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ABSTRACT

With the increasing acceptance of 64-bit processors, single-length multiplication has
now beconie a vidble alterndtive to the raditional double-length muldplication in 32-
bit architectures. This. paper discusses various issues regarding single-length
muitiplication. A new multiply instruction semantic is. proposed to take advantage of
‘convenienit mathematical properties inherent to single-length multiplication: Difficuities
1nvolving condition code generation, especially overflow detection in accordance with
the new multip_l_;ic:—_ltion instruction semantic, are presented in the paper. Modifications
to support the new semantic are suggested for a few exemplary muiltiplier
implementations.  Comparisons on the basis of performance und chip real estate are

made between the suggested implementations and the more traditional approach,



1. Introduction

Multiplication of two N-bit imegers, signed or unsigned, will result in a product
representable by 2N bits with no loss in precision. Although full precision is
mazintained, double-length product complicates the architécture and programming
model by requiring support for an additional 2N-bit number system in an otherwise
N-bit processor. Traditionally, when bounded by the somewhat limited representation
power of a 32:bit integer; 32-bit processors needed to make special provisions 1o store
‘this double-word product, such as the HI and LO registers in the MIPS R2000/3000
architecture. However, with the emergence of 04-bit. processors, the nécessity of

retaining the full 128-bit double-length product becomes an issue.

1.t Single-Length Multiplication

A single-lengih preduct in a N-bit system is the double-length produet modular 2V, In
another word, the single-length produet is the lower: N bits of the 2N-bit full product.
This single-length produict has the: advantage of bein g consistent with the: processor’s
N-bit number system. However, since only the lower-half of the full product is
refained, there will be instances where the single-length products are invalid because
the true results overflow the single-length number system. But; as we will argue later,
64-bit integer will have more than sufficient range of representation for all applications
that are not inherently Hoating-point bound. With that in mind, by exploiting the
following two properties of single-length multiplication, we are able to devise a new
multiplication semantic that will not enly simplify the programming medel but also

improve multiplier performance,
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1.2 Properties of Single-Length Multiplication

Property T:

When given two N-bit integers, the lower N bits of their 2N-bit product, or the single-
length product, are identical regardless of whether a signed or unsigned multiplication
is. performed. For example, suppose in an eight-bit system, one is given A=11110101
and  B=00001001. The unsigned product of A=245 and B=9 is 2205, or
00001000 10011101 in binary. The two’s-complement product of A=-11 and B=9 is
-99, or 11111111 10011101, Notice that the lower eight bits of both full products dre
"10011101" as stated in the property. Although the property does hold for this
example, the single-length preduct is incorrect for the unsigned multiplication since
2205 is not representable in eight bits. In general, regardless whether the the sirigle-

length produet is valid, the property will hold.

This property can be proven by inspection. Given 64-bit integers A and B, their

numerical values depend on interpretation.

When treéated as unsigned integers:
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Therefore, their respective products in both systems are:
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If one treafs the subtriction of S3 and S4 as the addition of the twe’s-complement of S3
and S4, the signed-product becomes:
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One should note that the signed and unsigned products are only different in the cross-
product terms (U3, U4, §37, §4°). Furthermore, only the. lowest bit of the cross-product
terms can affect the lower 64 bits of the product. Since 83” is the two’s-complement of
U3, their lowest bits will be the same. Likewise, 84" and U4 will alse have the same
lowest bits.  Therefore, the lower 64 bits of the product, or the single-length product, is

identical for both signed and unsigned multiplications.



Pmperty- 1L

When given two 2N-bit integers, the lower N bits of their product are equal to the
single-length product of the lower N-bit half-words of the original 2N-bit integers.
Again using A and B from above, the half-words a and b are a=A[3:0]=0101 and
b=B[3:0}=1001, The unsigned product of a=5 and b=9 is 45, or "0010 1101". The
two’s-complement product of @=5 and b=-7 is -35, or ”_l'.l[)l___l 101", The single-length
praduct ‘of the the half-words a and b is "1101", which is the lower four bits. of the pro-
duct of A and B. In this case, the Single-length product is invalid in both cases due to

overflow, Again, the property ¢can be deduced by inspection,

Given-64-bit integers A and B, their numerical valugs in the unsigned systeni are:
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And their product is:
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The single-length product of the lower halt-words is:
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Since T4 = (A3 0 x B ), and only T4 conwributes to. the lower 32 bits of the full product,
the lower 32 bits of the full product are precisely the single-length product of the
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1.3 New Multiply Instruction Semantic

