
Announcements

- Many posted materials are accessible only from a CMU IP Address
 - Look for this on course web page: If you can't access a file due to access restrictions, you need to get a campus IP address for your web browsing requests. Use <u>Cisco VPN Anyconnect...</u>
- Course web page has schedules, assignments, other important info
 - http://www.ece.cmu.ecu/~ece348
 - · Blackboard will have grades, announcements, sample tests
 - Look at blackboard announcements before sending e-mail to course staff

Lab board handouts in progress

- See Blackboard/admin page for TA office hours
- OK to go to any scheduled lab section (but, give priority to scheduled students)
- For Friday prelab give a good faith attempt to get things working by the deadline
 - If you hit a showstopper get it fixed on Tuesday so you can do Prelab 2 on time.

Where Are We Now?

• Where we've been:

Course Intro

Where we're going today:

• Embedded system hardware

Where we're going next:

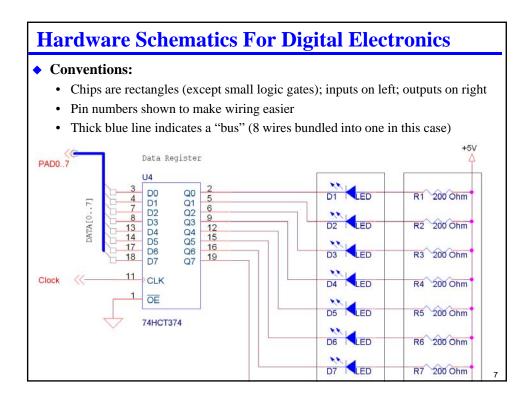
- Microcontroller assembly language
- Engineering design approaches
- Embedded-specific C
- ...

Preview

Microcontroller Hardware

• How does a microcontroller connect to the rest of the system?

6


- I/O bus
- Support circuitry
- Power supplies

Hardware implementation

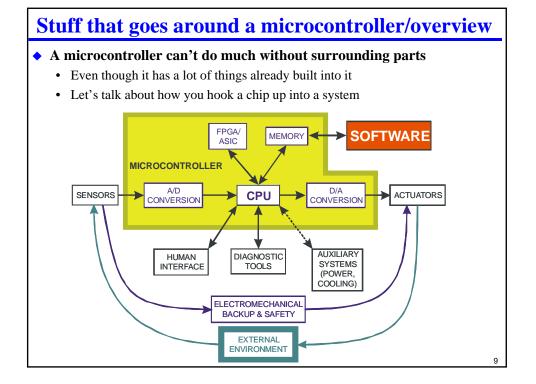
- Prototyping techniques
- · Printed circuit boards

