
Software
Robustness
Testin g Service
                        http://www.ices.cmu.edu/ballista

John P. DeVale
devale@cmu.edu -  (412) 268-4264 - http://www.ece.cmu.edu/~jdevale

,QVWLWXWH

IRU &RPSOH[

(QJLQHHUHG
6\VWHPV



2

Overview: Ballista Automated Robustness Testing
◆ System Robustness

• Motivation

• Ballista automatic robustness
testing tool

◆ OS Robustness Testing
• Raw results for 15 Operating Systems

◆ Testing Service
◆ Conclusions

      A Ballista is an ancient siege
weapon for hurling objects at
fortified defenses.



System Robustness

3



Ariane 5 Flight 501 Robustness Failure                 _
◆ June, 1996 loss of inaugural flight

• Lost $400 million scientific payload  (the rocket was extra)

◆ Efforts to reduce system costs led to the failure
• Re-use of  Inertial Reference System software from Ariane 4

• Improperly handled exception caused by variable overflow during
new flight profile (that wasn’t simulated because of cost/schedule)

– 64-bit float converted to 16-bit int assumed not to overflow

– Exception caused dual hardware shutdown (because it was
assumed software doesn’t fail)

◆ What really happened here?
• The narrow view: it was a software bug -- fix it

– Things like this have been happening for decades -- Apollo 11
LEM computer crashed during lunar descent

• The broad view: the loss was caused by a lack of system
robustness in an exceptional (unanticipated) situation

◆ Our research goal: improved system robustness



5

System Robustness -- Improves Dependability
◆ Graceful behavior in the presence of exceptional conditions

• Unexpected operating conditions

• Activation of latent design defects

◆ Robustness definition also includes operation in overloads
• Not in current research, but is set as an eventual goal

• We conjecture overload robustness also hinges on exception handling

◆ Current test case -- Operating Systems (POSIX API)
• Goal: metric for comparative evaluation of OS robustness

• If a mature OS isn’t “bullet-proof”, what hope is there for application
software?



6

Ballista Software Testing Heritage
◆ SW Testing requires: Ballista uses:

• Test case “Bad” value combinations

• Module under test Module under Test

• Oracle   (a “specification”) Watchdog timer/core dumps

◆ Ballista combines:
• Domain testing ideas / Syntax testing ideas

• In general, “dirty” testing

INPUT
SPACE

RESPONSE
SPACE

VALID
INPUTS

INVALID
INPUTS

SPECIFIED
BEHAVIOR

SHOULD
WORK

UNDEFINED

SHOULD
RETURN
ERROR

MODULE
UNDER

TEST

ROBUST
OPERATION

REPRODUCIBLE
FAILURE

UNREPRODUCIBLE
FAILURE



7

Ballista Fault Injection Heritage

Name   Method            Level Repeatability

FIAT   Binary Image Changes Low   High

FERRARI   Software Traps             Low   High

Crashme   Jump to Random Data Low   Low

FTAPE     Memory/Register Alteration  Low   Medium

FAUST   Source Code Alteration         Middle   High

CMU-   Random Calls and             High   Low
Crashme      Random Parameters

Fuzz   Middleware/Drivers             High   Medium

Ballista   Specific Calls with             High   High
     Specific Parameters



8

CRASH Severity Scale

◆ Catastrophic
• Test computer crashes (both Benchmark and Starter abort or hang)

• Irix 6.2:  munmap( malloc((1<<30)+1), ((1<<31)-1)) );

◆ Restart
• Benchmark process hangs, requiring restart

◆ Abort
• Benchmark process aborts (e.g., “core dump”)

◆ Silent
• No error code generated, when one should have been

(e.g., de-referencing null pointer produces no error)

◆ Hindering
• Incorrect error code generated



9

Ballista: Scalable Test Generation
API

T EST IN G
OBJ ECT S

inttrap(double a, double b, int N)

inttrap(ONE, DBLMAX, 64K)

