

1 2	11-Jan 2016	(Sec E)	a	Wed	Thu	Fri	I	Lab Report Due	Prelab Due	Fri. Recitation
1	11-Jan 2016		(Sec A)	(Sec B)	(Sec C)	(Sec D)	ILL	Wednesday	Friday	Discusses Labs
2	12010	No Lab	No Lab	Open Lab	Open Lab	Open Lab		None	1	1, 2
_	18-Jan	MLK Day	1	1	1	1	ΠΓ	None	2	2, 3
3	25-Jan	1	2	2	2	2		1	3	3, 4
4	1-Feb	2	3	3	3	3		2	4	4, 5
5	8-Feb	3	4	4	4	4	Í	3	5	5, 6
6	15-Feb	4	5	5	5	5		4	6	6, 7
7	22-Feb	5	Open Lab	Open Lab	Open Lab	6	ÍŪC	None	None	7, 8
8	29-Feb	6	6	6	6	BREAK		5	7 Due <u>Thursday</u>	No Recitation
	7-Mar	SPRING	BREAK	SPRING	BREAK	BREAK		None	None	No Recitation
9	14-Mar	Open Lab	Open Lab	7	7	7		6	8	8, 9
10	21-Mar	7	7	8	8	8		7	9	9, 10
11	28-Mar	8	8	9	9	9		8	10	10, 11
12	4-Apr	9	9	10	10	10		9	11	11
13	11-Apr	10	10	Open Lab	Carnival	Carnival		None	None	No Recitation
14	18-Apr	Open Lab	ÍŪĽ	10	None	Optional/In-Lab				
15	25-Apr	Open Lab		None	None	Optional/In-Lab				
16	2-May Finals	TBD	TBD	TBD	TBD	TBD		11 Due (Thursday)	None	No Recitation

Where Are We Now?

- Where we've been:
 - Embedded Hardware
- Where we're going today:
 - Instruction set & Assembly Language

• Where we're going next:

- More assembly language
- Engineering process
- Embedded C
- Coding tricks, bit hacking, extended-precision math

Preview

Programmer-visible architecture

- Registers
- Addressing modes

Branching

- Types of branches
- How condition codes are set

Assembly/Disassembly

• Review of how instructions are encoded

Timing

• How long does an instruction take to execute? (simple version)

