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Household Thermostat (smarter than you think)
 Household thermostat & flow charts

• Yes, they really are this complicated…  easily 64KB program size

• Example function: low battery warning

• Newer generation is more connected (e.g., NEST learning thermostat)
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NEST – A Smarter Thermostat
 Version 4.0 released Nov 22nd 2013 (right before Thanksgiving Week)

ARM Cortex A8 CPU
512Mb DRAM
2Gb NAND flash

http://www.ifixit.com/Teardown/Nest+Learning+Thermostat+2nd+Generation+Teardown/13818
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Newer Thermostat Features
 Internet connectivity

• Remotely set temperature

• Send “I’ll be home soon” command

• Coordinate with lighting, occupancy, and multi-zone management

 What could come next? (many of these are already here…)
• Automatically learn usage patterns

• Coordinate temperature with weather
– Start heating house in morning so it reaches desired temperature when you wake up

• Coordinate temperature with power grid
– Reduce cooling if power grid is overloaded

• Heating/cooling diagnostics
– Compare outside temperature to inside temperature and detect efficiency problems

• Adaptive behaviors
– Pre-cool when power is cheaper (use house mass as thermal capacitor)

• Real-time smart grid management
– Real-time energy auctions (set thermostat by $/day instead of temperature)
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Where Are We Now?
 Where we’ve been:

• Assembly language

• Better engineering practices

 Where we’re going today:
• Embedded C

• Embedded programming techniques

 Where we’re going next:
• More embedded programming techniques

• Memory bus

• Economics / general optimization

• Debug & Test

• Serial ports

• Exam #1
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Preview
 Checklists

• Helping yourself get things right with minimum worry

 Embedded-specific programming tricks
• Bit manipulation  (C and Asm)

• C keywords that matter for embedded

 Combining C and Assembly programs
• How to link an assembly subroutine to a C calling program
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Checklists
 All people make mistakes

• Errors of commission (doing the wrong thing)

• Errors of omission (forgetting to do something)

 Errors of omission are more common – but easier to improve!
• Shopping lists

• Post-it notes

• Checklists  (don’t miss a step)
– Packing for a trip

– Performing a complex operation

– Helping remember things in a crisis (e.g., aircraft emergency procedures)

– Training new people

– Helping experienced people who get bored and forget items
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Course Checklists
 Assignment checklist

• Each assignment has a checklist of items to hand in

 Coding style sheet
• For every hand-in, go down the style sheet and make sure you got them right

 Lab checklists
• Circuit debugging tips sheet – use it when you have a hardware problem

 Maybe you want to make a hand-in checklist
• Check file name conventions

• Load submissions back to your computer and make sure it compiles clean

• … etc …

 (Remember the design review checklist from last lecture?  That is the 
sort of thing people in industry really use.)
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http://www.ece.cmu.edu/~ece348/labs/docs/lab_checklists.html
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Best Checklist Practices
 Use the checklist!

• Emphasis originated in military organizations; NASA used them extensively
• Just because you know the steps doesn’t mean you will follow them!

 Make your own local copy of any checklist
• Add things to the checklist if they bite you
• Delete things from the checklist that aren’t relevant
• Keep the checklist length about right – only the stuff that really matters

 Important uses of checklists in industry
• Testing – make sure you actually do all the tests
• Design reviews – make sure you don’t forget to look for things
• Style sheets – make sure all style elements are met 

 A word about honesty
• Filling out a checklist when you didn’t actually do the checks is dishonest!
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Two’s Complement Numbers (review)
Normal binary arithmetic on signed numbers

 To take negative N-bit value, subtract from 2N

• (8 bits) -13 =   256 – 13 = 243  =  0xF3

 Limits on representation
• Maximum number is (2N-1 - 1) 0x7F     = 127     for 8 bits

0x7FFF= 32767  for 16 bits

• Minimum number is (-2N-1) 0x80     = -128    for 8 bits
0x8000= -32768  for 16 bits

 Relevant assembly instruction:
• NEG, NEGA, NEGB

 Ways to compute in C:
1. A = 0 – A; // do the subtraction

2. A = (A ^ 0xFF) + 1; // invert all bits and add one
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One’s Complement Numbers
 Some early computers did all computations in one’s complement

• Still useful in some niche applications, particularly checksums

 Limits on representation
• Maximum number is (2N-1 - 1) 0x7F     = 127     for 8 bits

0x7FFF= 32767  for 16 bits
• Minimum number is (-(2N-1 - 1)) 0x80     = -127    for 8 bits

0x8000 = -32767  for 16 bits
• Two values of zero: 0x00 and 0xFF 0x0000 and 0xFFFF

 Relevant assembly instruction:
• COM, COMA, COMB
• There is no built-in one’s complement add – but there is a trick:

take the carry-out and add it back in as the low bit (skips over 0x0000 value)

 Ways to compute:
1. A = (A ^ 0xFF); // bit inversion is one’s complement
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Data Type Portability – what’s an “int”?
 In many embedded systems, “int” isn’t 32 bits!

