
Ambient Intelligent Systems

Diana Marculescu
Dept. of Electrical and Computer Engineering

Carnegie Mellon University
dianam@ece.cmu.edu

Title Goes Here

22005 © Diana Marculescu 18-200 Sept. 22. 2005

Ambient Intelligent Distributed Systems
What is Ambient Intelligence?

Inconspicuous computing, sensing or actuation that reacts
and self-manages in response to changes in environment or
operating conditions.

Characteristics
Distributed on large areas and subject to a variety of external
conditions
Include a mix of wired and wireless communication
Limited in size, computing capabilities, power budget
Need to support self-monitoring and self-managing

Ubiquitous computing taken a revolutionary step forward →
“Living Designs”

32005 © Diana Marculescu 18-200 Sept. 22. 2005

Why Ambient Intelligent Systems?
Taking flexible substrate
computing one revolutionary
step forward

Target application domains
Integrated computing and
actuation devices: 100’s of
processing elements per m2 in a
flexible substrate

Source: Jung et al., 2002

42005 © Diana Marculescu 18-200 Sept. 22. 2005

Bigger Picture
Ambient Intelligent (AmI) Distributed Systems

Large area applications can
benefit more from the sheer
number of computing
devices…

New paradigm: “Computing-by-the-foot”
Textile Area Networks (TANs) that could be
configured and re-programmed on-the-fly

All within “smart” AmI environments

“Smart” rooms/hallways
“Smart” rugs

“Smart” environmentsPom-Pom dimmer
Source: Intl. Fashion Machines

52005 © Diana Marculescu 18-200 Sept. 22. 2005

Design Methodology - The Old and the New

A typical design flow
Run

Build

ArchitectureApplication

Results OK?

Mapping &
Analysis

62005 © Diana Marculescu 18-200 Sept. 22. 2005

Design Methodology - The Old and the New

Move testing/verification to run-time
Reduce manufacturing costs
Cope with manufacturing or environment driven failures in a unified way

Results OK?

ArchitectureApplication

Yes

Run

No
Mapping &

Analysis

Monitor/Measure

Results OK?

ArchitectureApplication

Yes

Run

No
Mapping &

Analysis

Monitor/Measure

72005 © Diana Marculescu 18-200 Sept. 22. 2005

Design Methodology - The Old and the New

Results OK?

ArchitectureApplication

Yes

Run

No
Mapping &

Analysis

Monitor/Measure

Results OK?

ArchitectureApplication

Yes

Run

No
Mapping &

Analysis

Monitor/Measure

Hence the name Living Designs…

82005 © Diana Marculescu 18-200 Sept. 22. 2005

Wish List - what do we need to make this happen?

Technology support
On-the-fabric component
“plug-and-play”
Rigid PCBs -→
Flexible/foldable or fabric
based PCBs
Weaving ribbons that
“compute”

Technology

Battery technology support
Energy scavenging (solar,
vibration, movement)
Tubular or filament-type
batteries

92005 © Diana Marculescu 18-200 Sept. 22. 2005

Wish List - what do we need to make this happen?

On-the-fly
Monitoring (e.g., battery levels, failure rates)
Analysis/verification (dynamic management)
Dynamic reconfiguration/reprogramming

Technology Tools
Methodologies

102005 © Diana Marculescu 18-200 Sept. 22. 2005

Wish List - What do we need to make this happen?

Most likely, there is no single killer application…
Safety/security (CMU)
Medical (GeorgiaTech)
Entertainment/consumer electronics (Infineon,
IFMachines)
…

Technology Tools
Methodologies

Driver Applications

112005 © Diana Marculescu 18-200 Sept. 22. 2005

Challenges
Due to environmental or operating conditions, achieving reliable
computation from large numbers of failure-prone, low-power devices

Doing so with minimal overhead or cost, under finite battery lifetime
constraints

In the presence of failures
Source of failures must be correctly detected
Fault-tolerance is essential for preserving quality of results or
increasing system lifetime
Perform monitoring/adaptation without central control!