Reference Guide		*						CPU	012
CPU12RG0 Rm: 2, 11/2001	intelligence everywhere' digital dha	Source Form	Operation Set 2	Alle.	Babin Coloradori	Access Detail		SXH	7
CPU12 Reference Guide (for HCS12 and original M68HC12)		832, aprila 832, april, pap 832, april, pap 832, april, pap 832, april, pap 832, april, pap 832, april, pap	C+-C	617 611 1011 1012 (0.01)	74 hh 11 63 sh 64 sh ff 64 sh ee ff 64 sh ee ff 64 sh	ribut cibut cibut tibut tibut tibut tibut tibut	itte itte itte treis titte		1
		432.8 432.8 432.0	Aritaneic Shit Let Accemulate A Aritaneic Shit Let Accemulate B	N	48 54 59	0 0 0	0		-
		ASE or No	Avitanski Stali Let Dodda	67	27 hA 11	1940	1004		-
	5 A A 5 7 1 A 11 1 A 11 A 11 A 11 A 11 A	A Ski (grift, jrgi) R Ski	4-guining→p Antonek Sak Riger Antonek Sak Riger	001 002 (0x2)	67 186 67 386 11 67 386 44 11 67 386 44 11 67 386 44 11 67 386 44 11	ritu ritui faitui faitui fiifaitu fiifaitu			
15 D	0 01 ACCUMULATORS A AND B 01 16-BIT DOUBLE ACCUMULATOR D	ASE8 BCC rull BCCR grfta molf	Anthropic Shill Digit Accordance 8 Branch If Carry Clear (I C + 1) All a cited an M	BEL DE	57 24 mm 40 dd mm	0 200/2 ² 2010	0 100/0 ² 100		-
15 X	0 INDEX REGISTER X	BCUR oprifia, model BCUR oprifia, opriga, model BCUR oprifia yrap, model BCUR oprifia (aprilia, model)	Chur Bitti in Menory	EXT EXT 1043 1042	1D hA 11 wm 1D sb mm 1D sb ff wm 1D sb ee ff um	1940 1940 1949 foriver	135v 135v 135v 135v 115v3		
15 Y	0 INDEX REGISTER Y	BCS roll BCQ roll BCC roll	Branch & Carry Sol (K C = 1) Branch #Equal (K Z = 1) Branch #Counter Than or Equal	16) 16) 16)	25 xx 27 xx 26 xv	899/3 ² 899/3 ³ 899/3 ³	999/9 ² 999/9 ² 999/9 ²		Ì
15 SP	0 STACK POINTER	80% 8/1 of	Phon CPU in Enclopent Wede we CPUTE Enformer Manual Encode Efforter Data	NH 50	00	10.00	1000		-
15 PC	0 PROGRAM COUNTER	Det wit	of 2 + (N = V) = (5 pigmet) (5 mich 215gfor of C + 2 = (5 perignet)	86.	22 ##	200/21	100/01		-
5	X H I N Z V C CONDITION CODE REGISTER	BIS ref	Branch if Higher or Same all C = 0, samigned same function on BCC	HL.	24 77	111/3	100/24		
	CARRY OVERFLOW ZERO	BEA option BEA option BEA option BEA option BEA option option BEA	Dogia IAND A with Manazy Dogia IAND A with Manazy Dogia net change Accumulater or Manazy	08 67 61 61 612 612	95 dd 36 hA 11 A5 sb A5 sb ff A5 sb ee ff A5 sb ee ff	194 190 190 197 198 198 198 198 198 198 198 198 198 198	32,836.5		
	MASK (DISABLE) IRQ INTERRUPTS HALF-CARRY	BTB Ages BTB ages BTB ages BTB ages Sa BTB ages Lyop BTB ages Lyop	(1) + MA Logical ANC () with Memory Does not change Accomulator or Memory	0.0 0.0 0.0 0.0 0.0 0.0 0.0	Ci ii Di 44 Pi bà 11 Xi 46 ff Xi 46 ff Xi 46 ff	2 cHt cHt cHt cHt cHt cHt cHt cHt	10.00		
	(USED IN BCD ARITHMETIC) MASK (DISABLE) XIRQ INTERRUPTS RESET OR XIRQ SET X,	BITB (Durye) BITB (gam Murya) BIT (with	(Franch if Leves Thate or Equal of $Z + (N + V) = 1$) pigmed	(DADA) (IDH2) REL	RS sb RS sb ee ff IF rr	el noir el insie inn (1)	616169 619169 899:9 ²		
	INSTRUCTIONS MAY CLEAR X	BLD/will	Branch #Lower of C = 15 samipred	REL	28 KK	200/27	8881,87		*

Source Form	Operation	Addr. Mode	Machine Coding (bex)	110512	Access Detail	SXHI	NZV
ABA	$(A) + (B) \Rightarrow A$ Add Accumulators A and B	INH	18 06	00		<u></u>	ΔΔΔ
ABX	$(B) + (X) \Rightarrow X$ Translates to LEAX B,X	IDX	1A E5	Pf	PP ¹		
ABY	(B) + (Y) \Rightarrow Y Translates to LEAY B,Y	IDX	19 ED	Pf	PP1		
ADCA #opr8i ADCA opr8a ADCA opr16a ADCA oprx9.xysp ADCA oprx9.xysp ADCA (prx9.kysp ADCA [0,xysp] ADCA [0,rx16.xysp]	(Å) + (M) + C \Rightarrow A Add with Carry to A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [DX2]	89 ii 99 dd B9 hh 11 A9 xb A9 xb ff A9 xb ee ff A9 xb A9 xb ee ff	P rPf rP0 rPf frP0 frPP flfrPf flPrPf	p rfP rfP rfP rFP fFP fIPrfP fIPrfP	Δ -	ΔΔ
ADCB #opr8i ADCB opr8a ADCB opr16a	$\begin{array}{l} (B) + (M) + C \Rightarrow B \\ \text{Add with Carry to B} \end{array}$	IMM DIR EXT	C9 ii D9 dd F9 hh 11	P rPf rPO	P rfP rOP	<u>A</u> -	ΔΔ