• And other things vary – char might default to signed or unsigned
 Use more explicit data types to help with:

• Code portability  (will run when moving from 8-bit to 16-bit CPU)
• Your own portability (especially if you work with multiple CPUs)
• Efficiency (so you don’t drag big data types around on small CPUs)

 Suggestions, with HC12-specific default definitions
• int8 – signed char uint8 – unsigned char
• int16 – signed int uint16 – unsigned int
• int32 – signed long uint32 – unsigned long
• int64 – (not supported) uint64 – (not supported)
Also consider:
• bool – unsigned char
• In Codewarrior, you can actually change lengths options, so be careful!

• If you aren’t sure, use “sizeof” in a test program to find out
printf(“Long Long is %d bytes\n”, sizeof(long long));

 Also see:
• “stdint.h” and “inttypes.h”  for generic ways to deal with this issue

– (The standard is e.g. “uint16_t”   but “uint16” is used often in legacy systems)
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Branch On Bits
 Very often, embedded software deals with individual bits

• A few bits in a hardware status register that combines many bits

• Packing data structures into bytes to save memory (e.g., 8 flags bits per byte)

 Branch if bits clear – branch only if ALL of a set of bits are clear
• asm: BRCLR VARA, $A2, target_label

branches if all of bits  1, 5, and 7  are clear    (1010  0010)

• C:       if ( !(VARA & 0xA2) ) {  … do if all bits clear… }
executes “if” part if all bits clear (caution – reverse branch direction than asm)

 Branch if bits set – branch only if ALL of a set of bits are set
• asm: BRSET VARA, $1C, target_label

branches if all of bits  2, 3, and 4  are set    (0001 1100)

• C:       if ( !((VARA ^ 0xFF) & 0x1C) ) {  … do if all bits set … }
executes “if” part if all bits set (caution – reverse branch direction than asm!)
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Bit Setting and Clearing
 Sometimes you need to set or clear a specific bit

• For example, to change values in a status register, or for packed data

• Will work on multiple bits in a byte/word – examples are for only 1 bit

 Setting a bit
• C:       VARA = VARA | 0x40; // sets bit 6

• asm: BSET VARA, $40

 Clearing a bit
• C:       VARA = VARA & (0x40 ^ 0xFF); // clears bit 6  ( ~0x40)

• asm: BCLR VARA, $40

 Inverting a bit
• C:       VARA = VARA ^ 0x40; // inverts bit 6

• (no single assembly instruction for direct addressing mode)
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Bit Extraction
 Sometimes multiple fields are packed into a single byte

• Example:  color values in a “16-bit / 32K color” display word

 Here’s how to recover the fields from a single 16-bit RGB word:
• BLUE:   blue_val   =  (RGB           & 0x1F)

• GREEN:  green_val = ((RGB>>5)   & 0x1F)

• RED:      red_val     = ((RGB>>10) & 0x1F)

• Note: better to mask after shift instead of before in case there is a 
signed/unsigned shifting problem

X    RED    GREEN    BLUE
1 5 5 5
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Bit Insertion
 Inserting bits into a field is more difficult

• Clear out old bits in the field
• OR in the new bits for the field

• BLUE: RGB = ((RGB & 0xFFE0) |  ((new_blue & 0x1F)))
• GREEN: RGB = ((RGB & 0xFC1F) |  ((new_green & 0x1F) << 5))
• RED: RGB = ((RGB & 0x83FF) |  ((new_red & 0x1F) << 10))

Note: the “& 0x1F” is to prevent corruption from invalid value
• 1111 1111 1110 0000 = 0xFFE0
• 1111 1100 0001 1111 = 0xFC1F
• 1000 0011 1111 1111 = 0x83FF

X    RED    GREEN    BLUE
1 5 5 5
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Bit Fields
struct mybitfield { flagA : 1; 

flagB : 1; 
nybbA : 4; 
byteA : 8; 