Define metrics for characterizing a combination of performance, energy-
efficiency, reliability and battery life

122005 © Diana Marculescu 18-200 Sept. 22. 2005

Dealing with Failures: Adaptive Mapping

nM
nP

nM
nP

nM
nP

nM
nP

nM
nP

nM
nP

nApp

nApp nApp nApp

nApp

132005 © Diana Marculescu 18-200 Sept. 22. 2005

Dealing with Failures: Adaptive Mapping

nM
nP

nM
nP

nM
nP

nM
nP

nM
nP

nApp

nApp nApp nApp

nApp

nM
nP
nM
nP

Defective nP

142005 © Diana Marculescu 18-200 Sept. 22. 2005

Dealing with Failures: Adaptive Mapping

nM
nP

nM
nP

nM
nP

nM
nP

nM
nP

nApp

nApp nApp nApp

nApp

nM
nP
nM
nP

Defective nP

Change mapping
and topology

152005 © Diana Marculescu 18-200 Sept. 22. 2005

Dealing with Failures: Adaptive Routing

nM
nP

nM
nP

nM
nP

nM
nP

nM
nP

nM
nP

nApp

nApp nApp nApp

nApp

Defective link

162005 © Diana Marculescu 18-200 Sept. 22. 2005

Dealing with Failures: Adaptive Routing

Change topology

nM
nP

nM
nP

nM
nP

nM
nP

nM
nP

nM
nP

nApp

nApp nApp nApp

nApp

Defective link

172005 © Diana Marculescu 18-200 Sept. 22. 2005

Exploiting Redundancy

Devices are energy constrained, failure prone, but…
Large numbers of them, networked
Idle devices can act as surrogates for failing ones

Application Remapping
Take advantage of redundancy to counteract failures
Move executing applications across devices

j10

Slide 17

j10 Although failures in e-textiles will be common, there will also be a very dense node existence on a textile, up to on the order of 100
nodes / square meter. Therefore, there is the opportunity to exploit this redundancy in the nodes available on the textile to provide
fault tolerance for the system and applications running on the textile.

As I said before, battery energy is very limited on an e-textile, so if an application needs to execute despite a depleted battery, then
that application needs to be remapped onto redundant nodes at that time.

Remote execution and code migration are two standard techniques to performing application code remapping. We present and
propose a new, novel technique for code remapping that we call pre-copying with remote execution, which is a hybrid scheme of code
migration and remote execution.
jingcao, 10/5/2002

182005 © Diana Marculescu 18-200 Sept. 22. 2005

Active Processing Nodes on E-textile

Redundant (Idle) NodesRedundant (Idle) Nodes

Remote Execution

Active Processing Nodes on E-textile

Active Processing Nodes on E-textile

Redundant (Idle) Nodes

Remote execution
Hand-off current state to redundant node when battery is below
threshold, Blow (code is already residing on the spare device)

j11

Slide 18

j11 This animation should clarify the process of remote execution. Notice that before execution begins of the application Foo, each node
has that application copied into its memory.

When a battery falls down below a critical level, each active node makes a handoff to a redundant node. This handoff includes
transmitting the entire current state of the running application. Once the handoff is complete, the application can resume running on
the redundant nodes.
jingcao, 10/4/2002

192005 © Diana Marculescu 18-200 Sept. 22. 2005

Baseline code migration

Copy application code and current state to redundant node when
battery is below threshold, Blow

Active Processing Nodes on E-textile

Redundant (Idle) NodesRedundant (Idle) Nodes

Active Processing Nodes on Flexible Substrate

Active Processing Nodes on E-textile

Redundant (Idle) Nodes

j12

Slide 19

j12 The other form of code remapping involves code migration, or code copying. With this technique, each active node copies the current
state of the application in addition to the executing application code during the remapping process.

Notice that, as opposed to remote execution before, here only those nodes which begin active have stored in its memory the
application which will be run on the e-textile. The baseline code migration scheme we considered simply performs this code
remapping when the batteries fall to a certain level.

And because the size of the application might be somewhat large, the battery level at which you should choose to begin the
re-mapping needs to be conservative enough to ensure that you successfully migrate before running out of energy completely.

jingcao, 10/5/2002

202005 © Diana Marculescu 18-200 Sept. 22. 2005

Active Processing Nodes on E-textile

Redundant (Idle) NodesRedundant (Idle) Nodes

Active Processing Nodes on Flexible Substrate

Active Processing Nodes on E-textile

Redundant (Idle) Nodes

Pre-Copying with Remote Execution (PCRE)
Copy code and current state to redundant node in non-overlapping
turns, and complete handoff when battery is below threshold, Bvlow

j13

Slide 20

j13 Here is the same diagram as before, now showing the behavior of PCRE.