By observing the two properties -above, we propose the following instruction for the

next géneration 64-bit architectures:

Format;

MULTI rs,rt,rd

Operation:

RF|rd] <= (RF{rs] * RF[rt])| 63:0];

V64 <= ((signed) RF[rd] == (signed) (RF[rs] * RF{rt]))

V32 <= I({signed) RF|rd}[31:0] == (signed) (RF|es][31:0] * RFE{rt}[31:0D)
Co4 <= H{{unsigned) RF[rd] == (unsigned) (RE[rs] * RF[rt]}).

C32 <= I{(unsigned) RF[rd}[31:0] == (unsigned) (RF[rs][31:0] * RF|r{31:0]))
N64 <= RF[1d|{63];

N32 <= RF{rd}{31];

764 <= (RF[1d] ==0)

732 <= (RF[1d][31:0] == (})

Description:

The contents of register rs and register 1t are multiplied, meating- both operands as
either 64-bit two’s-complement values or 64-bit unsigned values. When the
operation completes, the lower 64 bits of (hé resulting product are placed into register

rd as the single-tength 64-bit result.

Eight condition bits, V64, V32, C4, C32, N64, N32, Z64 and 732 are affected by

this instruction. The V64 bit is sel i the prodict of the two 64-bit operands, treated
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as two’s complément signed bumber, cannof be represented in a 64-bit two’s-
complemeni signed number system. The V32 bit is set if the two’s-complement
signed product-of the lower 32 bits of the operands cannot be represented in a 32-bit
twe’s-complemént signed number system. The C64 bit is set if the product of the
two 64-bit operands, tréated as unsigned number, cannot be represented in a 64-bit
unsigned number system. The C32 bit is set if the unsigned product of the lower 32
bits of the ‘two §4-bit operands cannot be represented in a 32-bit unsigned number
system. The N64 bit is ser if the 64-bit result is negative in a two’s-complement
system. The N32 bit is set if the lower 32 bits of the result is negative id a two's-
complement system, The Z64 bit is set if all 64 bits of the result are zero’s. The.

732 bit is set if the lower 32 bits of the result are all zero’s.

The Si-ng.le instruction defined above will replace both signed and unsigned double-
length multiplications.  The instruction will also indirectly remove several other
instructions such as MFLQO and MFHI instructions in MIPS R2000’s HI-LO scheme for.
storing the double-word product. Furthermore, the instruction supports operations on

both 64-bit and 32-bit data.

The interptetation of the 64-bit quantity produced by this instruction is usage dependent.
When multiplying two 64-bil two’s-complenient signed numbers,. if the V64 bit is not
set, then the 64-hit quantity is the valid product. Otherwise, if V64 is set, the product
has overflowed thé 64-bit signed number systen1. The interpretation for 64-bit unsigned
multiplication is similar. When operating on 32-bit data, the lower 32 bits of the
resulting quantity are interpreted as signed or unsigned single-length product of the
lower 32 bits of the operands. V32 dnd C32 indicate the validity of the single-length

product in the same fashion as their 64-bit ¢counterparts.



1.4 Reasons for Addpting Single-Length Multiplication

Besides simplifying the instruction set architecture, adopting this dew single-length
multiplication semantic also provides various other advantages such as uniformity of
arithmetical operatioris and conservidtion of register resources. Unlike double-length
multiplication, the architecture no longer needs to. make special provisions to store. the
double-word result.  In the HI-LO tegister scheme used to- support dodblc.—lcngth
multiptication, further operations on the result of -a multiplication is often awkward.
Even if the product does noi overflow fnto the HI register, operations on the product
require special instroctions (o first move the product back into a general register from
the special LO register. For cases where the product does overflow into the HI register,
twe general registers, or [wo consecutive _g_erierai- registers in some more restricting
cases, are required to retain the compléte product for further processing. However, when
no provisions are made for operalions on double-words, further processing on the
double-word resuit is difficult without somehow transforming. the result back into a
single-word tepresentation. In single-length multiplication, the awkwardness of double-

Tength multiplication is gracefully avoided, but not without loss of precision.