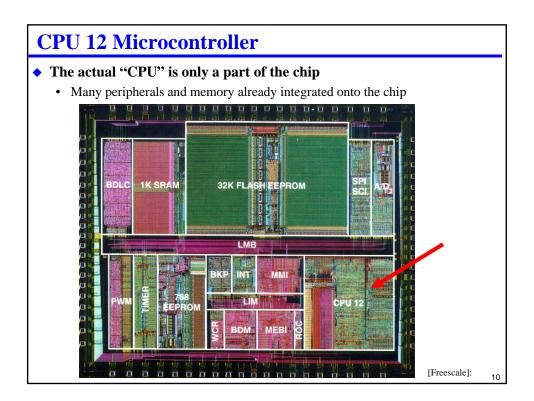
Data sheets

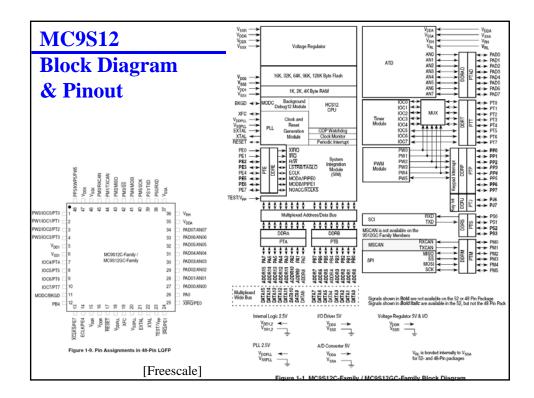
• Tour of typical data sheet values

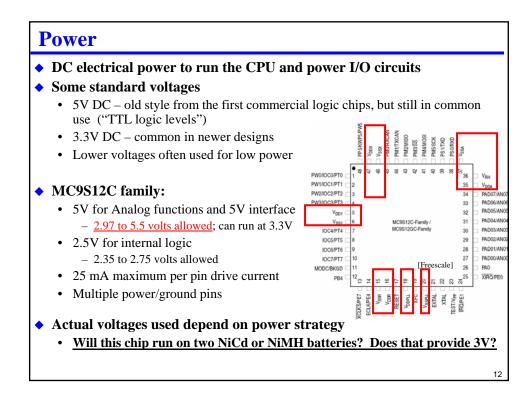
Schematic Capture Tools

OrCad or other professional-grade tools


• (Schematic on previous page drawn with demo OrCad)


• Free tools from PCB vendors ("Printed Circuit Board")

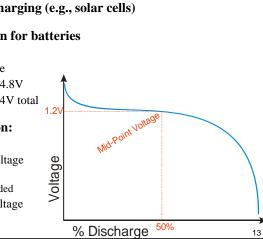

• For example, www.expresspcb.com (although I've never used their actual board service); there are several such vendors

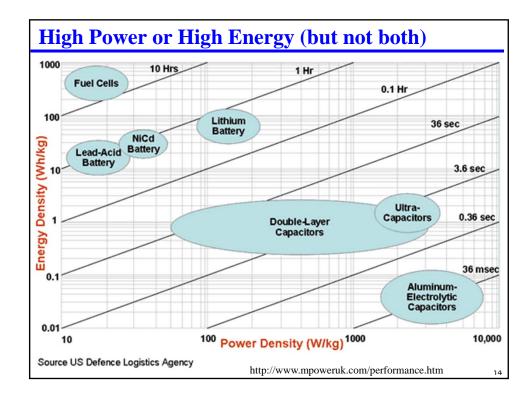

8

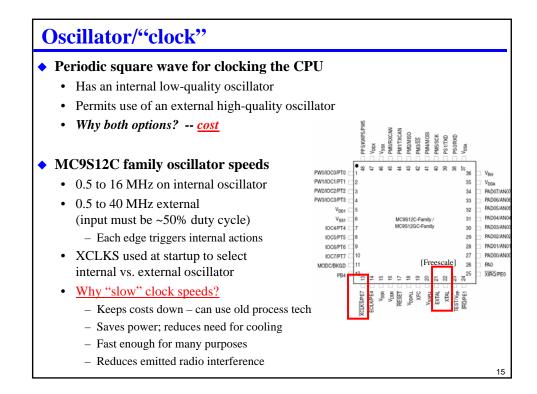
- http://www.freepcb.com/ open source (GPL)
- Search term: printed circuit board prototype