Addre	ss Modes		
Address M	odes		
IMM IDX	 Immediate Indexed (no extension bytes) includes: 5-bit constant offset Pre/post increment/decrement by 1 8 Accumulator A. B. or D offset 		
IDX1 IDX2 [D, IDX] [IDX2] INH REL	 9-bit signed offset (1 extension byte) 16-bit signed offset (2 extension bytes) Indexed indirect (accumulator D offset) Indexed indirect (16-bit offset) Inherent (no operands in object code) 2's complement relative offset (branches) 		
DIR EXT	 Direct (8-bit memory address with zero high bits) Extended (16-bit memory address) 		
		[Motorola01]	16

Notation	for Encoding of Instruction Bytes
Machir	ne Coding
dd —	8-bit direct address \$0000 to \$00FF. (High byte assumed to be \$00).
ee —	High-order byte of a 16-bit constant offset for indexed addressing.
eb —	Exchange/Transfer post-byte. See Table 3 on page 23.
ff —	Low-order eight bits of a 9-bit signed constant offset for indexed addressing, or low-order byte of a 16-bit constant offset for indexed addressing.
hh —	High-order byte of a 16-bit extended address.
ii —	8-bit immediate data value.
🗕 jj —	High-order byte of a 16-bit immediate data value.
	Low-order byte of a 16-bit immediate data value.
1b —	Loop primitive (DBNE) post-byte. See Table 4 on page 24.
11 -	Low-order byte of a 16-bit extended address.
mm —	8-bit immediate mask value for bit manipulation instructions. Set bits indicate bits to be affected.
pg —	Program page (bank) number used in CALL instruction.
qq —	High-order byte of a 16-bit relative offset for long branches.
tn —	Trap number \$30-\$39 or \$40-\$FF.
rr —	Signed relative offset \$80 (–128) to \$7F (+127). Offset relative to the byte following the relative offset byte, or low-order byte of a 16-bit relative offset for long branches.
xb —	Indexed addressing post-byte. See Table 1 on page 21 and Table 2 on page 22.

• "In	dexed" operand – memor	ry indexed; pre/post increment/decrement
•	ADDD oprx,xysp ((D) + [EE:FF+XYSP] => D
	- Add oprx to X, Y, SP or PC;	; use address to fetch from memory; add value into D
	 Encoding: E3 xb // (Signed offset value; 	E3 xb ff // E3 xb ee ff ; encoding varies – 5 bits, 9 bits; 16 bits)
	 Example: ADDD S Encoding: E3 10 (see Table 1 of CPU12 refer 	\$FFF0, Xadd value at (X-1610) to D (5 bit signed constant "\$10")rence guide for xb byte encoding)
•	Special optimized mode for su – "xb" can do many tricks, inc access arrays	maller code size and faster execution cluding support for post/pre-increment/decrement to
•	What C code would result in s static int16 B[100]; register int16 *p = &B[50]; T = T + *(p-8); // adds B[this instruction? // assume "p" is stored in register X [42] to T

ALU Operations – Addition – 4						
• "Indexed Indirect" operand – use	memory value as address, with offset					
 ADDD [oprx16,xysp] 	(D) + [[EE:FF+XYSP]] => D					
 Add oprx to X, Y, SP or PC; use ad fetched from memory to fetch from 	dress to fetch from memory; use the value a different memory location; add value into D					
– Encoding: E3 xb ee ff						
Example: ADDD [\$8, X]	add value at $[(X+8)]$ to D					
Encoding: E3 E3 00 08	16-bit constant offset					
(see Table 1 of CPU12 reference gu	ide for xb byte encoding)					
 What C code would result in this ins static int16 vart; register int16 *p; static int16 *B[100]; // B is a varia 	struction? ble that happens to be at address \$38					
B[4] = &vart p = &B[0]; // assume "p" is stored T = T + *(*(p+4)); // adds vart t	in register X o T					

Other Math & Load/Store Instructions

Math

- ADD integer addition (2's complement)
- SBD integer subtraction (2's complement)
- CMP compare (do a subtraction to set flags but don't store result)

Logic

- AND logical bit-wise and
- ORA logical bit-wise or
- EOR bit-wise exclusive or (xor)
- ASL, ASR arithmetic shift left and right (shift right sign-extends)
- LSR logical shift right

Data movement

- LDA, LDX, ... load from memory to a register
- STA, STX, ... store from register to memory
- MOV memory to memory movement

Bit operations and other instructions

• Later...