Besides the advantages already mentioned above, our new semantic also has the
advantage of allowing simple, uniform support for 32-bit data. Even with an abundance
of 64~'hit']‘jrocessors-,_ 32-bit data would sull remain prominent whether as remnant of the
gansition stage or ag an alternative for conserving memory. The new semantic also
allows for dramatic speed increase in multiplier implemented in CSA (carry save adder)
arrays. By generating only the single-length product, no -carry propagate chain is

necessary 1o produce the upper-half of the full product.



1,5 The Validity and the Practicality of Single-Length Multiplication

All the advantages of single-length 1nultiplication arise at the cost of precision.

Therefore, one needs to question how detrimental this loss of precision is.

In the 32-bit number system, roughly 4 billion. integers can be represented. As
commonly noted, that is barely enough to quantify Bill Gates’ current net-worth in US
dollars, It is then obvious thar reasonable: multiplication can quickly overflow. the
representable. range of 32-bit number system. THowever, a 64-bit number system has 4
billion times the répresentation power of a 32-bit system. To give an idea of the
vastness -of this range, one can specify the distance between Sun and Plute (5910 x 10°
kilometers) in microns using -64-bit integers. Similarly, .one can count. the age of the
universe (1.8 x 10" years) in seconds thirty-two times. In a more ¢omputing-oriented
example, it will be 2575 AD by the time a 1000 mips processor finishes counting
through the 64-bit number system. There is quite @ bit of representation power in a 64-
bit number system. We would. sefiously quiestion the necessity for further expansion
beyond 64-bit integer systeni. Undoubtedly, many scientific calculations can quickly
overflow the range of 64-bit nimber system. Flowever, often times, these calculations
also do vot require the full precision of 64 bits and are best supporied by floating point
operations. Therefore, it is our assertion that multiplication in realistic applications
should not overflow the -64-bil number system1 and retaining double-length product

provides little "meaningful” precision in 64-bit processors,

1.6 Application to Division

As with many things in hatere, symmetry is always desirable. However in this case, a
symmetrical application of our proposed semantic to division makes little sense. Firstly,

division never overflows the original word length except in one case, when the
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minimum negative in_tc_g::r is divided by -1. Therefore. the issue of si-ng'le_.-.len gth versus
double-length does not surface. Second ol all, signed and unsigned division does. not
exhibit similar convenient properties present in multiplication.  Analogous provisions for
division of 32-bit dati are similarly noensensical. The only meaningful support would be
to set the ‘C32 and V32 condition bits for the quotient. However, this is a trivial task.
Since integer division always generates the quotient from the most significant bit to- the
ledst-significant bit, -one can determine the two. conditions, C32 and V32, by observirig_-
the upper 33 bits of the quotient 4s they are gepérated. If the upper 32 bits are not all
zero then C32 is set. 1f the upper 33 bits are not.all of the same value (0’s or 1°s), then

V32 is set. Hence, we will not discuss the topic of division in-any fiirther detail.

1.7 Statement of Problem

In the rest of the paper, we will describe the design and im_p}ementat_-io_n of 64-bit
single-length- multipliers that will support our proposed semantic. Generating single-
length product obviously does not pose tny great difficulty; one simply -ignores the
upper-half of the Tull product, A simple carry-propagate shift-add multiplier, as describe
in Hennessy and Patterson, always generates: the full double-length product. To retrieve
the single-length product, one simply rétrieves the lower half of the full product. The

crux of our problem lies in generating the overflow -and carry condition bits,

2. Detecting Overflows and Carries in Single-Length Multiplication

Single-length multiplication will produce invalid product when the true product exceeds
the range of single-length number system. Though, we argue this is a rare case, the
multiplier still needs 1o notify the user when an invalid product is generated. The
multiplier must be able 1o detect overflows und- carries for single-length multiplications,.

and 1t needs to do this efficiently. The casiest way to detect overflow or carries is to
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generate the full double-length product and examine the upper-half of the product with
combinational logic, but this brute-force way is counter-praductive, One. advantage of
single-length multiplication is the space saving and performance gain resulting from not
generating the upper-half of the product. If a single-length multiplier needs to generate
the full product to detect overflow, it does not have any advantage over conventignal
multipliers in terms of _c‘._hi_'p real estate and performance. What is preferred is an elegant
way of detecting overflows. without interfering with the efficient operation of a single-
length 111tzl'tip']iel'.. The mext section will explain the mechanism by which ovérflow

occurs i single-length multiplication.