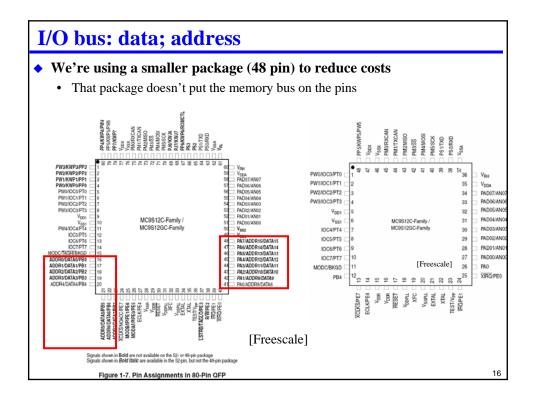
Embedded Power Supplies

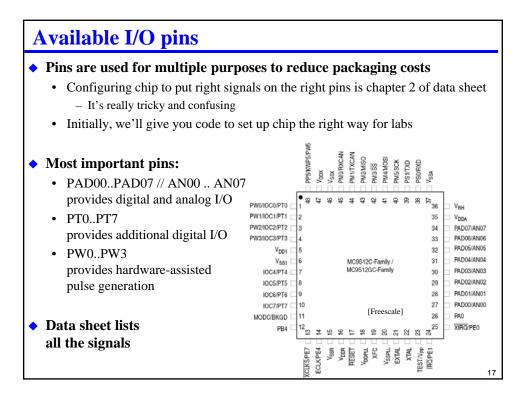
♦ Battery

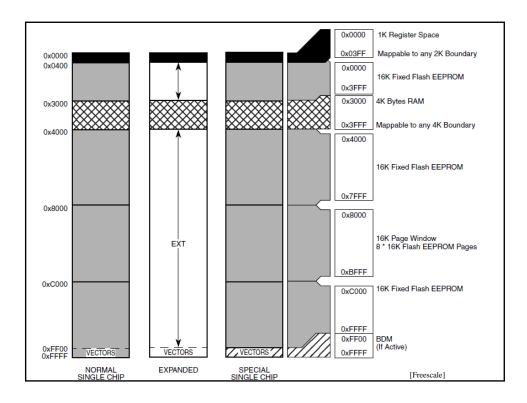

- Primary battery alkaline is 1.5V nominal
- Secondary battery (rechargeable) NiMH is 1.2V nominal (so is NiCd)
- Wall transformer
 - A/C to DC conversion (a.k.a. "wall wart") usually 5V to 12V DC output
- Sometimes, on-board battery recharging (e.g., solar cells)

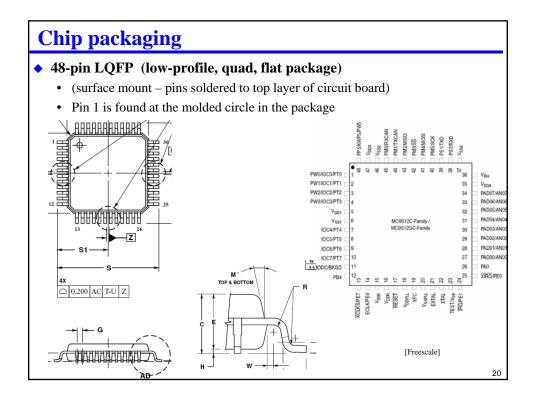

• Need DC voltage regulation – even for batteries

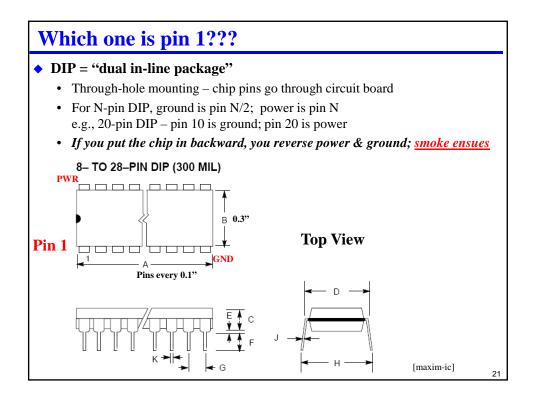

- Battery voltage isn't constant
- Nominal rating at mid-point voltage
- 4 @ NiMH cells 1.2V nominal => 4.8V
- Mostly discharged, 1.1V/cell => 4.4V total

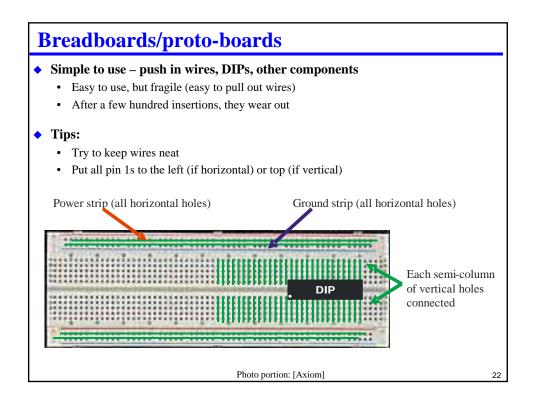

• On-circuit board power regulation:


- Usually DC to DC converters
- "Boost" converter increases DC voltage
 - Usually inefficient
- But, reduces # of battery cells needed
- "Buck" converter decreases DC voltage


Registers & Memory Maps


How do you get data on and off the pins?


- Interface to I/O is done via <u>"registers"</u> (a set of flip-flops on the chip)
- Write to registers to configure the pins e.g., is it digital or analog?; in or out?
- Read/write other registers to actually do I/O
 - Read a byte from switches by reading register associated with digital inputs
 - Write a byte to LEDs by writing a register associated with digital outputs
 - But in both cases, first configure I/O via setting some register, then read/write values from a different register


How do you access these registers?