Control Flow Instructions

• Used to go somewhere other than the next sequential instruction

- Unconditional branch always changes flow ("goto instruction x")
- Conditional branch change flow sometimes, depending on some condition

Addressing modes

- REL: Relative to PC "go forward or backward N bytes"
 - Uses an 8-bit offset rr for the branch target
 - Most branches are short, so only need a few bits for the offset
 - Works the same even if segment of code is moved in memory
- EXT: Extended hh:ll "go to 16-bit address hh:ll"
 - Takes more bits to specify
 - No limit on how far away the branch can be

Unconditional Branch
♦ JMP instruction – Jump
• JMP \$1256 jump to address \$1256 JMP Target_Name
• JMP also supports indexed addressing modes – why are they useful?
 BRA \$12 jump to \$12 past current instruction Relative addressing ("rr") to save a byte and make code relocatable
 JSR instruction – Jump to Subroutine
• JSR \$7614 jump to address \$7614, saving return address
JSR Subr_Name
• Supports DIRect (8 bit offset to page 0) and EXTended, as well as indexed addressing
• More about how this instruction works in the next lecture

Conditional Branch

Branch on some condition

- Always with RELative (rr 8-bit offset) addressing
 - Look at detailed instruction set description for specifics of exactly what address the offset is added to
- Condition determines instruction name
- BCC \$08 branch 8 bytes ahead if carry bit clear
- BCS Loop branch to label "Loop" if carry bit set
- BEQ / BNE branch based on Z bit ("Equal" after compare instruction)
- BMI / BPL branch based on N bit (sign bit)

• Other complex conditions that can be used after a CMP instruction

31

32

- BGT branch if greater than
- BLE branch if less than or equal
- ...

Condition Codes

Status bits inside CPU that indicate results of operations

- C = carry-out bit
- Z = whether last result was zero
- N = whether last result was "negative" (highest bit set)
- V = whether last result resulted in an arithmetic overflow

• Set by some (but not all instructions)

- CMP subtracts but doesn't store result; sets CC bits for later "BGE, BGT" etc
- ADD and most arithmetic operations sets CC bits
- MOV instructions generally do <u>NOT</u> set CC bits on this CPU
 - But, on a few other CPUs they do so be careful of this!

33

• V flag indicates signed overflow

Look For Annotations Showing CC Bits Set Instruction Set Summary (Sheet 5 of 14) Access Detai Addr. Mode Machine Coding (hex) Operation Source Form SXHI HCS12 HC12 DBNE abdxys, rel9 REL (9-bit) PPP (branch) PPO (no branch) 4 lb rr $(cntr) - 1 \implies cntr$ If (cntr) not = 0, then Branch; PPP else Continue to next instruction Decrement Counter and Branch if $\neq 0$ (cntr = A, B, D, X, Y, or SP) DEC opr16a DEC oprx0_xysp DEC oprx16.xysp DEC oprx16.xysp DEC [0.xysp] DEC [0.prx16.xysp] DECA DECB rOPW rPW rPOW frPPW fIfrPw fIfrPw rPwO rPw rPwO frPwP fIfrPw fIfrPw $(M) - \$01 \implies M$ FXT 73 hh 11 ΛΛΛ 73 hh 11 63 xb 63 xb ff 63 xb ee ff 63 xb 63 xb ee ff 43 53 IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH rement Memory Location fIPrPw $(A) - \$01 \implies A$ $(B) - \$01 \implies B$ Decrement A DECB Decrement B DES (SP) - \$0001 ⇒ SP Translates to LEAS -1,SP 1B 9F IDX р₽ DEX INH $(X) - $0001 \implies X$ Decrement Index Register X 09 Δ-DEY (Y) - $0001 \Rightarrow Y$ Decrement Index Register Y INH Δ-[Motorola01] 34

♦ Ir •	this co	urse, we want vou 1				
•		jj	to do just a	a little by	y hand to	get a feel
LDAE LDAE LDAE LDAE LDAE LDAE LDAE	#opr8i opr8a opr8a opr80, xysp opr95, xysp opr95, xysp [D,xysp] [0,xysp]	$\pi 2 \mathcal{I}^+$ (M) $\Rightarrow B$ Load Accumulator B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [DX2]	C6 11 D6 dd F6 hh 11 E6 xb E6 xb ff E6 xb ee ff E6 xb ee ff E6 xb ee ff	P rPf rPo rPf rPo frPP fIfrPf fIPrPf	P rfP rOP rfP rPO frPP fITrfP fIPrfP
•	Addres Opcod	sing mode is:				
•	Operar	nd is:				
•	Full en	coding is:				

