
AA – A Software Architecture Aware Environment for Dependable Systems

Cristina Gacek

School of Computing Science

Newcastle University — UK

cristina.gacek@ncl.ac.uk

Abstract

Explicitly considering software architectural

information at all times is now a recognized means for

addressing software system dependability. In this

paper we propose the basic ideas for AA, an

architecture aware environment to improve software

system dependability. It builds on ideas from

architecting dependable systems, control engineering,

and software product lines. AA supports fault tolerance

to also take into account global software architectural

issues rather than only localized information (or

immediate propagation), as well as viable variations in

the software architecture.

1. Introduction

The software architecture of a software system

provides an abstraction of its structure. Architectural

focus has traditionally been on rigorous design, while

dependability focus has traditionally been on lower

levels of abstraction and the acceptance that residual

faults will always be present. Architecting dependable

systems focuses on reasoning about dependability at

the architectural level [1]. This implies reflecting

dependability considerations while architecting, as well

as considering architectural information for verification

and validation, fault tolerance, and system evaluation.

Current approaches to fault tolerance that consider

architectural information focus on structuring

guidelines and on providing reconfiguration support.

Structuring guidelines aim at error containment, while

reconfiguration aims at adapting a system in the context

of the architectural elements directly impacted by the

fault. These approaches alone may not suffice to

provide meaningful and all encompassing fault

tolerance in the true architecting dependable systems

sense. This is so because not all architectural

dependencies arise from localized interactions. Only

some subsets of all possible architectural combinations

are viable configurations of a software system.

Architectural dependencies may exist because of

communication effects or reliance on services provided

from directly linked architectural elements. However,

architectural dependencies may also exist among

architectural elements that are not adjacent to each

other. These dependencies can take several forms,

including logical dependencies from the problem

domain (e.g. on a financial system monitoring the stock

market it makes no sense to generate reports on

observed peaks in specific stock quotes information

from a database if the quotes information is coming

from an unreliable source) and physical dependencies

from the deployment environment (e.g. using

component X to monitor the vital signs of a patient

consumes so many system resources that it is no longer

viable for the system to also control the dosage of

medication being delivered to the patient).

In this paper we argue that it is possible to address

architectural dependencies while providing fault

tolerance in a systematic fashion, rather than on a

system specific one. We illustrate how this could be

achieved by proposing the basic framework for AA, an

architecture aware environment to improve software

system dependability. In section 2 we briefly introduce

concepts used to inspire this work. This is followed by

a short description of the AA environment, and some

brief conclusions.

2. Background

The software architecture of a software system

provides an abstraction of its structure. It is usually

described in terms of its components, connectors and

their configuration [2; 3]. The way a software

architecture is configured defines how various

connectors are used to mediate the interactions among

components.

The software product lines community has clearly

identified that not all possible combinations of

architectural elements are viable or even meaningful

options for an individual system built from pre-existing

independent parts. They tackle this issue by using

product line architectures, possibly supported by

domain models [4]. Clarifying how the architectural

parts may be combined requires making explicit the

dependencies among them (e.g., elements may exclude

one another or one element may make the integration

of a second one a necessity). Additionally, in product

line architectures there are three different kinds of

variations that are likely to occur (called variabilities).

These are: a single option, representing an element that

may but does not have to be a part of the system; an

alternative, requiring the choice of 1 in N elements to

be integrated; and a multiple choice, representing a

mandatory architectural part consisting of multiple

optional architectural elements. These abstractions are

just as relevant for providing fault tolerance while

architecting dependable systems, as the same

constraints can be observed when adapting any

software architecture.

In control theory it has long been recognized that

there are many systems where the sole focus is on

monitoring certain variables, which in turn may

indicate that the system needs some adjustment such

that the output of the system maintains some pre-

specified properties. This type of system has inspired

the definition of the control loop architectural style.

3. The AA Environment

The AA environment exhibits the control loop

architectural style. It relies on monitoring systems at

run time to trigger local and/or global system

architectural adaptation. AA embraces the adoption of

known fault tolerance techniques and approaches,

while augmenting them with explicit software

architecture information, including dependencies and

variabilities.

AA requires, at run time: the adoption of fault

tolerance techniques to immediately provide local

architectural adaptation in response to exceptions

raised; that all exceptions raised be logged; the

existence of a system level monitor tracking the raised

exceptions and local adaptations; architectural models

including dependencies and variabilities; and a

representation of the software architecture that is being

used by the system.

The system level monitor aims at ensuring that the

most appropriate architectural configuration is being

used at all times. It is triggered when some local

architectural adaptation takes place in response to some

exception. It then accesses the exception log for an

indication of which architectural elements are directly

impacted and how (e.g. restarted, removed, replaced, or

added). With this information at hand along with the

explicit architectural constraints in the form of

dependencies and variabilities, an adaptation strategy is

pursued. This strategy enforces the known architectural

constraints, while adopting the least intrusive

adaptation option. System level monitors can be

duplicated, and they can fail without drastically

affecting the system’s usual operation (crash or

omission failures only). The observed impact would be

that of having localized architectural adaptation only.

The architectural models may change over time.

This can be done while the system is running, but it is

unclear if it could be done while the system monitor is

running.

The logged information on the observed facts

surrounding an exception can be analyzed for common

patterns of problematic conditions. This is done by

observing which were the components and connectors

directly involved, what other architectural elements

were present, the resulting architectural changes, and

the observed system stability after the adaptation. This

would enable the detection of elements that never get

used or that fail frequently, as well as problem

combinations of architectural elements resulting from

unforeseen emergent characteristics. This analysis of

run time trends can better inform the directions that

software system maintenance and evolution should

take.

4. Conclusions and Open Issues

The AA environment proposed here has the

potential to improve software system dependability by

addressing issues of architecting dependable systems

both at design time, by enticing the mitigation of

architectural constraints to be considered when

supporting fault tolerance, and at run time, by

providing fault tolerance informed by various

architectural constraints. AA also provides means to

support architecturally informed system maintenance

and evolution by observing run time trends.

AA is at an early stage of development. It requires

further development of the underlying ideas and their

validation, as well as further exploration of issues

relating to the usage of AA in practice.

5. References
[1] Architecting Dependable Systems,

http://www.cs.kent.ac.uk/people/staff/rdl/ADSFuture/index.h

tm, last accessed 28th March 2008.

 [2] D.E. Perry and A.L. Wolf, “Foundations for the Study of

Software Architectures”, SIGSOFT Software Engineering

Notes, vol. 17, no. 4, ACM, October 1992, pp. 40-52.

[3] Shaw, M. and D. Garlan, Software Architectures:

Perspectives on an Emerging Discipline, Prentice-Hall, Inc.,

1996.

[4] Bayer, J., O. Flege, P. Knauber, R. Laqua, D. Muthig, K.,

Schmid, T. Widen, and J. DeBaud, “PuLSE: a methodology

to develop software product lines”, Proc. of the Symposium

on Software Reusability, ACM, May 1999, pp. 122-131.