2.1 How does Overflow Qceur in Single:Length Multiplication

There are two general conditions that lead o overflow in single-length multiplication.
They are best demonstrated in a long-hand multiplication, In a long-hand binary
multiplication of a positive multiplicand by a. positive multiplier, one scans across the
multiplier from least te most significant bit. If a "1"-bit at the i-th (counting from 0)
position of the multiptier i encountered. the multiplicand is' multiplied by ‘the valie’ of
that *1*-bit (2} to generate a purtial praduct, and then the partial product is added to the
pastial sum, First saurce of overflow occurs when the partial product (mu'-ltip'l'icand x 24
alteady exceeds the. representability of a single-length word. Adding this already
overflowed partial product to the the cumulative partial sum will definitely lead to an
averflow. The other case of overflow comes from accumulation in the partial sum.
Even if each individual partial product never exceeds the single-length number system,

it is possible for their cumulative partial sum to overflow,

2.2 A Primitive Implementation

We can easily modify a shift-add multiplier to detect the two conditions for overflow



described above, In eur modified design {see ﬁgure 1), the. multiplicand and the
multiplier are: shifted instead of shifting the sum and the multiplier as describe in
Hennessy & Patterson. To multiply two 64-bit signed-positive integers a4 and b, one
beging by loading a and b into the A register (multiplicand) and the B register
(multiplier) respectively and clearing the P register (partial sum). The overflow bit and
one special ::ﬂag bit whose meaning will be explained later are also cleared. Then the

following steps are repeated 64 times:

1) If the least significant bir of B ix 717, then the content of register A is added to the P
register; otherwise; a bit sequence I‘e.;_)rese.ming 0 15 added to register P. If there is an
ovetflow into the sign bit of the P register from this addition, an overflow bit is ser.
Also-if the Hag bit is set and the least significant bit of B 1s 717 then overflow bit is also

sef.

2) Register B is shifted right by one, while register ‘A is left shifted by one and zero-
(illed. 1fa *1” bit is shifted into the sign-bit of A thén the flag bit is set to signify that

all fiture noi-zero partial product will overflow.

At the end of the 64th step, P holds the single-length product of a and b. If the
overflow bit is set, then the true product of a and b has overflowed the 64-bit system.
This scheme will work for all cases where the multiplier is positive. If the nialtiplicand
I8 negative, instead of looking for a *17 bir shifting into the sign-bit of A, the flag bit is.
set if & *0" bit is shifted into the sign-bit of A. For unsigned multiplication, the flag bit.
is.set when a *1° is shifted our of végister A, and the unsigned carfy bit is et if there is
a carry out of P. The actual multiplication process performed is the sameé in all three
cases. This scheme can also be upplied to setting the 32-bit carry and 32-bit overflow

as required by the semantic..

However; & problem is. encountered when the multiplier is negative since the the value
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of a ’1” bit in a negative number has a very different meaning than in g positive
number. Therefore, overflow detection for the case of negative multiplier is very
difficult to implement. A simpler alternative would be to guarantee that the multiplier is
always positive with some’ extra Togic. In this scheme, if only the multiplier is positive,
then the muoltiplier and multiplicand are switched. If both the multiplier and

multiplicand are negatve, thelr two’s-complements are multiplied instead, much like a
g : P

sign=magnitude multiplicition,

One might asked the question dbout why not alway$ perform the muiltiplication in sign-.
magnitude number system and make accommodation for the sign at the end? The:
problem with the sign-magnitude is that the new semantic requires both unsigned’ carry

enerdted for each multiplication. If sign-magnitude

=

and signed overflow to be
mulgiplication is performed, one woukd not be able to detect unsigned carry for the
original eperands if one of them is negative. There. is another problem that exists for
both the propesed solution of guaranteeing positive maltiplier and the sign-magnitude
solution. The new semuntic also requires the multiplier to produce condition bits for
both 64-bit and 32-bit number systems. It an operand has conflicting sign when
interpreted in. the two number systems; correcl condition bits can only be generated for
one of the two systems. However, one could avercome this problem by modifying the
semantic to require the programmer or the compiler to properly sign extended the

operands when the multiplication is intended for 32-bit data.

