Lecture \#7

Bit Hacking, Multiprecision Math, Peer Reviews

18-348 Embedded System Engineering Philip Koopman

Wednesday, 3-Feb-2016

Example: Elevator Controllers

- Motor control
- Firm real time
- Safety critical
- Mechanical interlocks
- Fail safe
- Door control
- Soft real time
- Somewhat safety critical
- Mechanical interlocks
- Fail safe
- Many other subsystems
- Most electronics for I/O and power (replaces relays)

Embedded Distributed Architecture

- Separate Control Systems for many functions
- (Real elevators have more than are shown here.)

Where Are We Now?

- Where we've been:
- Embedded programming techniques
- Linking C to assembly
- Where we're going today:
- More Embedded programming techniques
- Some 15-213 material, but we've found it doesn't stick for all students
- Multi-precision math
- Design reviews
- Where we're going next:
- Memory bus
- Economics / general optimization
- Debug \& Test
- Serial ports
- Exam \#1

Preview

REMINDER: Pre-Labs are Individual Effort! (like "homework")

- Bit-based optimizations

- Bit masking
- Division and multiplication via shifting
- Counting bits
- Multiple precision math - doing math bigger than CPU size
- Addition/subtraction
- Multiplication
- A little division

- Peer Reviews

- Reviews are very effective at finding defects
- Basic good review practices

Buffer Wrap-Around Trick

- Let's say you have a buffer that is $\mathbf{2 5 6}$ bytes long
- Want to fill bytes $0 \ldots 255$, then wrap-around to 0
- Slow and really obvious code:

$$
x[i]=z ; \quad i=(i+1) \% 256 ;
$$

" But, division is slow!

- "Obvious" faster code:

$$
\mathrm{x}[\mathrm{i}++]=\mathrm{z} ; \quad \text { if }(\mathrm{i}==256) \quad\{\mathrm{i}=0 ;\}
$$

- "Tricky" code:

$$
\mathrm{x}[\mathrm{i}++]=\mathrm{z} ; \quad \mathrm{i}=\mathrm{i} \& 0 \mathrm{xFF} ;
$$

- In general, $\quad i=i \&\left(\mathbf{2}^{\mathbf{N}}-\mathbf{1}\right)$ for a buffer size of $\mathbf{2}^{\mathbf{N}}$
- For example, what hex value do you AND with for a 1024-element buffer?
- What if buffer size isn't an even power of two?

Optimization: "Strength Reduction"

- Convert division and multiplication into shifting

- Can be faster than multiply if chip doesn't have a hardware multiplier
- Usually only worth doing for small integers or numbers near power of 2
- Works for both signed and unsigned numbers

- Multiply by shifting:

- Multiply by 2^{N} by shifting left N bits
- $\mathrm{A}=\mathrm{A} * 8 ; \quad \Rightarrow \quad \mathrm{A}=\mathrm{A} \ll 3$;
- $\mathrm{B}=\mathrm{B} * 512 \quad \Rightarrow \quad \mathrm{~B}=\mathrm{B} \ll 9$;
- Complex multiply by selective shift \& add:
- $\mathrm{A}=\mathrm{A} * 9 \quad \Rightarrow \quad \mathrm{~A}=(\mathrm{A} \ll 3)+\mathrm{A}$;
- $\mathrm{A}=\mathrm{A} * 15 \quad=>\quad \mathrm{A}=(\mathrm{A})+(\mathrm{A} \ll 1)+(\mathrm{A} \ll 2)+(\mathrm{A} \ll 3)$;
- $\mathrm{A}=\mathrm{A} * 15 \quad \Rightarrow \quad \mathrm{~A}=(\mathrm{A} \ll 4)-(\mathrm{A})$;

Division Via Shifting

- Unsigned division is easy

- unsigned int n ;
- $\mathrm{n}=\mathrm{n} / 8 ; \quad=>\quad \mathrm{n}=\mathrm{n} \gg 3$;
- But, signed division is more difficult!
- Integer division rounds toward zero (symmetric around zero)
- Shifting rounds down (asymmetric at zero)
- For signed division, answer isn't quite right!
- (How to work around this is a lab topic)
- Convince yourself you have the right answer via a test program

i	$\mathrm{i} \gg 2$	$\mathrm{i} / 4$
-8	-2	-2
-7	-2	-1
-6	-2	-1
-5	-2	-1
-4	-1	-1
-3	-1	0
-2	-1	0
-1	-1	0
0	0	0
1	0	0
2	0	0
3	0	0
4	1	1
5	1	1
6	1	1
7	1	1
8	2	2

