
Robustness
Testing of the
Microsoft
Win32 API

http://ballista.org

Charles P. Shelton
cshelton@cmu.edu

Philip Koopman
koopman@cmu.edu - (412) 268-5225 - http://www.ices.cmu.edu/koopman

Kobey DeVale

,QVWLWXWH
IRU�&RPSOH[
(QJLQHHUHG
6\VWHPV

&Electrical Computer
ENGINEERING

2

Overview: Applying Ballista to Windows Systems
◆ Introduction

• Motivation for measuring robustness of Windows Operating Systems

• Ballista Testing Service

◆ Running Ballista on Windows
• Test Development

• Systems Tested

◆ Results
• Catastrophic Failures (system crashes)

• Comparing Windows and Linux

• Restart and Abort Failures (task hangs and crashes)

• Silent Failures

◆ Conclusions and Future Work

3

Robustness and Microsoft Windows
◆ Little Quantitative data on Windows system robustness

• Only anecdotal evidence comparing Windows systems to POSIX systems

• Measuring how well Windows systems handle exceptions will give us
insight into its robustness

• Specifically target Win32 API calls similar to POSIX system calls

◆ Windows NT and Windows CE deployed in critical systems
• US Navy is moving to Windows NT as standard OS for all ship computer

systems

• Windows CE is a contender for many embedded systems
– Emerson Electric sponsored this work

(use Windows CE in industrial equipment?)

4

Ballista Robustness Testing Service
◆ Ballista Server

• Selects tests

• Performs pattern Analysis

• Generates “bug reports”

• Never sees user’s code

◆ Ballista Client
• Links to user’s SW under test

• Can “teach” new data types to
server (definition language)

BALLISTA SERVER

TEST
REPORTING

TEST
SELECTIONRESULT

PATTERN
DISCOVERY

INTERFACE
SPECIFICATION

CAPTURE

TESTING
OBJECT

COMPILER

USER’S COMPUTER

EMBEDDED COMPUTER

SERIAL CABLE

OR

SERVER
INTERFACE

MODULE
UNDER
TESTMODULE

UNDER
TEST

HTTP &
RPC

TEST
HARNESS

TEST
HARNESS

5

Windows Test Development
◆ Start with test suite of standard UNIX datatypes
◆ The Win32 API uses many non-standard datatypes

• However, most of these are pointers to structures that can inherit test
cases from generic pointer datatypes

• The HANDLE datatype in Windows required the most development of
new test cases

– Win32 API uses HANDLEs for everything from file pointers to process
identifiers

– Test cases were generated to specifically exercise different uses of the
HANDLE datatype

◆ Test cases
• 1,073 distinct test values in 43 datatypes available for testing in Win32
• 3,430 distinct test values in 37 datatypes available for testing in POSIX

(2,908 of these values in two datatypes that had no analog in Windows)
• Limit of 5,000 test cases per function
• Over 500,000 generated test cases for each Windows variant
• Over 350,000 generated test cases for Linux

6

Systems Tested
◆ Desktop Windows versions on Pentium PC

• Windows 95 revision B

• Windows 98 with Service Pack 1 installed

• Windows 98 Second Edition (SE) with Service Pack 1 installed

• Windows NT 4.0 with Service Pack 5 installed

• Windows 2000 Beta 3 Pre-release (Build 2031)

• 143 Win32 API calls + 94 C library functions tested

◆ Windows CE
• Windows CE 2.11 running on a Hewlett Packard Jornada 820 Handheld PC

• 69 Win32 API calls + 82 C library functions tested

◆ POSIX System for Comparison
• RedHat Linux 6.0 (Kernel version 2.2.5)

• 91 POSIX kernel calls + 94 C library functions tested

7

Robustness Problems Found – System Crashes

0

5

10

15

20

25

30

/LQX[:LQGRZV
��

:LQGRZV
��

:LQGRZV
���6(

:LQGRZV
17

:LQGRZV
����

:LQGRZV
&(�����

N
u

m
b

er
 o

f
F

u
n

ct
io

n
s

w
it

h
 C

at
as

tr
o

p
h

ic
 F

ai
lu

re
s

1RQH 1RQH 1RQH

8

Data Analysis and Comparison
◆ How do we compare robustness results of non-identical API’s?