- In some processors, an I/O instruction (x86: IN and OUT)
- In our processor, I/O is <u>"memory mapped"</u>
 - Use "load" and "store" instructions to special memory addresses
- A memory map tells you where things are in memory
 - Some of memory is RAM
 - Some of memory is ROM
 - Some of memory is I/O register space
 - Look for the memory map in the data sheet. Lots more detail in later lectures 18

• Pins are further apart than socket holes

- Dimension "H" is bigger than Dimension "D" but sockets are sized for Dimension "D"
- This keeps pins from dropping out of holes for printed circuit boards without sockets – but it makes using sockets a problem

To insert a chip

- Touch something metal first to discharge any static (in industry, use a grounding strap on your wrist or ankle)
- Use a chip insertion tool if you have one (it pushes the pins straight) OR
 - gently bend the pins together using a flat table top so they are straight
- Push the DIP in, making sure than no pins get bent under

To remove a chip

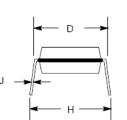
- Use a chip removal tool if you have one
- Else use a small screwdriver to pry the chip loose at each end, then rock it free

Other Prototyping techniques

"Perf board"

- Boards with "perforated" (punched) holes on 0.1" centers
- Can put in sockets and solder wires to make connections

Wire wrap

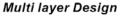

- Usually perf board, but with special sockets with long square pins
- Wire wound around the square pins makes the connections
- Pins are long enough to fit three wrapped wires

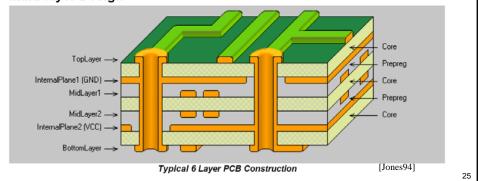
Printed circuit boards

- You can get 'quick turn' boards in small numbers fairly inexpensively
- But, making changes is painful

[Jameco]

[maxim-ic]

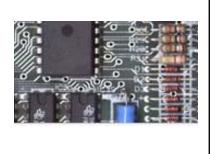

Printed circuit boards

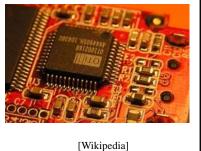

• One or more sheets of thin fiberglass coated with copper on both sides

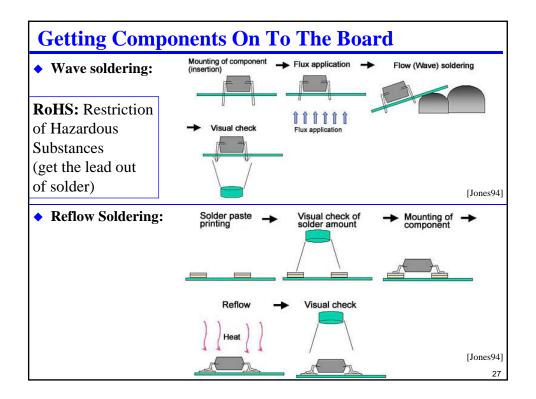
- · Copper is etched away to leave circuit traces and "pads"
- Holes are drilled through to make "vias" and places for DIP pins
- Insulation between fiberglass is "prepreg" pre-impregnated bonding layers

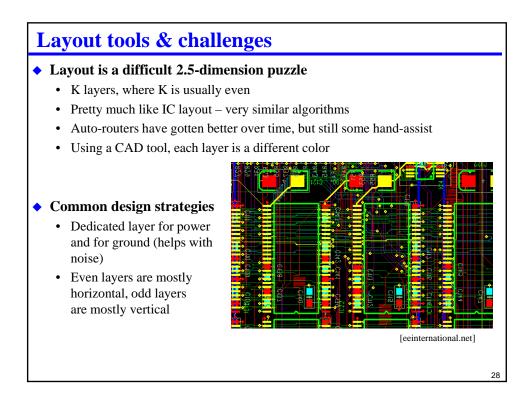
• Good idea to have plenty of power and ground