2.3 Necessary Improvements

Although somewhit brute-forced, the proposed multiplier is functionally correct and
physically feasible, Nevertheless, this implementation is not acceptable because a 64-bit
carry-propagate multiplier has no place in the high-performance: architecture for which

this semantic is intended. The next logical step would be to modify the implementation



for & carry-save based multiplier.

This next.step turned out to be 4 difficult one. Recall that to detect overflow, one needs-
to detect overflow into the sign bit of the partial sum. With carry-propdagate adder, we
sithply needed to compare the carry-in and carry-out of the sign-bit for each addition. If
the two carry bits are different then an overflow has occurred. However, there is no
known way of detecting signed overflow in a -carry-save-adder whose actual som is
stored as both-sum and carry during intermediate $tages of multiplication, If no efficient
way of detecting overflow in CSA could be devised, single-length multipliers would be
Timited to CPA based muldpliérs. This would seriously limit the performance of
single-length multipliers and eliminate any practicality and advantage that single-length

multipliers have. Thisis a probleny thir must bé overcome.

Realizing our ldck of formal muathematical training, we sought the help. of Professor
Hendrik Lenstra to resolve this bottleneck. We. were fruitless after hours of discussion
with Professor Lenstra.on the problem of detecting overflow in & CSA. However, when
the problem is bro‘u-.g:ht up dgain.in the context of multiplication, Professor Lenstra gave
us an mmportant hint thit is crucial to the success of this project. There are two
conditions that lead o overflows in single-length multiplication, but these two conditions
are not mutually exclusive. Ih mest cases when the partial sumi overflows, the partial
product would also have overflowed. Though one may not be able to detect when the
partial sum overflows, if one can successfully detect all overflows resulting from
overflowing partial _p‘roducts, one would also have detected most of the cases when the
partial sums have overflowed. ’.I"’hu's;_ the. remaining_ undetected cases 'of overflows result
solely from the accumilition of non-overflowing partial products. In this case,. the
overflow never propagntes pass the sign bit. Therefore, if all the overflows resulting
from overflowed partial product is correctly detected, the remaining overflows can be

detected by checking for the cofrect sign-bit at the end of the multiplication. With the
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help of Professor Lenstra, we developed the following: three parts theorem.

2.4 Theorem for Overflow Detection in a Single-length Multiplication
Part a:
Suppose a; b, pe N,
Let & and ¢ be the number of the leading zero’s ina and b respectively,

We then define a, b, and p. as the following:

ab = p mod 264
< 64 >

0<a <2¥ &= (0000...001#%5%)
< ko> (1 £k <64)
<~ 64 >

0<h <2 b= (0000...00 1) |
<> (15! <64),

g <28

Since a has £ leading zero’s;. 2 <y 9B
Since b has ¢ leading zeio's, 26 gy < O

Therefore, from combining the previous two equations one concludes:

212{)_—’4'——1' & ir‘;‘b.} < gl-zgmk:‘-{
Theorem:
) It &+ F<63, then: 2y Ikt =z _64., then:
ah #p ab =p It p >0
Proof ofthe. theorem:
1) lap | z 212040 2) Supposé p = db, then p >0  {done}
Sl 0S¢ |
Suppose p > 0, .
ab =2 2% 3 p Since lab| <210+
) labl < 2%,
Ilenee, abr 2 p Therefore,

0 <ab <29,
A}SO, ___263 < p & '263 .
Therefore,

0<p <27,
THence,. _

< 2%

lab-pl = = ( mod 25

lab—p =0
ab =p {done}



Part. b

Suppose 4, b, pe N,

Let £ be the humber of the leading zero’s in'a

and 7 be the number of the leading one’s in' b respectively,
We then define a, b, dnd p as the Tollowing:

ah = p mod 2%
<- 64 -

Gy < 2% a = (0000.. Q01 iy
<= ko> (1 <k <64)
< 64 >

| b= (11 L1 L)
<- { <> (1 <! <64)

28 g <25

Since a has & leading zero’s, 25% < g o 28
Since b has ¢ leading one’s, B S 3 S

Therefarg, from combining the previous two equations one cancludes:

2IBE gy} @ QIR
Theorem:
1y Itk +{ <63, then: 2y Ak +1z64, then:
ab #p ab=p Uf p<0
Proof of the theorem:
1) ab ] > 236D 2} Suppose p = ab; thenp < 0
> 2_{5_3 o ’
_ Suppose p < {}, _
ab <-2% < p Since lah | < 2128tk
lab < 2%,
Hence, ab s+ p Therefore, )
_ 2% <iab < 0,
Also, 2% <p <29,
Therefore,
2% <p <0,
Hence, _
< 2%
lah—-pl=

Jab—p =0y
ab = p

- 16 -

= () mod 2%

{done}

{done)



Part ¢:

Suppose a, b, p e N,

Let# and ! be the number of the leading one’s in a and b respectively,
We then define a, b, and p as the following:

ab = p nod: 2%
. .
2% g < -] a=(1111.
<- k
<
2B < h <1
<+

f i
__2.:3 S.p < 26,

Since & has £ leading one’s,
Since b hus ! leading ong’s,

b= (1111,

2>

11 [}a«‘n)

L2k <64)

o

L T(ie)

(121 <64)

AR IR
A T

Therefore, from combining the previouy two equations one concludes:

2"1 Awkei db i g V2R

Theorem:

1) Ik +1 <63, then:
ab = p

Proof of the theorem:

1% ah | » 226Ky
> 26

ab > 2%

Hence, ab = p.

2) Suppose p = ab, then p> 0

2) Ifk+{ 264 and ab » 2%, then:
b =p iff p >0

{done}

Suppose p-> 0, o
Since e | < 2120 _
lab1 < 2% (excluding ab = 2%,
Therefore, '
0 <ab < 2%,
Also, 2% <p <29,

Therefore, _
0<p < 2%,
Hence,
<
iy —p| = { = 0 moit 2%
_fab-mp']:{)
ab = p {done}



To restate the theorem plainly, overflows resulting from overflowed partial products can
be detected by keeping track of the leading bit patterns of both the multiplicand and the
multiplier. To detect overflow completely, ‘one simply needs to also check the single-
length product for the cormect sign-bit.  If no overflowing partial product has been’
detected and the sign-bit is correct, the single-length product is valid. However, if one
is careful, one will notice that the theorem left some bonndary cases by limiting k and 1
to be less than 64 for mathematical reasons. - We will try to resolve these boundary

conditions now.

In the case of multiply a positive: number by another positive number, the theorem left
out the trvial ease of multiplying by zero’s; but no special provision needs to be made
here. When multiplying by zeio, k+1 will be at least 64, and the resulting product, zera,

will have the right sign, The theorem will correctly detérmine overflow.

In the case of ml,z_lti-l_alying_-a positive. number by a negative number, -1 and 0 are not
accounted for. Again, no special provision needs to be made for multiplying by -1
M'u'l't'ip_lying -1 by any posilive number will not cause an overflow and the theorem ‘will
behave correctly. Multiplying & negative number by zero does lead to a special case.
An algorithm bhased purely on the theorem wotld detect an overflow because zero. is
technically a positive number while the multiplication of a positive number and a
n¢gative number should produce a negative product. Therefore, in a complete
algorithm, we need to over-ride overflow generation whenever one of the operands is

zero because multiplication imroiving zero -should never cause an overflow.

In the final casi of niultiplying negative by negative, -1 is left ont. Multiplying -1 by
another negative ntmber does not cause v problem except when the other number is the
minimum negative number (- 2%). Such a case tesults in a product of + 2. 25

overflows the 64 bit number system. However, since the resulting 25 looks just like



- 2% in a 64-bit two's-complement interpretation, a standard algorithm would see the
wrong. sign bit and detect the overflow. The ne_gat.ive by negative case: has one other
hidden problenl Even when all partial products are valid, the partial sum can reach up
to 2% which would give a single-length product of zero. A standard algorithm that
only looks for correct sign-bit of the final product would not catch this overflow.
Therefore, one need to make provision to generite. an overflow when the product is

zero but both operands are negative.