TES T
VA LUE S

TES T CAS E

DO UBL E  P R EC IS IO N
F L O ATI NG  PO IN T
T ES T  OB JECT

DO UBL E  P RECI S IO N  
F LO AT ING  PO IN T
T EST O B JE CT

I NTEG ER
VA LU E
O BJE C T

Z ER O

NEG O N E
T W O
PI
PI BYTW O
T W O PI
E
DBL M AX
DBL M IN
SM AL LNO TZ ER O
NEG S MA LLNO T ZE R O

O NE
Z ERO
O NE
NEG O N E
T W O
PI
PIB YTW O
T W O PI
E

DBL MIN
SM AL LNO TZ ERO
NEG S MA LL NO T ZE R O

DBL MA X

MA XINT
MIN I NT
Z ERO
O NE
NEG O N E
2
4
8
1 6
3 2
6 4
1 K

…
6 4K



10

Test Value Inheritance

B IG S T R IN G
S T R IN G L E N 1
A L L A S C II
N O N P R IN TA B L E
…

G e n e ric  Str in g

N U L L
D E L E T E D
1 K
PA G E S IZ E
M A X S IZ E
S IZ E 1
IN VA L ID

G e n e ric  P o in te r

D a te  S tr in g 1 2 /1 /1 8 9 9
1 /1 /1 9 0 0
2 /2 9 /1 9 8 4
4 /3 1 /1 9 9 8
1 3 /1 /1 9 9 7
1 2 /0 /1 9 9 4
8 /3 1 /1 9 9 2
8 /3 2 /1 9 9 3
1 2 /3 1 /1 9 9 9
1 /1 /2 0 0 0
1 2 /3 1 /2 0 4 6
1 /1 /2 0 4 7
1 /1 /8 0 0 0
…

Date string inherits test cases from all parents



11

Ballista: “High Level” + “Repeatable”
◆ High level testing is done using API to perform fault injection

• Send exceptional values into a system through the API
– Requires no modification to code -- only linkable object files needed

– Can be used with any function that takes a parameter list

• Direct testing instead of middleware injection simplifies usage

◆ Each test is a specific function call with a specific set of
parameters
• System state initialized & cleaned up for each single-call test

• Combinations of valid and invalid parameters tried in turn

• A “simplistic” model, but it does in fact work...

◆ Early results were encouraging:
• Found a significant percentage of functions with robustness failures

• Crashed systems from user mode



OS Robustness Testing

12



13

Comparing Fifteen Operating Systems

Normalized Failure Rate

Ballista Robustness Tests for 233 Posix Function Calls

0% 5% 10% 15% 20% 25%

AIX 4.1

QNX 4.22

QNX 4.24

SunOS 4.1.3

SunOS 5.5

OSF 1 3.2

OSF 1 4.0

1 Catastrophic

2 Catastrophics

Free BSD 2.2.5

Irix 5.3

Irix 6.2

Linux 2.0.18

LynxOS 2.4.0

NetBSD 1.3

HP-UX 9.05

1 Catastrophic

1 Catastrophic

HP-UX 10.20

Abort Failures 
Restart Failure 

1 Catastrophic



14

C Library Is A Potential Robustness Bottleneck

Normalized Failure Rate

Portions of Failure Rates Due To System/C-Library

0% 5% 10% 15% 20% 25%

AIX 4.1

QNX 4.22

QNX 4.24

SunOS 4.1.3

SunOS 5.5

OSF 1 3.2

OSF 1 4.0

Free BSD 2.2.5

Irix 5.3

Irix 6.2

Linux 2.0.18

LynxOS 2.4.0

NetBSD 1.3

HP-UX 9.05

HP-UX 10.20

1 Catastrophic

2 Catastrophics

1 Catastrophic

1 Catastrophic

1 Catastrophic

C Library
System Calls



15

Common Failure Sources
◆ Based on correlation of failures to data values, not traced to

causality in code

◆ Associated with a robustness failure were:
• 94.0% of invalid file pointers (excluding NULL)

• 82.5% of NULL file pointers

• 49.8% of invalid buffer pointers (excluding NULL)

• 46.0% of NULL buffer pointers

• 44.3% of MININT integer values

• 36.3% of MAXINT integer values



Testing Service

16



17

Robustness Testing Service
◆ Ballista Server

• Selects tests

• Performs pattern Analysis

• Generates “bug reports”

• Never sees user’s code

◆ Ballista Client
• Links to user’s SW under test

• Can “teach” new data types to
server (defn. language)

BALLISTA
SERVER

TEST
REPORTING

TEST
SELECTION

RESULT
PATTERN

DISCOVERY

INTERFACE
SPECIFICATION

CAPTURE

USER’S
COMPUTERBALLISTA

TEST
CLIENT

MODULE
UNDER
TEST

WWW &
RPC



18

Ballista Capability Summary
◆ Automated testing of software components

• Generically applicable to modules having parameter lists

◆ Minimal knowledge of component
• Interface specification is typically available (data types)

• No source code, no reverse compilation, no functional specification

◆ Highly scalable
• Effort to create tests sub-linear with number of functions tested

• No per-function test scaffolding

◆ Repeatable results
• Robustness failures that are identified are repeatable on demand

• Single-function-call failure generation
– Creation of very simple “bug report” code

– Makes it possible to create reasonably simple wrappers

– Only addresses a subset of problems (but, a big subset?)



19

Conclusions
◆ Ballista robustness testing approach

• Scalable, portable, reproducible

• Can include considerable state information (although that’s not obvious)

◆ Also applied to DoD HLA/RTI simulation backplane
• C++, call-backs, client/server, throws signals for exception handling

• Specifically written for robustness; has lower failure rates than OS code

◆ Internet-based testing service available



http://www.ices.cmu.edu/ballista

20