The Carry Bit

- Remember that the basic purpose of a carry bit is multi-precision math
- Example: 16-bit addition done with 8-bit operations:

LDAA \quad X_lo ; add low byte $Z=X+Y$
ADDA \quad _lo ; generate carry for high byte
STAA Z_lo

LDAA X_hi ; add high byte $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$
ADCA Y_hi ; incorporate carry from low byte
STAA Z_hi

- Can generalize to as many bits as you want
- Lowest "chunk" is ADDA; all other chunks are ADCA

OR

- Use all ADCA and make sure to use CLC before first set of adds
- Subtract is similar - use subtract with borrow ("borrow" is the carry bit)

Using The Carry Bit As An Error Return Flag

- Robust code needs error handling
- But, how do you know an error happened?
- Sometimes can use an "illegal" return value (e.g., null pointer)
- But what if all values are legal?

Use an "out of band" value ... such as the carry bit

JSR MyRoutine
BCS error_handler
\qquad
MyRoutine:
... ; do processing
CLC ; normal return here
RTS
ErrorRtn:
STC ; set carry bit as error flag
RTS

Flag Manipulation Via Carry Bit

- Convert a "dirty" flag to a clean flag in an integer
- Clean flag in C is $1=$ True or $0=$ False
- "Dirty" non-zero flag is non-zero, but could be anything
- C compilers may waste a lot of code cleaning flags to conform to the standard
- On some CPUs, especially with high branch penalties this is a major win; on HC12 it's not worth doing

```
; assume starting value is in A (5 bytes / 3 cycles)
```

; simple way with a branch
TSTA ; sets flags based on contents of A
BEQ zero_val
LDAA \#1 ; load a clean carry bit; result in A
Zero_val:

```
... - - - - - - - alternate code here- - - - - - - - - - - -
; tricky way with carry bit (result in B)
LDAB #1 ; default value is true
DECA ; false value is now $FF instead of $00
ADDA #1 ; generates carry-out if false
SBCB #0 ; subtract one only if false
; 7 bytes total / 4 cycles, but no branch
```


Computing Parity

- Parity of a number is xor of all the bits
- Parity of 8-bit value $=\mathrm{x} 0 \oplus \mathrm{x} 1 \oplus \mathrm{x} 2 \oplus \mathrm{x} 3 \oplus \mathrm{x} 4 \oplus \mathrm{x} 5 \oplus \mathrm{x} 6 \oplus \mathrm{x} 7$
- Brute force way (k operations for k bits):
$x=((x) \wedge(x \gg 1) \wedge(x \gg 2) \wedge(x \gg 3) \wedge(x \gg 4) \wedge(x \gg 5) \wedge(x \gg 6) \wedge(x \gg 7)) \& 1 ;$
- Better way (log2(k) operations for \mathbf{k} bits):

$\mathrm{x}=(\mathrm{x} \wedge \mathrm{x} \gg 1) \& 1$;
- How many steps (lines of code according to above style) for 128 bits?

Counting Bits

- Sometimes you need to know how many 1 bits are in a word
- Some mainframes actually had "bit count" instructions!
- Some companies ask this question as a job interview question
- Simple way (16-bit example)
// input in integer "value"
int count $=0$;
for (int $\mathrm{i}=0 ; \mathrm{i}<16 ; \mathrm{i}++$)
\{ if ((value >> i) \& 1) count++; \}
- Usually more efficient to shift value as well and avoid "if":

```
int count = 0;
for (int i = 0; i < 16; i++)
    { count += value & 1;
        value = value >> 1;
    }
```


Handy Tool - Lookup Table

- Lookup table is a precomputed set of answers stored for later use
- At compile time or when program starts, do the computation once
- Store results in an array
- Instead of computing again at run time, just look up the answer
- More advanced: store samples from continuous data (e.g., trig functions) and interpolate
- Example: pre-computing a lookup table for bit counting
uint8 count_table[....] = \{0,
1,
1,
2,
1,
2,
2,
3, // 0x07
1, // 0x08
2, // 0x09
2, // 0x0A
- Usage: bitCount = table[0x0A]; // get number of bits=2 in hex value 0x0A

Counting Bits - Better Ways

- In assembler, can use shifting and carry
- Shift bits into CY bit
- Do ADC into sum
- Stop not after 16 iterations, but when residual word is zero