Hex to As	ssemble	r (Dis	-As	ser	nb	ly)						
♦ If all you ha	ave is an im	age of a	prog	gran	ı in 1	mem	ory	, wh	at do	oes it	do?	
• Importan	t for debuggin	ng										
• Importan	t for reverse e	ngineerir	ng (co	mpe	titive	analy	sis:	lega	cv co	mpon	ents)	
I · · · ·		0	0	ľ			,	0	5	I -	,	
	T 10											
 Start with I 	Hex, and fig	gure out	what	t ins	truc	tion i	is					
• AA E2 23	3 CC											
	1											
ORAA #opr8i ORAA opr8a	$(A) + (M) \Rightarrow A$ Logical OR A with Memory			IMM DIR	8A ii 9A dd		P rPf			rfF	s	ΔΔ0-
ORAA opr16a ORAA oprx0_xysp				EXT IDX	BA hh 1 AA xb	1	rPO			rOF		
ORAA oprx9.xysp ORAA oprx16 wsp				IDX1	AA xb f	1	rPO			rPO		
ORAA [D,xysp]				[D,IDX]	AA xb	eıı	fIfr	Pf		fIfrfF		
ORAA [oprx16,xysp]				[IDX2]	AA xb e	e ff	fIPr	Pf		fIPrfF	`	
• ORAA –	one of the ind	dexed ver	sions							[N	lotoro	la01]
N 1/ 1		1 .	510115									-
• Need to I	ook up XB va	alue $=>$										
	lable 1.	Indexed Addr	essing I	Node H	ostbyt	e Encod	ıng (x	b)				
00 10 10 20 0.X -16.X	1.+X 1.X+ 0.Y	50 60 =16.Y 1,+Y	70 1.Y+	80 0.5P	90 =16,SP	A0 1,+5P	0 1,5P+	C0 0.PC	D0 =16.PC	E0 n.X	n.5P	
01 11 21	2 aX 2 Xa 1 X	51 61 -15 Y 2 AY	71 71	81 1 SP	91 -15 SP	A1 8	1 2 SP+	C1	D1	E1 J	71	
Sb const Sb const pri 02 12 22	e-inc post-inc Sb const 32 42	Sb const pre-inc 52 62	post-inc 72	Sb const 82	Sb const 92	pre-inc p	ost-inc	Sb const C2	Sb const D2	Sto const S	Pb const	
2,X =14,X 5b const 5b const pre	3,+X 3,X+ 2,Y e-inc post-inc 5b const	=14,Y 3,+Y 5b const pre-inc	3,Y+ post-inc	2,SP 5b const	-14,SP 5b const	3,+SP pre-inc p	3,SP+ ost-inc	2,PC 5b const	-14,PC 5b const	n,X 16b const	n,SP 16b const	
03 13 23 3,X -13,X 25 56 const 56 const pr	4,+X 4,X+ 3,Y e-inc post-inc Sb const	53 63 -13,Y 4,+Y Sb const pre-inc	73 4,Y+ post-ing	3,SP Sb const	93 -13,SP Sb const	A3 B 4,+SP pre-inc p	4,SP+ ost-inc	C3 3,PC Sb const	-13,PC 5b const	E3 [n,X] 16b indr 1	[n,SP]	36
04 14 24	34 44	ea 84	74	<u>0.4</u>	04		-	64	04	64	4	30

F	Easier Way To Find Op-Code Information	
28	[Motorola01] Table 6. CPU12 Opcode Map (Sheet 1 of 2)	
CPU12 Reference Guide (for HCS12 and original M68H	$ \begin{bmatrix} NUDUOID(III) \\ III \\ BGND \\ ANDCC \\ BGND \\ ANDCC \\ BRA \\ III \\ IIII \\ IIIII \\ IIIII \\ IIIII \\ IIIII \\ IIIIIII \\ IIIII \\ IIIII \\ IIIIIIIII \\ \mathsf{IIIIIIIIIIIIIIIIIIIII$	
01	Address Mode H I Number of bytes 3 DI 2 ID 2-4 EX 3 II 2 OD 3 AD 3 C	37

Performance – How Many Clock Cycles?

