Modern Sensor Systems

Sensors, Systems, Materials & Nanotechnology

David N. Lambeth lambeth@ece.cmu.edu 412-268-3674

Department of Electrical and Computer Engineering Department of Materials Science and Engineering

Modern Sensor Systems

• Why Sensors?

– Interface: Physical World Versus Electronic

- World: inherently analog phenomena
- Diversity of technologies...
- Where does "Nano" come in to play.

Systems Level Perspective:

Sensor Classification

- So Much to Sense!
 - Diversity
- "Let Me Count the Ways" (to Measure)!
 - Review: White, Richard M. "A Sensor Classification Scheme," IEEE Trans. Ultrason. Ferrolec. Freq. Contr., UFFC-34, no. 2, pp 124-126, March 1987.
- Best Way: Performance vs. Cost

Sensor System Design: Global Issues

- What is to be measured?
 - Measurand/Stimulus (examples):
 - Distance/orientation/velocity/acceleration
 - Time
 - Temperature
 - Force/strain/pressure/weight/sound
 - Fields/magnetic/electric
 - Radiation/light/images
 - Chemistry/identification/reactivity/rates/acidity
 - Current/voltage/phase/power

Sensor System Design: Global Issues

- How it is to be measured?
 - Delta of physical phenomena (examples):
 - Current/voltage/phase/power (energy)
 - Resistance/capacitance/inductance
 - Operation: passive vs. active

Sensor System Design: Global Issues

- How well is it to be measured?
 - Performance criteria: (examples):
 - Sensor vs. system
 - Transfer/response function
 - Sensitivity/responsively
 - Resolution(units)/accuracy(errors)/quantization/repeatability
 - Range/span/linearity(non-linearity)/hysteresis(dead band)
 - Response time/recovery time/saturation/overload response
 - Calibration
 - Environmental characteristics/reliability/drift
 - NOISE/interference/discrimination/selectivity
 - Repeated measurements vs. multiple sensors

Detection/Transduction Phenomena

- Physical
- Chemical
- Biological

Challenge: Keep it Simple...

- Many useful Phenomena:
 - Resistance/Capacitance/Inductance
 - Optical/Mechanical..piezo...?/
 - Etc...
 - Resistance Examples:
 - Distance/position
 - Temperature/moisture
 - Force/acceleration/strain
 - Magnetic

Noise Sources (Devil in the Details)

- Fluctuations...Inherently Statistical
- Thermal fluctuations
 - Resistor noise?
 - Capacitor noise?
- Quantized events
 - Shot noise
 - Photon noise

Signal to Noise Ratio (SNR)

- Johnson noise
 - $-V_{rms} = (4k_BTR_oB_w)^{1/2}$ (volts)
 - k_B (Boltzman Constant)
 - T (Temperature in degrees Kelvin)
 - R_o (Resistance in Ohms)
 - B_w (Bandwidth in Hertz)

Example Sensor Devices

- Show and Tell
 - Distance/velocity/acceleration
 - Resistance, acoustics, optics, inductive
 - Vibration/Force
 - Accelerometer-gravimetric MEMS, piezoelectric, inductive, strain gage (resistance)
 - Temperature
 - Expansion, resistance, diode, pyroelectric, optical etc.
 - Etc....