERSION DOESN’T WORK EITHER (why?)

volatile Mystruct foo; // foo is shared by multiple tasks
volatile uint8 foo_mutex = 0;

// 0 means nobody using
// 1 means in use (locked)

… somewhere in a task …
DisableInterrupts();
while(foo_mutex==1){;} // wait while it is busy
foo_mutex = 1; // acquire resource
EnableInterrupts();

foo.a = <newval>;
…

foo.zz = <newval>;
foo_mutex = 0; // free resource

30

So What We Need Is A Second Test of Mutex
 THIS VERSION SHOULD WORK

volatile Mystruct foo; // foo is shared by multiple tasks
volatile uint8 foo_mutex = 0; // 0 means nobody using

// 1 means in use (locked)

… somewhere in a task …
uint8 initial_value;
do { DisableInterrupts();

initial_value = foo_mutex;
foo_mutex = 1;
EnableInterrupts();

} while (initial_value == 1);

foo.a = <newval>;
…

foo.zz = <newval>;
foo_mutex = 0; // free resource

31

This Is Called The “Test-and-Set” Approach
 THIS VERSION SHOULD WORK

volatile Mystruct foo; // foo is shared by multiple tasks

volatile uint8 foo_mutex = 0; // 0 means nobody using

// 1 means in use (locked)

… somewhere in a task …

GetMutex(&foo_mutex);

foo.a = <newval>;

…

foo.zz = <newval>;

ReleaseMutex(&foo_mutex); // free resource

32

Test And Set Primitives
#define BUSY 1
#define IDLE 0 // Every mutex must be initialized to IDLE

uint8 SwapAtomic(uint8 volatile *mutex, uint8 v)
{ uint8 res;

DisableInterrupts();
res = *mutex; // atomically swap inp and *mutex
*mutex = v;

EnableInterrupts();
return(res);

}

void GetMutex(uint8 volatile *mutex)
{ uint8 val;

do
{ val = SwapAtomic(mutex, BUSY); // grab for the mutex
} while (BUSY == val); // success if val==0

}

Void ReleaseMutex(uint8 volatile *mutex)
{ *mutex = IDLE; // no need for atomicity here (why?)
}

33

Test And Test And Set
 Cached multi-core and multi-processor systems

• “Test & test & set” is more efficient for multi-processors with shared data bus

• Test variable and only attempt Test&Set if it is currently unlocked
– Reduces bus traffic by avoiding writes if lock is already set

– Reduces bus traffic by reading from cache until it is invalidated by other write

• http://en.wikipedia.org/wiki/Test_and_Test-and-set

void GetMutex(uint8 volatile *mutex) // test and test and set

{ uint8 val;

do

{ val = *mutex;

if(BUSY != val) // if it’s busy here, skip the swap

{ val = SwapAtomic(mutex, BUSY); // grab for the mutex

// This might still fail if another task grabs it first

}

} while (BUSY == val); // success if val==IDLE

}

34

Other Test And Set Considerations
 Cooperative Multitasking

• Don’t want to sit forever waiting for Mutex – we won’t get it!
• Need to return to scheduler loop whenever Mutex is busy

 Preemptive Multitasking
• Might want to “yield” after every test to avoid burning CPU time

– “yield” returns control to tasker, relinquishing rest of CPU time for now
– Improves CPU efficiency

void GetMutex(uint8 volatile *mutex) // yield version
{ uint8 val;

do
{ val = *mutex;
if(BUSY == val)
{ Yield(); // if it’s busy, yield to another task
} else
{ val = SwapAtomic(mutex, BUSY); // grab for the mutex

// This might still fail if another task grabs it first
}

} while (BUSY == val); // success if val==IDLE
}

35

Mutex Hazards
 Deadlock

• Task A needs resources X and Y
• Task B needs resources X and Y

• Task A acquires mutex for resource X
• Task B acquires mutex for resource Y

• Task A waits forever to get mutex for resource Y
• Task B waits forever to get mutex for resource X

 Livelock
• Tasks release resources when they fail to acquire both X and Y, but…

just keep deadlocking again and again

 Dealing with these situations is covered in other courses
• Operating Systems (we’ll talk about “priority inversion” in a later lecture)
• Real time databases

36

37

Example Concurrency Problem #1
 Most robust embedded systems have an error log

• Keeps track of problems for engineering analysis with one log for system

• Assume multiple tasks with a shared error log

• Consider this error log code:

void MakeErrorLogEntry(uint8 problem_code; uint32 time)

{ error_log[error_ptr].code = problem_code;

error_log[error_ptr].time = time;

error_ptr += 1;

if (error_ptr >= LOGSIZE)

{ error_ptr -= LOGSIZE; }

}

 What are the potential problems with this code?
• What are ways to fix it?
• This is really just a FIFO – why are there reentrancy problems?