This is not so easy to figure out

• See pages 73-75 of the CPU 12 reference manual

• In general, factors affecting speed are:

- Does the chip have an 8-bit or 16-bit memory bus? (Ours has a 16-bit bus)
 8-bit bus needs one memory cycle per byte
 - 16-bit bus needs one memory cycle per 2 bytes, but odd addresses only get 1 byte
- How many bytes in the encoded instruction itself?
 - AA E2 23 CC takes 4 bytes of fetching
 - » 2 bus cycles if word aligned
 - » 3 bus cycles if unaligned (but get next instruction byte "for free" on 3^{rd} cycle)
- How many bytes of data
 - Need to read data and, potentially write it
- Is there an instruction prefetch queue that can hide some fetch delay?
- Is it a complicated computation that consumes clock cycles (e.g., division)?

• Usual lower bound estimate

• Count up clock cycles for memory touches and probably it takes that or longer

Simple Timing Example

♦ ADCA \$1246

- EXT format access detail is "rPO" for HCS12
 - r 8-bit data read
 - P-16-bit program word access to fetch next instruction
 - O either prefetch cycle or free cycle (memory bus idle) based on alignment
- Total is 3 clock cycles
 - (lower case letters are 8-bits; upper case letters are 16-bit accesses)
 - Simple rule count letters for best case # of clock cycles

0 F	Address		Access Detail		
Source Form	Mode	Object Code	HCS12	M68HC1:	
ADCA #opr8i	IMM	89 11	P	P	
ADCA oproa	DIR	99 dd	IPI	rfP	
ADCA opr16a	EXT	B9 hh 11	rPO	rOP	
ADCA oprx0_xysp	IDX	A9 XD	rPI	rfP	
ADCA oprx9,xysp	IDX1	A9 xb ff	rPO	rPO	
ADCA oprx16, xysp	IDX2	A9 xb ee ff	frPP	frPP	
ADCA [D,xysp]	[D,IDX]	A9 xb	fIfrPf	fIfrfP	
ADCA [oprx16, xysp]	[IDX2]	A9 xb ee ff	fIPrPf	fIPrfP	

[Motorola01] 39

Another Timing Example

Recall that "D" is a 16-bit register comprised of A:B

◆ ADDD \$1247, X

- IDX2 format access detail is "fRPP" for HCS12
 - f-free cycle (to add address to computation performed, memory bus idle)
 - R 16-bit data read
 - P-16-bit program word access to fetch next instruction
 - P-16-bit program word access to fetch next instruction
- Total is 4 or 5 clock cycles
 - 4 for minimum; plus 1 if value of X+\$1247 is odd (straddles word boundaries)

Source Form	Address Mode	Object Code	Access Detail	
			HCS12	M68HC12
ADDD #opr16i	IMM	C3 jj kk	PO	OP
ADDD opr8a	DIR	D3 dd	RPF	RfP
ADDD opr16a	EXT	F3 hh 11	RPO	ROP
ADDD oprx0_xysp	IDX	E3 xb	RPf	RfP
ADDD oprx9.xyop	IDX1	E3 xb ff	RPO	RPO
ADDD oprx16,xysp	IDX2	E3 xb ee ff	fRPP	fRPP
ADDD [D,xysp]	[D,IDX]	E3 XD	TITEPF	fIfRfP
ADDD [oprx16, xysp]	[IDX2]	E3 xb ee ff	fIPRPf	fIPRfP
	•	•		[Motorola01

Lecture 3 Lab Skills

г

• Write an assembly language program and run it

- Manually convert assembly language to hex
- Manually convert hex program to assembly language

43

Lecture 3 Review
CPU12 programmer model
• Registers
Condition codes
 Memory Addressing modes
• Given an instruction using one of the modes described and some memory contents, what happens?
◆ Assembly
• Given some assembly language, what is the hex object code?
• Given some hex object code, what is the assembly language
 Simple timing
• Given an encoded instruction, what is the minimum number of clocks to execute?
 Be able to count number of letters in the timing column
 We do not expect you to figure out all the rules for straddling word boundaries etc.
Branch cycle counting covered in next lecture