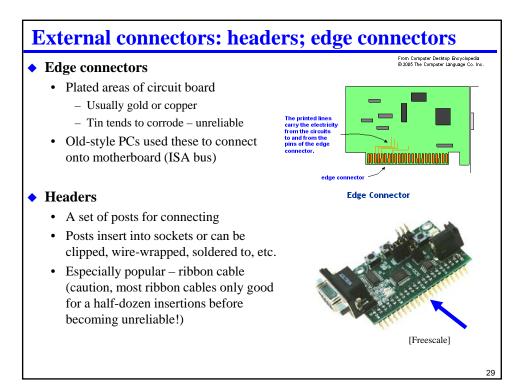
• Usually want dedicated ground layer & dedicated power layer

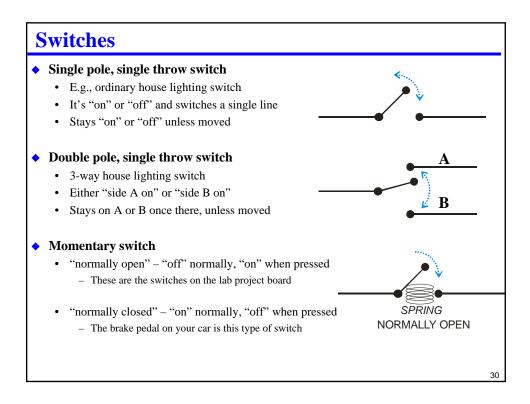

Through-hole vs. surface mount


Through-hole


- DIP pins and resistor leads, etc. go all the way through the PCB
- Each pin eats up space on every layer of the board
- Older technology requires wide pin spacing and works poorly with more than about 8 layer PCBs


Surface mount


- Pins only attach on top layer
- Finer pitch pins, higher density
- Newer technology
- Difficult (or with Ball Grid Array pretty much impossible) to hand-solder prototypes without using sockets.



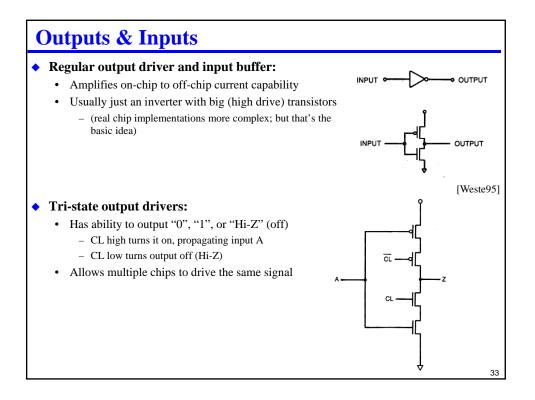
Data sheets overview

Data sheets are the roadmap to a chip

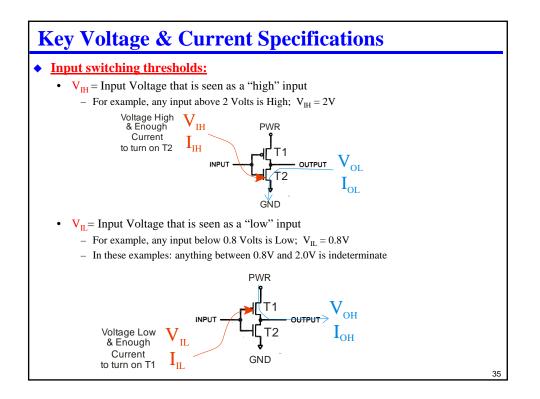
- Vary between 1 sheet and 500+ sheets
- Every circuit part has a data sheet even a resistor or socket
- In industry, there is a library of data sheets for approved parts (and getting a new part approved is a huge deal so you use parts that are already approved)

Data sheet content

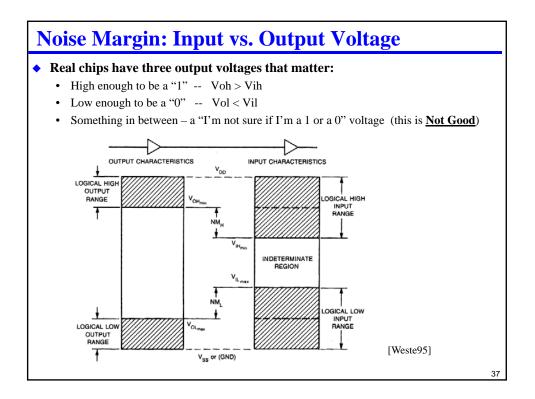
- Pinout
- Physical characteristics (package size, pin type, etc.)
- Electrical characteristics
- Thermal limits
- Etc.

