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Overview: Applying Ballista to Windows Systems
◆ Introduction

• Motivation for measuring robustness of Windows Operating Systems

• Ballista Testing Service

◆ Running Ballista on Windows
• Test Development

• Systems Tested

◆ Results
• Catastrophic Failures (system crashes)

• Comparing Windows and Linux

• Restart and Abort Failures (task hangs and crashes)

• Silent Failures

◆ Conclusions and Future Work



3

Robustness and Microsoft Windows
◆ Little Quantitative data on Windows system robustness

• Only anecdotal evidence comparing Windows systems to POSIX systems

• Measuring how well Windows systems handle exceptions will give us 
insight into its robustness

• Specifically target Win32 API calls similar to POSIX system calls

◆ Windows NT and Windows CE deployed in critical systems
• US Navy is moving to Windows NT as standard OS for all ship computer 

systems

• Windows CE is a contender for many embedded systems
– Emerson Electric sponsored this work

(use Windows CE in industrial equipment?)
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Ballista Robustness Testing Service
◆ Ballista Server

• Selects tests

• Performs pattern Analysis

• Generates “bug reports”

• Never sees user’s code

◆ Ballista Client
• Links to user’s SW under test

• Can “teach” new data types to 
server (definition language)
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Windows Test Development
◆ Start with test suite of standard UNIX datatypes
◆ The Win32 API uses many non-standard datatypes

• However, most of these are pointers to structures that can inherit test 
cases from generic pointer datatypes

• The HANDLE datatype in Windows required the most development of 
new test cases

– Win32 API uses HANDLEs for everything from file pointers to process 
identifiers

– Test cases were generated to specifically exercise different uses of the 
HANDLE datatype

◆ Test cases
• 1,073 distinct test values in 43 datatypes available for testing in Win32
• 3,430 distinct test values in 37 datatypes available for testing in POSIX

(2,908 of these values in two datatypes that had no analog in Windows)
• Limit of 5,000 test cases per function
• Over 500,000 generated test cases for each Windows variant
• Over 350,000 generated test cases for Linux
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Systems Tested
◆ Desktop Windows versions on Pentium PC

• Windows 95 revision B

• Windows 98 with Service Pack 1 installed

• Windows 98 Second Edition (SE) with Service Pack 1 installed

• Windows NT 4.0 with Service Pack 5 installed

• Windows 2000 Beta 3 Pre-release (Build 2031)

• 143 Win32 API calls + 94 C library functions tested

◆ Windows CE
• Windows CE 2.11 running on a Hewlett Packard Jornada 820 Handheld PC

• 69 Win32 API calls + 82 C library functions tested

◆ POSIX System for Comparison
• RedHat Linux 6.0 (Kernel version 2.2.5)

• 91 POSIX kernel calls + 94 C library functions tested
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Robustness Problems Found – System Crashes
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Data Analysis and Comparison
◆ How do we compare robustness results of non-identical API’s?

• Win32 API is vastly different from POSIX API

• Windows CE only supports a fraction of entire Win32 API

◆ Group functions according to services provided
• Groups of C library functions 

• Groups of system calls

• Calculate percent failure rate for each function in group

• Take average of all functions in the group to determine overall group 
percent failure rate

• Windows CE notes
– Functions in C File I/O and C Stream I/O groups have too many crashes to 

report failure rates in percent

– Windows CE does not support functions in the C Time group:
asctime(), ctime(), gmtime(), localtime(), mktime(), etc.
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Failure Rates by Function Group – System Calls
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Failure Rates by Function Group – C Library
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Silent Failures
◆ False negative failure detection

• Function called with invalid parameter values but no error reported 

◆ Silent failures cannot be directly measured
• How do you declare silent failures without annotating every test case?

• Requires an oracle for correctness testing

• Doesn’t scale

◆ But they can be estimated
• We have several different implementations of the same API with 

identical test cases
– Excludes Linux and Windows CE

• Every test case with a “Pass” result with no error reported is a possible 
silent failure

• Vote across identical test cases in different systems
– Assumes the number of false Abort/Restart failures is not significant

– Does not catch silent failure cases where all systems do not report an error
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Estimated Silent Failure Rates – System Calls
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Estimated Silent Failure Rates – C Library
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Windows Testing Conclusions
◆ Compare different API’s by Functional Grouping

• Approximate an “apples-to-apples” comparison

• Functional groupings identify relative problem areas

◆ Linux and Windows NT/2000 seem more robust than
Windows 95/98/98 SE and Windows CE
• Complete system crashes observed on Windows 95/98/98 SE and 

Windows CE; none observed on Windows NT/2000 or Linux

• Low Abort failure rate on Win 95/98/98 SE system calls …
… because of a high Silent failure rate

• Windows CE is markedly more vulnerable to crashes

◆ Comparison of Windows NT/2000 and Linux inconclusive
• Linux POSIX system calls generally better than Windows Win32 calls

• Windows C library generally better than Linux / GNU C libraries
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Future Work - Microsoft Support

◆ Submitted bug reports for Catastrophic failures for 
Windows 95/98/98 SE

◆ Will Windows ME (Millennium) fix the problems we 
found? 

◆ Arranging to report Windows CE Catastrophic 
failures

◆ Heavy load testing