} 

 Bit Fields permit accessing memory in sections smaller than a byte
• Format: name :  #bits; name :  #bits; name :  #bits; 

struct mybitfield F;
F.flagA = 1;
F.flagB = 0;
F.nybbA = 0x0A;
F.byteA = 255;
F.flagB = F.flagB ^ 1;  // invert flag

 Notes:
• Bit field order is undefined and up to the compiler, so don’t assume
• Each bit field starts in a new machine word, unused bits are left idle in a word
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C keyword: static
 Static keyword for variables

• Tells compiler to put variable in a statically allocated piece of global memory

• Variable is always in memory

• Variable survives between calls

• Alternative (non-static) is that variable is on stack

Void test_proc(void)

{ int8 a;

static int8 b;

printf(“%d\n”, a);   // undefined value from stack

printf(“%d\n”, b);   // 17 on second and later calls

b = 17;

}

 Global != static
• “Global” has to do with scope – above is only visible within test_proc

• “Static” has to do with it being a fixed memory address, not on the stack
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The Other Use Of Keyword:  “file static”
 We hear that some companies ask this on job interviews…

• This is general C knowledge, and not particularly embedded-specific

 When applied to a top level (global) variable or function definition
• Static means “not visible outside this compilation unit”

• Or, more loosely, make this variable or function invisible outside a .c or .cpp

• It works by omitting the information from the external linker map
static int8 b;

static void test_proc(void)

{ … }

 Why would you want to do this?
• Most useful in C programs lacking ability to use C++ encapsulation features

• Hides variable definition for encapsulation – other code can’t link to it

• Hides functions for encapsulation
– In effect, functions inside the file are “friend” functions, and everything else isn’t

• Avoids naming collisions between globals and functions in multiple files
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C Keyword: volatile
 Volatile keyword for variables

• It means that something other than the C program can change its value…
… so compiler doesn’t keep it in a register (or cache) between computations

• Must be loaded before each use and stored before each use

• Memory-mapped I/O   (e.g., reading from ports)

• Interrupts that change values in background (e.g., reading time of day)

volatile bool lockout;

…..
// wait for lockout to be over

while (lockout) {/* do nothing */};

• This is an infinite loop if lockout isn’t volatile

• It is just waiting for some other task to set the variable as written above

 Globally visible variables may need to be volatile
• If two tasks share a variable, volatile makes sure changes are detected

22
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C Keyword: inline
 Inline keyword tells compiler to omit subroutine overhead

inline int average( int a, int b)

{ int result;

result = (a + b) / 2;

return result;

}

 These two generate identical code in most cases:
c = average(a,b);

c = (a + b) / 2;

 So why use it?
• Speeds up execution of very simple functions

• Pasting the code instead of calling makes code more complex, less maintainable

• A lot easier to do complex computations than a macro

• Can remove “inline” keyword to save memory on multiple uses if desired
• Similar to a #define macro, but cleaner and more scalable
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Other Potential Keywords
 ROM – put this value in ROM  (same idea as “const”)

 RAM – put this value in RAM

 near / far – designate as a 16-bit or larger pointer

 large / small – an array is bigger or smaller than 64 KB

 interrupt – a subroutine is an interrupt service routine and not a regular 
subroutine

 register – keep a value in a register instead of memory
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Why Macros Are Evil
 You should use in-line rather than macros whenever possible

• Macros are the source of many nasty bugs
– Almost impossible to debug without looking through expanded source code

• “Whenever possible” is approximately equal to “ALWAYS”

• If in-line function won’t work, then you should use C++ templates

 Unsafe macro:
#define MYMACRO(x)   x%4

MYMACRO(a+b)     a+b%4

 Macro rule – encapsulate every use of a macro parameter with “( )”
#define MYMACRO(x)   (x)%4

MYMACRO(a+b)     (a+b)%4
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Combining Assembly & C
 Writing everything in assembly is usually a bad idea

• Too hard to get right
• Too expensive – high level languages are less expensive to develop in
• But, combining a little assembly with almost all C can be OK

1. “In-line” assembly (only supported by some C compilers)
• This is very tricky to get right, and problems with changing registers

a = b + c;
__asm { …

TFR D,X
LDY 2,SP
….