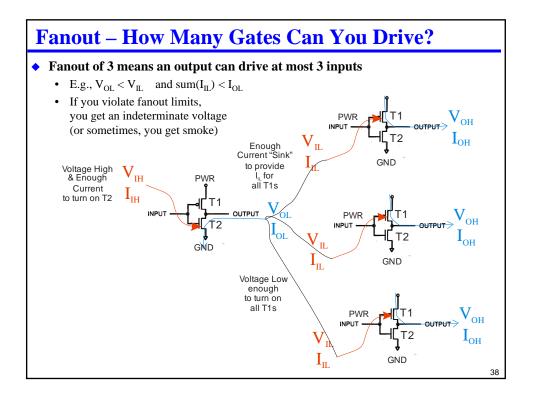

MC9S12C data sheet Appendix A has electrical characteristics

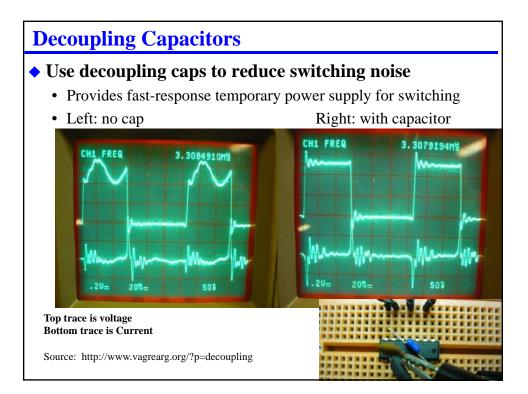
Key items in data sheet: speeds Propagation delays • Low to high and high to low are sometimes different speeds • Speeds depend on operating conditions -40°C TO -55⁰C TO 25⁰C 85⁰C 125⁰C TEST V_{CC} (V) MIN PARAMETER SYMBOL CONDITIONS TYP МАХ MIN МАХ MIN МАХ UNITS HC TYPES Propagation Delay t_{PLH}, t_{PHL} $C_L = 50 pF$ Clock to Output 2 165 205 250 ns 4.5 33 41 50 ns -- $C_L = 15 pF$ 5 15 ns $C_{I} = 50 pF$ 6 28 35 43 ns Output Disable to Q $C_L = 50 pF$ 135 170 205 2 tplz, tpHZ ns 4.5 -27 34 -41 ns C_L = 15pF 5 11 ns C_L = 50pF 6 23 29 35 ns

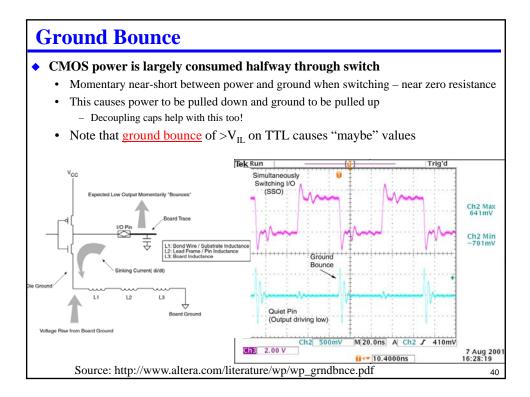

32

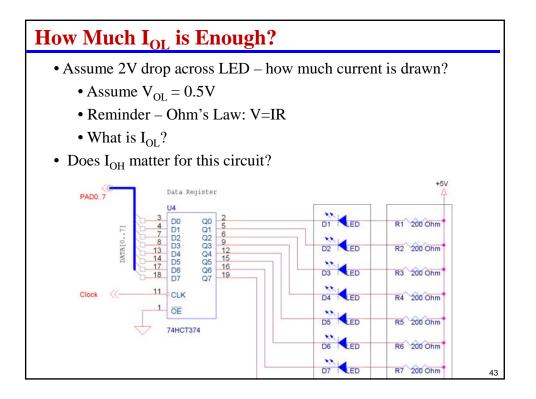
[TI]