38

Is There A Concurrency Problem With This Code? (#2)
 Assume timer_ticks is number of TCNT overflows recorded by ISR

struct PCB_struct
{ pt2Function Taskptr; // pointer to task code

uint8 Period; // execute every kth time
uint8 NextTime; // next time this task should run

};
… init PCB structures etc. …

for(;;)
{ for (i = 0; i < NTASKS; i++)
{ if (PCB[i].NextTime < timer_ticks)
{PCB[i].NextTime += PCB[i].Period; // set next run time
PCB[i].Taskptr();
break; // exit loop and start again at task 0
}

}
}

39

Is There A Concurrency Problem With This Code? (#3)
 Assume timer_ticks is number of TCNT overflows recorded by ISR

struct PCB_struct
{ pt2Function Taskptr; // pointer to task code

uint32 Period; // execute every kth time
uint32 NextTime; // next time this task should run

};
… init PCB structures etc. …

for(;;)
{ for (i = 0; i < NTASKS; i++)
{ if (PCB[i].NextTime < timer_ticks)
{PCB[i].NextTime += PCB[i].Period; // set next run time
PCB[i].Taskptr();
break; // exit loop and start again at task 0
}

}
}

40

What’s The Problem With The Skinny ISR Example? (#4)
volatile uint64 timer_val; // assume initialized to current time
uint8 seconds, minutes, hours;
uint16 days;

void main(void)
{ … initialization …

for(;;)
{ update_tod();
do_task1();
do_task2();

}
}

void update_tod()
{ seconds = (timer_val>>16)%60;

minutes = ((timer_val>>16)/60)%60;
hours = ((timer_val>>16)/(60*60))%24;
days = (timer_val>>16)/(60*60*24);

}

void interrupt 16 timer_handler(void) // TOI
{ TFLG2 = 0x80;

timer_val += 0x10C6; // 16 bits fraction; 48 bits intgr
} // blocking time of ISR no longer includes division operations!

41

Skinny ISR Fix
 Version 1 –

not good enough for 32-bit+ size, but might work for 16 bits
• Only works if transfer is atomic; risky solution (don’t do this)

void update_tod()
{ timer_tmp = timer_val; // timer_val could still change here!

seconds = (timer_tmp>>16)%60;
minutes = ((timer_tmp>>16)/60)%60;
hours = ((timer_tmp>>16)/(60*60))%24;
days = (timer_tmp>>16)/(60*60*24);

}

 Version 2 – ought to work OK
void update_tod()
{ DisableInterrupts(); // be careful to minimize blocking time!
timer_tmp = timer_val; // timer_val can’t change now
EnableInterrupts();
seconds = (timer_tmp>>16)%60;
minutes = ((timer_tmp>>16)/60)%60;
hours = ((timer_tmp>>16)/(60*60))%24;
days = (timer_tmp>>16)/(60*60*24);

}

42

Review
 Buffer management

• Understand how Single buffer, double buffer, FIFO work

• Study suggestion: write the code to manage the “head” pointer for FIFO and
test everything out

 Reentrant code
• Making sure code can be executed by multiple threads concurrently

• Know rules for reentrant code; be able to spot a rule violation

 Atomic Actions
• Making sure that an operation can’t be interrupted

• Know how to make a piece of code atomic

 Mutexes
• Mutex to implement mutual exclusion of critical regions

• Know how to implement and use TestAndSet

43

Answers To Concurrency Problems #1
 If two threads try to make a log entry, they will write to same index

error_ptr

 Context switch could happen right before +1, causing one valid entry and
one blank entry

 One thread might increment error_ptr between other thread writing code
and time, leading to mis-matched code/time pairs

 Both threads might get past the >= LOGSIZE check and both subtract
LOGSIZE, giving an invalid pointer

44

Answers To Concurrency Problems #2 & #3
 This one is tricky – timer_ticks could increment partway through the

loop
• When timer_ticks increments, a higher priority task could become eligible for

execution

• BUT, if the value of “i” in the loop is greater than that high priority task, it will
be ignored until some other task is selected for execution or all values of “i”
have been tried.

 Solutions:
• Check for timer_ticks incrementing and re-trigger loop each time

• OR: just chalk it up to blocking time – because it isn’t much longer than case
where the lower priority task just started execution before timer_ticks
incremented

 Timer_val could increment during execution of update_tod

Answers To Concurrency Problems #4