}
e = f + g;

2. C program calls an assembly function
• This is what we will concentrate on in this course
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Easiest Way To Start – Use An Example
 Best way to link to a C calling program is to use an example

• Create a dummy program with the same parameters you want to use
• Run it through the compiler
• Assembler version shows you how to access parameters
• Modify assembler version to do what you want it to do
• But, can be complex if optimizer mixes things up too much

 Usually the best approach is:
• Create the code you want in C
• See how bad the compiler is (maybe it isn’t that bad after all!)
• Tweak C code to try to help compiler out
• Hand-tune assembly code only as a last resort

 How do you actually get the C compiler to cough up assembly?
• -S option on most compilers generates assembly language output
• In CW, can also use “disassemble” function
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Compute A 1’s Complement Checksum
 Checksum – “Add” up all the bytes/words as a digital signature

• Reduces chance of data corruption going undetected

 1’s complement add is a lot better as a checksum than 2’s complement!
• Gives 12.5% better error detection for 2-bit errors on 8 bit data

 Design:
• Initialize a running sum (for example, to zero).
• Loop across all bytes to be used in checksum.  For each byte:

– Add that byte to a running sum using two’s complement (normal) addition
– If there is a carry-out from the add, increment the running sum by one

» This skips over 0x00 in the addition, going from 0xFF to 0x01 if incrementing

• Result left in running sum is the checksum

data Checksum

Frame check 
sequence (FCS)data word
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Program to do this:
Main:   

static uint8 data[XLEN];

static uint8 cksum_result; 

cksum_result = compute_ones_checksum(&data[0], 32);

Actual Routine:   
uint8 compute_ones_checksum(uint8 *array, uint16 count) 

{ uint8 *p;    uint16 checksum;   int i;

checksum = 0;   p = array;

for (i = 0; i < count; i++)  // add bytes 1 at a time

{ checksum = checksum + *(p++);  // add next byte

// unsigned *p to avoid sign extension

if (checksum & 0x100)        // check for carry-out

{ checksum++;                // wrap carry bit

checksum = checksum & 0xFF;

}  }

return((uint8) checksum);}
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Disassembled Procedure Call
// cksum_result = compute_ones_checksum(&x[0], 32);

0015 cc0000    [2]     LDD   #x

0018 3b        [2]     PSHD  

0019 c620      [1]     LDAB  #32

001b 87        [1]     CLRA  

001c 0700      [4]     BSR   compute_ones_checksum

001e 1b82      [2]     LEAS  2,SP   ; pop input

0020 7b0000    [3]     STAB  cksum_result

• Address passed on stack
• Last parameter passed in register D

• (A=0 B=32 => 16-bit “32”) input count value
• Result passed back out in B

• The “[1]” etc. are estimated cycle counts
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Disassembled Checksum Routine
0000 6ca8  [2]     STD   8,-SP

//uint8 *p; uint16 checksum; int i;

//checksum = 0;

0002 c7     [1]     CLRB  

0003 87     [1]     CLRA  

0004 6c82   [2]     STD   2,SP

// p = array;

0006 ee8a   [3]     LDX   10,SP

0008 6e86   [2]     STX   6,SP

// for (i = 0; i < count; i++)

000a 6c84   [2]     STD   4,SP

000c 201c   [3]   BRA   *+30 
;abs=002a

// { checksum = checksum + *(p++); 

000e ee86   [3]     LDX   6,SP

0010 e630   [3]     LDAB  1,X+

0012 6e86   [2]     STX   6,SP

0014 b714   [1]     SEX   B,D

0016 e382   [3]     ADDD  2,SP

0018 6c82   [2]     STD   2,SP

//  if (checksum & 0x100)

001a 0f820107   [4]     BRCLR 
2,SP,#1,*+11 ;abs = 0025

// { checksum++;

001e c30001 [2]     ADDD  #1

0021 6c82   [2]     STD   2,SP

// checksum = checksum & 0xFF;

0023 6982   [2]     CLR   2,SP

0025 ee84   [3]     LDX   4,SP

0027 08     [1]     INX   

0028 6e84   [2]     STX   4,SP

002a ec84   [3]     LDD   4,SP

002c ac80   [3]     CPD   0,SP

002e 2dde [3/1]  BLT  *-32 
;abs=000e

// } } return((uint8) checksum);

0030 e683   [3]     LDAB  3,SP

0032 1b88   [2]     LEAS  8,SP

0034 3d     [5]     RTS   



33

Stack Picture For That Code

...Other Stuff...

Return

Address

Address-X-LO

Address-X-HI

p

i

checksum

count

+ 0

+ 2

+ 4

+ 6

+ 8

+ 10

+ 12
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 Things To Notice:
• C compiler wasn’t very clever about keeping things in registers

– Lots of accesses to the stack for storing intermediate values

• Calling program has info needed to figure out where parameters are
– Called program has them too, but can be very confusing!