- Even better is to use lookup tables

- One 256-entry lookup table for 8 bit value (preload with counts)
- But if memory is tight, use a 16 -entry table
uint 8 count_table[16] $=\{0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4\}$;
// input in integer "value"
count = count_table[value \& 0xF] + count_table[(value>>4) \& 0xF];
- (similarly, can use a 4-bit or 8-bit table for 16 and 32 bit data words)
- On Pentium-III, an 8 -bit table was faster than a 16 -bit table because 8-bit table fits completely into L1 cache

Multi-Precision Math

- What happens if you need big integers and you have a small CPU?
- 16-bit+ math on an 8-bit CPU
- 32-bit+ math on a 16 -bit CPU
- 64-bit math on a 32-bit CPU
- To do this, you need multi-precision math
- Most embedded engineers end up implementing multiprecision math sometime
- Some C compilers have it, some don't
- CW tools don't support 64 bit integers
- Sometimes you need it for assembly language
- For every new CPU, someone needs to write the math routines
- Does this really happen - yes!
- Cryptographic operations (e.g., mod function on 128 bits)
- There are 31,557,600 seconds in a year - that won't fit in 16 bits
» Number of microseconds in a year won't fit either!

Example: 16-bit Add \& Subtract For 8-bit CPU

X: DS.B 2

- (be sure to get x, y order

Y: DS.B 2 right for subtract!)
Z: DS.B 2
$-\mathrm{Z}=\mathbf{X}+\mathbf{Y}$
LDAA $\mathrm{X}+1$
ADDA $\mathbf{Y + 1}$
STAA Z+1

- Z = X - \mathbf{Y}

LDAA $\mathrm{X}+1$
SUBA $Y+1$
STAA $\mathbf{Z + 1}$

LDAA X
ADCA Y
STAA Z
LDAA X
SBCA Y
STAA Z

32-Bit Add For 8-Bit CPU

X: DS.B 4 ; assume this byte order:
Y: DS.B 4 ; (hi) 0, +1, +2, +3 (lo)
Z: DS.B 4
$-\mathbf{Z}=\mathbf{X}+\mathbf{Y} \quad$ (subtract is similar)

Multiplication

- Remember how we do unsigned decimal multiplication?
- Binary multiplication is the same process, but "digits" are 8 bits each

- 16 * 16 bits => 8-bit "digits"; 16-bit partial products and 32-bit result
- Also works for 16 -bit "digits" making 64-bit result

Multiplication - Simple C Code

// 16x16 gives 32 -bit unsigned multiply uint16 a, b;
uint32 w, $x, y, z ; / / 32$-bits for compiler
uint32 result;
$w=((a \gg 8) \& 0 x F F) ; \quad x=(a \& 0 x F F) ;$
$y=((b \gg 8) \& 0 x F F) ; \quad z=(b \& 0 x F F) ;$
result = $x^{*} z$;
result += $\quad\left(w^{*} z\right) \ll 8$;
result += $\quad\left(y^{*} x\right) \ll 8$;
result +=(y*w)<<16;

- uint32 used for $\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ so compiler properly maintains 32 -bit sums

Multiplication - Lookup Table Method

- Use a lookup table with 8x8 = $\mathbf{1 6}$ bit products
- Instead of individual multiply instructions - some CPUs don't have a MULT instruction!
- $8 x 8=>16$ bit table is 128 KB (too big for many embedded CPUs)
- $4 x 4=>8$ bit table is only 256 bytes
// 8x8 gives 16-bit unsigned multiply/tables
uint8 prod_table[256]; // init with products
\#define table_mult(a,b) prod_table[(a\&0F)<<4|b\&0F]
uint8 a, b;
uint16 w, x, y, z; // 16-bits for compiler
uint16 result;
$w=((a \gg 4) \& 0 x F) ; \quad x=(a \& 0 x F)$;
$y=((b \gg 4) \& 0 x F) ; \quad z=(b \& 0 x F) ;$
result =
table_mult(x, z);
result += table_mult $(w, z) \ll 4$;
result += table_mult $(y, x) \ll 4$;
result += table_mult $(y, w) \ll 8$;

Multiplication - Shift And Add

- Binary multiplication instead of "decimal" or base 256 multiplication
- This is what is used by most low-end hardware
- Complexity proportional to \#bits (1 clock cycle per bit + overhead)
- E.g., HC12 multiply is 12 clocks for 8×8 unsigned multiply
- 4 clocks overhead plus one clock per bit for 8 bits
// code to multiply two uint8 values uint8 a; uint16 b; // b starts with 8 bits uint16 result;
uint8 i;
result = 0; // zero shift+add accumulator for (i=0; i<8; i++)
\{ if (a \& 1) result += b;
$\mathrm{a}=\mathrm{a} \gg 1$ 1; $\mathrm{b}=\mathrm{b} \ll 1$;
\}