• Win32 API is vastly different from POSIX API

• Windows CE only supports a fraction of entire Win32 API

◆ Group functions according to services provided
• Groups of C library functions

• Groups of system calls

• Calculate percent failure rate for each function in group

• Take average of all functions in the group to determine overall group
percent failure rate

• Windows CE notes
– Functions in C File I/O and C Stream I/O groups have too many crashes to

report failure rates in percent

– Windows CE does not support functions in the C Time group:
asctime(), ctime(), gmtime(), localtime(), mktime(), etc.

9

Failure Rates by Function Group – System Calls

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mem
ory

 m
an

ag
em

en
t

File
 a

nd D
ire

ct
ory

 A
cc

es
s

I/O
 P

rim
iti

ve
s

Pro
ce

ss
 P

rim
iti

ve
s

Pro
ce

ss
 E

nvir
onm

en
tG

ro
u

p
 A

ve
ra

g
e

A
b

o
rt

 +
 R

es
ta

rt
 F

ai
lu

re
 R

at
e Linux

Windows 95
Windows 98
Windows 98 SE
Windows NT
Windows 2000

10

Failure Rates by Function Group – C Library

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C ch
ar

C F
ile

 I/O
 M

an
ag

em
en

t

C m
em

ory

C st
re

am
 I/

O

C st
rin

g

C ti
m

e

C m
at

h

G
ro

u
p

 A
ve

ra
g

e
A

b
o

rt
 +

 R
es

ta
rt

 F
ai

lu
re

 R
at

e

X XX

Linux
Windows 95
Windows 98
Windows 98 SE
Windows NT
Windows 2000

11

Silent Failures
◆ False negative failure detection

• Function called with invalid parameter values but no error reported

◆ Silent failures cannot be directly measured
• How do you declare silent failures without annotating every test case?

• Requires an oracle for correctness testing

• Doesn’t scale

◆ But they can be estimated
• We have several different implementations of the same API with

identical test cases
– Excludes Linux and Windows CE

• Every test case with a “Pass” result with no error reported is a possible
silent failure

• Vote across identical test cases in different systems
– Assumes the number of false Abort/Restart failures is not significant

– Does not catch silent failure cases where all systems do not report an error

12

Estimated Silent Failure Rates – System Calls

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mem
ory

 m
an

ag
em

en
t

File
 a

nd D
ire

ct
ory

 A
cc

es
s

I/O
 P

rim
iti

ve
s

Pro
ce

ss
 P

rim
iti

ve
s

Pro
ce

ss
 E

nvir
onm

en
t

G
ro

u
p

 A
ve

ra
g

e
S

ile
n

t
F

ai
lu

re
 R

at
e

Windows 95
Windows 98
Windows 98 SE
Windows NT
Windows 2000

13

Estimated Silent Failure Rates – C Library

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C ch
ar

C F
ile

 I/O
 M

an
ag

em
en

t

C m
em

ory

C st
re

am
 I/

O

C st
rin

g

C ti
m

e

C m
at

h

G
ro

u
p

 A
ve

ra
g

e
S

ile
n

t
F

ai
lu

re
 R

at
e

Windows 95
Windows 98
Windows 98 SE
Windows NT
Windows 2000

14

Windows Testing Conclusions
◆ Compare different API’s by Functional Grouping

• Approximate an “apples-to-apples” comparison

• Functional groupings identify relative problem areas

◆ Linux and Windows NT/2000 seem more robust than
Windows 95/98/98 SE and Windows CE
• Complete system crashes observed on Windows 95/98/98 SE and

Windows CE; none observed on Windows NT/2000 or Linux

• Low Abort failure rate on Win 95/98/98 SE system calls …
… because of a high Silent failure rate

• Windows CE is markedly more vulnerable to crashes

◆ Comparison of Windows NT/2000 and Linux inconclusive
• Linux POSIX system calls generally better than Windows Win32 calls

• Windows C library generally better than Linux / GNU C libraries

15

Future Work - Microsoft Support

◆ Submitted bug reports for Catastrophic failures for
Windows 95/98/98 SE

◆ Will Windows ME (Millennium) fix the problems we
found?

◆ Arranging to report Windows CE Catastrophic
failures

◆ Heavy load testing