31




Be sure to lo	ook foi	r										
• Power cor	nsumpti	ion wh	en run	ning								
• Input and	output	parame	eters. e	especi	allv							
– Input s		1	<i>,</i>	1	-							
– Output		0			IL.	or 's	tanda	rd loa	de')			
- Output		unemo.	10H, 1	OL (11 1117 1	. 01 3	tanda	10 100	us)			
OC Electrical Spe	cification	IS (Contin	ued)									
OC Electrical Spe	cification	IS (Contin TES CONDI	ST	Maa		25°C		-40°C 1	0 85°C	-55°C T	0 125°C	
DC Electrical Spe	Cification	TES	ST	V _{CC} (V)	MIN	25°C TYP	МАХ	-40°C 1 MIN	0 85°C	-55 ⁰ C T MIN	0 125°C	UNITS
		CONDI	ST		MIN		MAX 8					4
PARAMETER Quiescent Device Current Three- State Leakage	SYMBOL		ST TIONS I _O (mA)	(V)					MAX		MAX	UNITS
PARAMETER Quiescent Device	SYMBOL	VI(V) VCC or GND VO=VCC	ST TIONS I _O (mA)	(V) 6	-	TYP	8	MIN -	MAX 80		MAX 160	UNITS µA
PARAMETER Quiescent Device Current Three- State Leakage Current	SYMBOL	VI(V) VCC or GND VO=VCC	ST TIONS I _O (mA)	(V) 6	-	TYP	8	MIN -	MAX 80		MAX 160	UNITS µA
PARAMETER Quiescent Device Current Three- State Leakage Current HCT TYPES High Level Input	SYMBOL I _{CC} V _{IL} or V _{IH}	VI(V) VCC or GND VO=VCC	ST TIONS I _O (mA)	(V) 6 6 4.5 to	-	TYP	8	- -	MAX 80	- -	MAX 160	UNITS μΑ μΑ





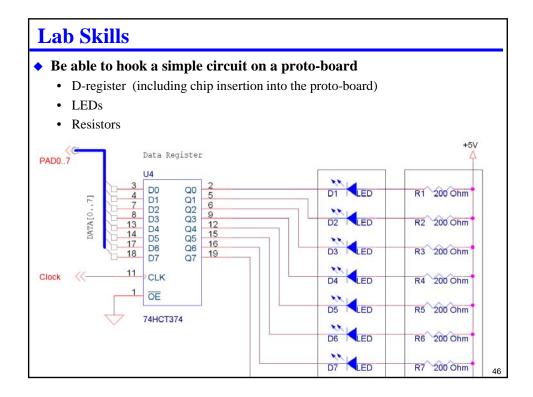
<section-header><section-header><section-header><list-item><list-item>

Noise issues						
Electronic "noise" is a fact of life						
• Digital signals are a nice fiction; real signals are analog						
Inductive/capacitive coupling among circuit traces						
• Switching transients affecting power supplies						
Good design practices (for noise and other matters):						
• Use decoupling capacitors to act as mini-power-supplies for chips						
- Use a capacitor as close as possible to power/ground pin pair on a chip						
- Generally this is enough under 50 MHz (usually 0.01 to 0.1 uF)						
- Above 50 MHz more care is required (but most small embedded systems are slow)						
• Separate analog and digital portions of the PCB (don't intermix traces)						
- Video, radio, and backlight power traces are especially nasty radiators of noise						
- Audio is especially sensitive to picking up interference from other traces						
• Run ground traces on all sides of critical lines						
• Dedicated layers for power and ground planes or grids						
• Socket external interface chips that could get burned out via transients						

• Put power on an un-populated PCB to check for power/ground faults

42

Lecture 2 Review


General pinout of course microcontroller

- Types of pins
 - But not "what does pin 17 do" without a pinout diagram
- General voltages, speeds, packaging

General electronic hardware

- Packaging types
- Where's pin 1 on a package?
- · Printed circuit board construction and related topics
- Circuit parameters and meanings (e.g., what does "I_{OH} = 4 mA" really mean?)
- Be able to compute current through an LED
 - LED components are most expensive after CPU almost \$5 apiece
 - Over-driving CPU outputs can easily burn out CPU module (about \$75)
 - Use resistors with LEDs and get resistor value right!
- Good design practices