Similar to code migration, only the active nodes are aware of the application Foo before execution begins. In non-overlapping turns,
each active node will copy its code to a redundant node elsewhere in the system. After each node has copied its code to a redundant
node, they resume normal operation until the battery has fallen to a very low level, at which point they perform the same handoff that
occurs with remote execution. After the handoff, the application can resume execution on the redundant nodes.
jingcao, 10/4/2002

212005 © Diana Marculescu 18-200 Sept. 22. 2005

Driver Applications
Applications allowing for graceful
performance degradation

Acoustic beamforming array

Applications with single point
failures

Software defined radio

222005 © Diana Marculescu 18-200 Sept. 22. 2005

Acoustic Beamforming

Pre-copying permits staging of migration process

72.3 Sec / 115.26 J = 0.627 Seconds/Joule 54.4 Sec / 95.2 J = 0.571 Seconds/Joule

80% lifetime increase when using PCRE

j14

Slide 22

j14 For experiment #1, no errors are present and a dual-bus topology is used. The left graph shows the simulation of the beamformer
with PCRE, and the right graph shows the same setup using standard, or the baseline, code migration technique.

The solid lines show the number of samples the master node receives each beamforming round, and the dotted line shows the amount
of battery energy available left for the beamforming application. Looking at the PCRE graph on the left, you can the sawtooth shape
at the beginning of the simulation, and this represents each of the 5 slave nodes taking turns copying its code to a redundant node.
After copying their code, they resume executing the beamforming application until their batteries reach a critical level, at which point
they perform the final handoff and complete the remapping process. Notice that the dotted line decreases at about the same rate
throughout this simulation.

Now, looking at the baseline migration technique, you can see the big dip that occurs when each node attempts to begin copying its
code to a redundant node. They all successfully migrate to redundant nodes. Notice this time that the dotted line drops sharply at the
point where the active nodes complete their migration. This is because those active nodes are essentially abandoning what battery
resources they may have left by migrating so early. Like I said before, the point at which this migration occurs needs to be
conservative enough to ensure that in the presence of errors with high probability they will successfully migrate.

You can see from the graphs that the PCRE beamforming lives almost 75 seconds, in fact lives 72.3 sec, while it consumes about
115.26 joules, and has an energy efficiency of 0.627 system lifetime per joule consumed. Baseline code migration suffers with only
54.4 Sec lifetime while consuming 95.2 Joules during this time, which is a less efficient 0.571 system seconds / joule consumed ratio.
Also, there is that significant dip in performance which occurs when the nodes in the baseline migration case all try to migrate at
similar times.
jingcao, 10/5/2002

232005 © Diana Marculescu 18-200 Sept. 22. 2005

Software Defined Radio

Migration happens for the equalizer, low-pass filter, demodulation, and source nodes, in
this order
Effectively prolonging application lifetime (by about 30% when using code migration) is
possible!

Equalizer

Low pass filter

Demodulation

Source

The ECE Connection

252005 © Diana Marculescu 18-200 Sept. 22. 2005

As you probably figured out…
These are deeply networked embedded
systems, capable of sensing/actuation

However, they can’t use Pentium4-like
processors …

… Nor they are stand-alone portable
devices such as PDAs or cell phones

They might interact with other “intelligent
designs” – e.g., robots…

… but they are mainly characterized by large
numbers of simple embedded controllers
interconnected in a wired or wireless
manner… These yarns can “compute”!

Source: V. Subramanian, UC Berkeley

262005 © Diana Marculescu 18-200 Sept. 22. 2005

What’s behind such a system?

Microcontrollers/microprocessors
How are they built – what is their internal architecture?
These are simple processors – and believe it or not, you need
to know computer architecture to design these!

Computer-Aided Design tools for
Designing the processing nodes (controller + memory + I/O,
etc.)
Deciding on how the application is mapped

You can find out about all these by taking ECE classes!

