Biometric Recognition using Advanced
Correlation Filters
(special focus on Face Recognition)

Dr. Marios Savvides
Systems Scientist
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Research: Biometric Recognition (Face, Iris,
Palmprint, Fingerprint)
Teaching:
(Pattern Recognition Theory)-next semester :
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Qutline

m Biometric verification
m Correlation filters

m Biometric verification examples
~ Face
~ Fingerprint
~ris

m Cancelable Biometrics
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Motivation

m Recognizing the identity of a person can improve security of access to
physical and virtual spaces
m Continuous recognition prevents unauthorized access when a legitimate
user forgets to log off.
m Most current methods rely on passwords, ID cards that can be easily
forgotten or stolen
m Vision: identity recognition based on
N Biometrics (e.g., Fingerprints, face, voice, iris, etc.)
N Intelligent fusion of information from multiple biometrics
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Terminology

m Detection
~ Locating all faces in an image
m Verification (1:1 matching)
~ Am | who | say | am?
~ Example Application: Trusted Traveler Card
m |dentification (1:N matching)
~ Does this face match to one of those on my watch list?
~ Example Application: Passenger screening at airports

m Recognition = Verification + Identification
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Pattern Variability

m Facial appearance may change due to illumination
m Fingerprint image may change due to plastic deformation
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Face Recognition/verification — challenges
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m Pose variations
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m For biometric applications we focus more on illumination and facial
expression variations.

m We explore advanced correlation filter designs to achieve tolerance to
such distortions
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CMU PIE Database

| Flashes
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CMU PIE Pose and Illumination Variation
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Cross-Correlation Function

c(r):jr(x)s(x—r)dx

= Determine the cross-correlation between the reference and
test images for all possible shifts

=\When the target scene matches the reference image exactly,
output is the autocorrelation of the reference image.

= |f the input r(x) contains a shifted version s(x-X,) of the
reference signal, the correlator will exhibit a peak at x=x,.

= |f the input does not contain the reference signal s(x), the
correlator output will be low

= |f the input contains multiple replicas of the reference
signal, resulting cross-correlation contains multiple peaks at
locations corresponding to input positions.
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Object Recognition
Input
FINGER Scene
CMU-ECE
FEATURE Target
C |Image
Input Scene
Ideal
Correlation
° ° Output

Goal: Locate all occurrences of a target in the input scene
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Shift-Invariance

Fisforence image

PROFESSOR |
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Desired Pattern can be anywhere in the input scene.
Multiple patterns can appear in the scene.
Pattern recognition methods must be shift-invariant.

ASSOCIATE PROFESSOR

B HSSSTANT PROFESSOR
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Cross-Correlation Via Fourier Transforms

Input

Scene -

r(x)

FT

EIectncaI&Com uter
Y ERGINEERIN

m Fourier transforms can be done digitally or optically
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Filter
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Design | Image s(x)
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Enrollment for Face Verification
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Face Verification
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Peak to Side Lobe Ratio metric for Correlation filters

1. Locate peak

2. Mask 5x5 ‘
pixel region ‘

¥

PSR — Peak —mean

o3

3. Compute the meanand ¢ in a
20x20 region centered at the peak
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MACE Filter Output

(@) (b)

m  MACE filter yields sharp correlation peaks
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Facial Expression Database

m Facial Expression Database (AMP Lab, CMU)
m 13 People
m 75 images per person
m Varying Expressions
m 64x64 pixels
m Constant illumination

m 1 filter per person made
from 3 training images
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PSRs for the Filter Trained on 3 Images
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49 Faces from PIE Database illustrating the variations in illumination
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Training Image selection

m We used three face images to synthesize a correlation filter

m The three selected training images consisted of 3 extreme
cases (dark left half face, normal face illumination, dark right
half face).
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EER using MIT’s EIGENFACE algorithm

Equal Error Rate using Individual Eigenface Subspace Method on PIE Database with No Background lllumination
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EER using Correlation Filter Approach

PSR Performance for Class 1, Min Avg PSR Distance=23.1
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PIE Database lllumination Subset
m No background lighting
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Face ldentification — Experiments

mUse training images (with /without illumination
variations to analyze face identification accuracy

mChoose images with illuminations variations
(i.e.left shadow, frontal lighting, right shadow)

m Use frontal lighting images and test on
illumination variation (most plausible enroliment
scenario).

m Use various size length training datasets.
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Face ldentification — Results on PIE dB with NO
Background lighting (harder dataset).-Train on Frontal
lllumination, Test on unknown lighting variation

Training Images (selected | No. misclassifications % Accuracy
for each person)

5,6,7,8,9,10,11,18,19,20 0 100%
56,7,8,9,610,11,12 1 99.9%
56,7,8,9,10 1 99.9%
5,7,9,10 1 99.9%
7,10,19 10 99.1%
6,7,8 2 99.8%
89,10 1 99.9%
18,19,20 2 99.9%
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Face ldentification — Results on PIE dB with NO
Background lighting (harder dataset).-Train with some
illumination variation, test on all.