 Approach for this lecture
• Write a new called assembly language routine

• Keep the same calling code – but replace subroutine code

• (In real life you want to see if you can avoid assembly language altogether, 
but for this example we’re assuming assembly language is the only practical 
choice)

Bet We Can Do Better Than That!
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Calling Program Framework
1. Know where input parameters are

• Parameters pushed from left to right  (first param deepest on stack)

• Last parameter passed in a register

2. Do the computation
• Use the stack for temporaries as needed

3. Return result value
• Return result in register

 Complete info in CodeWarrior Assembler manual, Chapter 11 
(“Mixed C and Assembler Applications”)

[Freescale]
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Let’s Rewrite The Example
Code Warrior Preliminaries:

 Check both “C” and “assembler” options when building project
• Will create both a main.c and a main.asm

• Put your assembly function in main.asm

 Notes on main.c
• “int8 compute_ones_checksum(int8 *array, int count);”

– That way compiler will know how to call it

 Notes on main.asm
• Change  asm_main  to compute_ones_checksum

• “XDEF compute_ones_checksum”
– That way the linker will see it
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Calling Parameters
0015 cc0000    [2]     LDD   #x

0018 3b        [2]     PSHD  

0019 c620      [1]     LDAB  
#32

001b 87        [1]     CLRA  

001c 0700      [4]     BSR   
compute_ones_checksum

 D register has 16-bit count for input

 Return value in B   (8 bit result)

...Other Stuff...

RTN-LO

RTN-HI

Address-X-LO

Address-X-HI
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Get Parameters Into Registers
 Strategy:

• B – is accumulated checksum

• X – is pointer

• Y – is loop counter

compute_ones_checksum:

PSHX          ; Save X & Y.   

PSHY

; D is input; not saved

TFR     D,Y   ; Y register is count

CLRA ; D register is

CLRB ;   running checksum (init to 0)

LDX     +6,SP ; X register is array address

...Other Stuff...

RTN-LO

RTN-HI

saveX-LO

saveX-HI

saveY-LO

saveY-HI

Address-X-LO

Address-X-HI

Stack:
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Perform A Checksum Loop Calculation
INY      ; Increment Y and jump to decrement-and-test
CLC      ; use repeated Add-with-carries for ones' complement
BRA   TestDone   ;  this catches the case where count == 0

CKLoop:     ; Loop across array; Y is count, D value, X address
ADCB  1,X+ ; add byte and post-increment X to point to next

; note: carry from one add goes into next add

TestDone:   DBNE    Y, CKLoop 
ADCB    #0    ; make sure last carry bit is accounted for

 Notes:
• Increment Y and then decrement in test to catch count=0 case

– Count is unsigned, so negative count isn’t an issue

• Repeated ADC does one’s complement addition
– (wraps 0xFF to 0x00)

• INX walks X pointer across array while Y is being decremented

[Freescale]
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Clean Up And Return Results
; low 8 bits of result is already in B register; return value

PULY    ; restore saved X & Y

PULX

RTS                   ; return to caller

 Notes:
• We were careful to use B for the calculation, so just pass back in B

• Restore X & Y in case being used by main
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Complete Optimized Assembly Version
compute_ones_checksum:

PSHX
PSHY
TFR     D,Y
CLRA
CLRB
LDX     +6,SP
INY
CLC
BRA     TestDone

CKLoop:     ADCB    1,X+
TestDone:   DBNE    Y, CKLoop         

ADCB    #0
PULY
PULX
RTS

 Notes:
• This is a lot smaller and faster than the C compiler!

– 2 instructions in the inner loop
– Problem – C language can’t represent a carry bit
– Problem – C compilers not always smart about loops & register use

• We’ll look at such things further in the optimization lectures
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Review
 Checklists

• Actually use the checklists we’re giving you (and update them for yourselves)

 Embedded-specific programming tricks
• Bit manipulation  (C and Asm)

– Set, clear, invert, extract, insert bits

• C keywords that matter for embedded
– What the keywords do:    static, volatile, inline

 Combining C and Assembly programs
• How to link an assembly subroutine to a C calling program

– Value passing  (last value in register; rest on stack)

– How all the pieces fit together

• I don’t expect you to be super-amazing at crazy optimization on a test

44

Lab Skills
 Use bit manipulation instructions

• Move bits around

• Insert/extract bits with and without C compiler bit fields

 Combine C and Assembly routines
• Create an assembly language routine called by a C program