Better Shift And Add Multiply

- Trick - careful analysis saves space
- Shift one operand out to the right in low part of variable
- Accumulate result in high part of variable
- Very useful if you only have one register with both operand and result
- Cuts from two shifts per iteration to one shift (CY bit used too!)
- BUT only works for positive integers (top bit 0) unless you catch carry out bit in asm!!

```
uint32 w, x; // but only hold 16 bit values
uint32 result;
result = x; // high is 0; low is x
w = w << 16; // align with high byte for adds
for (uint8 i=0; i<16; i++)
{ if (result & 1) {result = (result+w)>>1;}
    else {result = result>>1;}
} // note: loop loses carry-out of result+w!
    // (use ROR if in assembly language)
```

RESULT = X * W
START:

W3 W2 W1 W0	0	0	0	0	W

0	0	0	0	X 3	X 2	X 1	$\mathrm{X0}$
RESULT							

Test lowest bit of result (X0); assume it's 1 for this example Add W:
cy=0 W3 W2 W1 W0 X3 X2 $\mathrm{X} 1 \times$ X0 RESULT
Shift right:
cy=0 \square RESULT
Test lowest bit of result (X1); assume it's 0 for this example
Shift right:
cy=0

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & \mathrm{~W} & \mathrm{~W} 2 & \mathrm{~W} 1 & \mathrm{~W} & \mathrm{X} 3 & \mathrm{X} 2 \\
\hline
\end{array}
$$

If rest of bits of X are all zero, when you're done you get W * $1=W$

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & \text { W3 W2 W1 W0 } \\
\hline
\end{array}
$$

Example (4 x 4 => 8 bits) For Assembly Language
$W^{*} X=1110 * 1101=10110110=$ RESULT

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	0	0	0	0	W

Start	0	0	0	0	1	1	0	(1)	RESULT
W cy=0	1	1	1	0	1	1	0	1	RESULT
$\gg 1$ cy=0	${ }^{\circ} 0$	${ }^{4} 1$	${ }^{4} 1$	${ }^{*} 1$	${ }^{*} 0$	${ }^{1} 1$	${ }^{4} 1$	(0)	RESULT
$\gg 1$ cy=0	${ }^{4} 0$	${ }^{4} 0$	${ }^{4} 1$	${ }^{4} 1$	${ }^{*} 1$	${ }^{4} 0$	${ }^{4} 1$	(1)	RESULT
+ W cy=1	0	0	0	1	1	0	1	1	RESULT
>>1 cy=0	1	${ }^{4} 0$	${ }^{4} 0$	${ }^{4} 0$	${ }^{4} 1$	${ }^{4} 1$	${ }^{4} 0$	(1)	RESULT
+ W cy=1	0	1	1	0	1	1	0	1	RESULT
>>1 cy=0	1	${ }^{4} 0$	${ }^{+1}$	${ }^{*} 1$	${ }^{4} 0$	${ }^{+1}$	${ }^{*} 1$	${ }^{4} 0$	RESULT

Signed Multiply

- There are really tricky algorithms (usually with special hardware)
- Usually what you do in software is:

1. Compute sign of result (sign A \oplus sign B)
2. Negate any negative inputs (2's complement) to give absolute values
3. Multiply absolute values (works fine with tricky shift and add - top bit is zero!)
4. Negate result if sign of result was negative

- Other multiplication notes

- Don't forget that size of product is twice size of operands!
- Signed and unsigned multiply are the same if you truncate to low order bits
- 16 -bit x 16 -bit => low 16 -bits of result is same whether signed or unsigned
- In CPU hardware or microcode, 1 clock per bit
- Can perform conditional add and shift in one clock with the right data path

Division

- Division is also a shift-and-add operation

- Similar to pencil-and-paper division, but one bit at a time
- Generally also performed on positive integers
- Use the same registers for dividend, quotient, remainder; similar to multiply

1. Subtract divisor (e.g., 16 bits) from dividend (e.g., 32 bits)
2. If result is negative, add it back in; if not, record a " 1 " in quotient
3. Shift everything one bit to the right (32-bit shift)
4. Iterate to step 1 for all bits
5. When done, get a remainder (16 bits) and a quotient (16 bits)

- Details beyond scope of this class
- There is also a "nonrestoring" division which is more efficient; but tricky » In hardware, works in one clock per bit (e.g., ~ 16 clocks for $32 / 16$ => 16 bits)
- Wikipedia division article has algorithms
» But they look way more complicated than they need to be for assembly language
- We expect you to know how to multiply
- Division is purely bonus material
- If you have questions about doing division, see Prof. Koopman at office hours

Getting It Right Matters!