Training Images (selected | No. misclassifications % Accuracy
for each person)

3,716 0 100%
1,10,16 0 100%
2,7,16 0 100%
4,7,13 0 100%
1,2,7,16 0 100%
3,16 1 99.9%
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Partial Face Identification-test on cropped DB

Accuracy = 100 %

Trainon 3, 7, 16 for

5 Pixels
each person
I =
30 Pixels I

Accuracy = 99.5 % (7 misses)

Trainon 3, 7, 16 for
each person
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2D Impulse Response of MACE Filter
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Trainon 3, 7, 16, -> Test on 10.

PSR =4095
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Using same Filter trained before,
' Perform cross-correlation on
cropped-face shown on left.
PSR =3060
. i 0.5
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0
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= «CORRELATION FILTERS ARE
|l SHIFT-INVARIANT
- e Correlation output is shifted down
by the same amount of the shifted
face image, PSR remains SAME!
48
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« Using SOMEONE ELSE’S Filter,....

Perform cross-correlation on cropped-face
shown on left.

*As expected very low PSR.
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Features of Correlation Filters

m Shift-invariant; no need for centering the test image
m Graceful degradation

m Can handle multiple appearances of the reference image in
the test image

m Closed-form solutions based on well-defined metrics
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Iris as a Biometric

As a biometric, the iris offers the following
advantages:

« It has an intricate biological structure,
making it unique.

« lItis protected by the cornea, and it is
thought to remain stable over a person’s
lifetime.

« With subject cooperation, its information
can be captured externally as an image.

 The left and right irises of an individual can be treated as separate,
unique identifiers.
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Iris Verification Using Correlation Filter

’ Verification

FFT ()~ IFFT :ggf:gt
Subject Portable: Pre-processing: ’

Eye Location Iris Localization; i .
Quality Assess Normalization Correlation OUtpUt'

Image Enhancement
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i Processing T Filter
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Subject Acquisition N training images

Enrollment
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Iris Verification

m High-quality iris images ~
yield low error rates /

» ‘ )
1 Source: National

Geographic Magazine
\ I!|} REVE \lfl)
m Challenge is to acquire

high-quality iris images

m Correlation filters yield
zero verification errors
with the 9 iris images

Source: Dr. J. Daugman'’s web site
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Variability in Fingerprints

m Fingerprint ridges get displaced
m Lots of variability
m Error rates of 1% to 2%

Class 3
Less variation
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~ Class 10
Lot of variation
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Fingerprint Recognition

Filter

Correlation

FFT

Training Images

FFT 4&#

Test Image
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Decision

-

Correlation output

E Analyze _l

58

19



(64 x 64)
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(256 x 256) (128 x 128)

Fewer pixels means
Less storage
Less computation
Less Transmission

(32x32) 59

Error Rates using Correlation Filters

Image Resolution | Equal Error Rate
512x512 2%
256x256 1.3%
128x128 1.5%

64x64 5%
32x32 7%
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Cancellable Biometric Filters

m A biometric filter (stored on a card) can be lost or stolen

~ Can we re-issue a different one (just as we re-issue a different credit
card)?

N There are only a limited set of biometric images per person (e.g.,
only one face)

~ We have figure out a way to encrypt them and ‘work’ or
authenticate in the encrypted domain and NOT directly in the
original biometric domain.
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Enroliment Stage

Training Images Random PSF Encrypted Training Encrypted MACE
Images Filter
Random
Number
Generator
seed T
PIN
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Authentication Stage

Convolution
Kernel

t

Random
Number
Generator

seed T

PIN
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Test Image Random Encrypted Test Image Encrypted MACE

Filter

l

-1l
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What about performance?

Sidelobe ratios.

verification performance
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m We can show theoretically that performing this convolution
pre-processing step does not affect resulting Peak-to-

m Thus, working in this encrypted domain does not change the
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Random Convolution
Kernel 1

Part Spead Functon of Random Comvektion samel |
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Filter 1

Random Convolution
Kernel 2

Enchted' :ACTE
Filter 2
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Original
Training
Images

Convolved with
Random
Convolution
Kernel 1

Convolved with

Random
Convolution

Kernel 2
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Pasks1 00 PSR! 17 Pske1 00 PSR=5117

Correlation Output from Correlation Output from
Encrypted MACE Filter 1  Encrypted MACE Filter 2
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Detection of a specific Person’s face
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Detection of a different Person’s face

i o v <L p 4 - 5 ]
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That's All Folks!
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