272005 © Diana Marculescu 18-200 Sept. 22. 2005

What’s Inside a Processor?
Partitioned into:

Control Logic (control path)
Datapath

Datapath includes
Register File
Arithmetic-Logic Unit
Program Counter
Memory Register

Control path uses
instructions to manage
the datapath

Register File
Program Counter
(to fetch instructions)

ALU

Memory Address
Register
(to fetch data)

Current instruction

Control
Logic

from memory

282005 © Diana Marculescu 18-200 Sept. 22. 2005

The Big Picture
Instruction Set Architecture

= the interface the architecture
presents to user, compiler, &
operating system
“Low-level” instructions that use
the datapath & memory to
perform basic types of
operations
• arithmetic: add, subtract
• logical: and, or
• data transfer: load, store
• Control (jump to a location)

Assembly language
≠ ISA!
The ISA is what the assembly
language needs to know about
the hardware

assembly language program

ALU Control
Logic

Register File Program Counter

Instruction register

Memory Address Register

from memory

292005 © Diana Marculescu 18-200 Sept. 22. 2005

Where can you find more about these things?

18-747

18-447 Introduction to
Computer Architecture

18-741
Advanced Computer Architecture

18-742

Multiprocessors

18-744

Advanced Techniques
In Microprocessors

Hardware
Engineering

18-743

Energy-Aware
Systems

18-240Fundamentals
of Computer Engineering

18-340
Digital

Computation

15-213
Introduction to

Computing
Systems

302005 © Diana Marculescu 18-200 Sept. 22. 2005

Recall: Two design methodologies

Run

Build

ArchitectureApplication

Results OK?

Mapping &
Analysis

Here’s where all
design steps happen
and design objective
are optimized

Results OK?

ArchitectureApplication

Yes

Run

No
Mapping &

Analysis

Monitor/Measure

Results OK?

ArchitectureApplication

Yes

Run

No
Mapping &

Analysis

Monitor/Measure

312005 © Diana Marculescu 18-200 Sept. 22. 2005

always
mumble
mumble
blah
blah

always
mumble
mumble
blah
blah

Synthesizable Verilog

Synthesis

Technology

Mapping

LE 1
LE 2

Place
and

Route

gates, gates, gates, …

Logic Blocks

Typical design methodology

322005 © Diana Marculescu 18-200 Sept. 22. 2005

Where can you find more about these things?

18-764

Introduction to
CADCAD: Logic to

Layout

18-760

18-762

In-between Design
and Manufacturing

Circuit Simulation

18-765
Digital Systems Testing
And Testable Design

18-240 Fundamentals
of Computer Engineering

18-360

18-322

18-766
The Art and Science of
System-Level Design

18-767

CAD:Software to Logic

IC Design
15-211

???

Back to AmI Systems…

342005 © Diana Marculescu 18-200 Sept. 22. 2005

How are we doing so far?....

Promising capabilities for…
Weaving interconnects (Infineon, ETH Zurich)
Battery technology and energy scavenging (UC Berkeley,
ITN technologies)

… Not so well in
Automating the process of embedding off-the-shelf
components onto fabric

Technology Tools
Methodologies

Driver Applications

352005 © Diana Marculescu 18-200 Sept. 22. 2005

How are we doing so far?....

Support for…
Dynamic fault-tolerance and power management (CMU)
Application remapping/reconfiguration (CMU)

… but need
Support for automatic application partitioning for a TAN

Technology Tools
Methodologies

Driver Applications

362005 © Diana Marculescu 18-200 Sept. 22. 2005

How are we doing so far?....

Existing prototypes for
Medical - SIDS monitoring (GeorgiaTech)
Safety - Temperature sensor array (CMU)
Security – Ultrasonic, acoustic or imaging arrays (CMU)
Entertainment - MP3 on a sleeve (Infineon)

Killer app?

Technology Tools
Methodologies

Driver Applications

372005 © Diana Marculescu 18-200 Sept. 22. 2005

To probe further: CMU’s COATNET Research Group
Read IEEE Spectrum 2003 article!

Link available here:
http://www.ece.cmu.edu/~etex

Security/safety applications
Utrasonic/acoustic arrays
Temperature sensor arrays
Light sensor arrays

Focus
Area

Motor
Controller

Rotate Focus
Area

Broadcast

…

Object Tracking
Software

MPEG
Encoding

Raw Video DataSmart teleconferencing systems
Motion tracking cameras –
WallWatchers project