Segway recalls scooters for injury risk
EymichaEL P. REGAN, AP Business writer
Thu Sep $14,2: 19$ PM ET 2006
NEW YORK - Segway Inc. is recalling all 23,500 of the self-balancing scooters it has
shipped because of a software glitch that can make its wheels unexpectedly reverse
direction, throwing off the rider and in at least one incident, break some teeth.

How Common Are Coding Defects?

- 2012 Coverity scan of open source software results:
- Control flow issues: 3,464 errors
- Null pointer dereferences: 2,724
- Resource leaks: 2,544
- Integer handling issues: 2,512
- Memory - corruptions : 2,264
- Memory - illegal accesses: 1,693
- Error handling issues: 1,432
- Uninitialized variables: 1,374
- Unintialized members: 918
http://www.embedded.com/electronics-blogs/break-points/4415338/Coverity-Scan-2012?cid=Newsletter+-+Whats+New+on+Embedded.com

REVIEWS

- Design reviews are the most cost effective way to eliminate defects
- Review early and often
- Review everything
- Reviews are MORE EFFICIENT than testing for catching bugs!
- In the context of the course:
- When your lab partner does something, double-check it thoroughly!
- When you do something, ask your lab partner to check it!
- In class, you're also reviewing my slides (and finding occasional slips)
- The TAs and I review labs before release

Early Detection and Removal of Defects -

Peer Reviews - remove defects early and efficiently

Relative Cost to Fix Requirements Errors

Defect Management - Then vs. Now

(Real data from embedded industry)

Defects are removed earlier

Good Review Practices

- Check your egos at the door

- Nobody writes perfect code. Get over it.
- Critique the Products
- Don't attack the author. Your turn in the hot seat will come soon enough!
- Find problems
- Don't try to fix them; just identify them.
- Limit meetings to two hours
- 150-200 lines per hour; two hours max
- Avoid style "religious" debates
- Concentrate on substance. Ideally, use a style guideline and conform to that
- For lazy people, it is easier to argue about style than find real problems
- Inspect, early, often, and as formally as you can
- Expect reviews to take a while to provide value
- Keep records so you can document the value

Honesty \& Review Reports

- The point of reviews is to find problems!

- If we ask you to document a review, we expect that you found (and then fixed after the review!) problems
- If you say you did a review and found no problems, that is a little fishy
- Perfect code is possible, but rare. (But if you get lucky, don’t worry.)
- We do not penalize you for bugs found in a review!
- If you say you did 10 reviews and found no problems then one of:

1. You didn't do very careful reviews
2. Your lab partner walks on water and should immediately get a job for huge $\$ \$ \$$
3. You didn't actually do the reviews

Most likely, it is bin \#1 or bin \#3; please avoid those bins.
(No, we don't want you to make up problems just to report them)

Issue Log For Course Reviews

- Include the following information:
- Developer name
- Reviewer name
- File name
- Date of review
- How long the review took and length of file (non-blank lines)
- List of defects found
- Metrics:
- Lines reviewed per hour (varies depending on complexity of code)
- Defects found per hour (varies depending on complexity and defect density)
- Real reviews are more formal and involve larger chunks of things
- We're just trying to give you a feel for how these things work

Review

- Bit-based optimizations
- Strength reduction
- Counting bits
- Parity
- Multiple precision math
- Addition/subtraction
- Multiplication in gory detail
- Division (just a general idea)
- Reviews
- Reviews are very effective at finding defects
- Basic good review practices

Lab Skills

- Fast arithmetic
- Shifts as division

- Multi-precision arithmetic

- Base lab: multi-precision addition/subtraction multi-precision multiplication
- Bonus: division
- Non-restoring division with a single shift-chain for dividend, quotient, and remainder is likely to make your brain hurt.
- If you find multiplication easy you should give it a try, but...
- Don’t say we didn’t warn you!
- Each partner review code before hand-in
- Use the review report format
- Yes, these are "toy" reviews. The point is for you to figure out the process without spending a lot of time on the mechanics