Overall, two special provisions need to be added to the basic theorem to form a
complete overflow detection -scheme for s-in:gl_'e—_lc_ng_th multiplication. This complete
algorithm alse applies to 32-bit single-length muldiplication described by the new
serhantic; one simply dsserts that k-+1 starting at the 32-bit boundary should be greater
than 32 rdther than 64. Unsigned carry ¢an also be detected with this algorithm if one
interprets the 64-bit unsigned system as 4 65-bit signed system with an implied "¢°

sign-bit..

The. greatest advantage of this overflow detection scheme is ‘that it is completely
operation independent. The detection scheme only requires examining the leadin g bit
‘patierns of the -operands and the sign of the final _product. It is conceivable that a
separate: overflow detection cireuit can be: designed to fit any of the existing multiplier
designs without degrading the performance of the mulipliers. With some designs,
optimization could be made to blend the detection circuitry into the multiplier cireuit
to conserve chip area. Provided in the next section is a optimized radix-16 carry-save

shift-add multiplier and a sample array multiplier.
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3. Sample Implementations and Comparisons
3.1. Radix-16. Carry-Save Shift-Add Multiplier

‘This sample implementation is based on a carry-sive shift-add multiplier, figure 2. The
multiplier operates on radix-16 so only 16 cycles are: required to perform a 64-bit
multiplication. The overflow and carry detections are circuit realization of our theorem
and the two special provisions. On figure 3, we see the detection logic. for unsigned
carfies. Most of the logic are there to détect overflowed partial product or (k+) < 63.
The overflow partial product logic is an extension to the one used in the primitive
CPA shift-add multiplier. The. added camplexity results from the fact that the
multiplier is- now radix-16. On. figure 4, the overflow detection logic is shown. The
logic is stmilar to the unsigned-carey detection except the extra logics for the boundary
cases. Also, the inpiits to the detection logic pass through Xor gates controlled by the
sign-bits of the two operands; this allows the same detection logic to be used for all
four combinations of signed operands.. There is a large logic network for zero
detections. Despite of the appearance, the actual propagation delay is 2 gate-delays.
because when Z32 signal is needed at the end of the eighth iteration, only P{31:29] are.
changing while. P|28:0] remain stable and valid from previous cycles. The same
applies to Z64. This zero detection logic is probably the most costly part of the
overflow detection logic in terms-of chip area. Thé overflow detection could share the

existing zero-detect logic in the ALU if an extra cycle can be spared.

In this implementation, the condition code: generation mechanism actually blends itself
into the multiplier. However, the addition of the condition code generation logic- does
not introduce any new critical delay path to the multiplier. Therefore, the inherent
performance of a CSA shift-add multiplier is not affected. This particular design does

not have a significant space -advantage over a. well-designed CSA shift-add double-
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length multiplier, However, unlike a double-length multiplier, a time-consunﬁ_ng 64-bit
carry-propagate addition is- eliminated because this CSA multiplier is designed for

single-length oily.

3.2 CSA Array Single:Length Multiplier

A CSA array single-length multiplier is presented in figure 5. To simplify the
schematic, ‘the multiplier only supports 8-bit signed number system. With additional
logic, the proposed design can be easily expanded to support the full semantic for 64-
bit and 32-bit multiplications. Very much like unrolling loojps; in programs, the
overflow detection logic for an. array multiplier i simply the unrolled version of the
detection logic: presented for the CSA shift-add multiplier. Again, the detéction logic
does not intesfere with the operation of the array multiplier or create dny new critical
delay path. In fact, The proposed nultiplier array could be replaced by any other
conceivable array organization, such as the various tree 'mult'ipl'icrs, without requiring

major modifications to the overflow detection logic.

Once more, the single-length CSA array multiplier has a performance edge over
double-length mulsipliers of the same design because generation of the upper product
with a CPA adder is not 1'cq_uir'ed-. However, more: importantly, a single-length array
niultiplier holds another significant advantage over a double-length array multiplier in.
VLSI implementation. A double-length multiplier would require rou ghl_._y twice the chip
area to implement. Furthermore, because of the skewed physical organization of a
double-length multiplier; great difficulty exists in fitting a- double-length array
multiplier into a 64-bit datapath. Whereas, a single-length array muliiplier -would

blend smoothly into the datapath because. it is also-only 64 bits wide.



4. Provision for Double-Length and Extended-Preécision Multiply

Before concluding our report, we must address the problem of what happens in some
rare but conceivable situations when 128-bit double-length product is absolutely
necessary.  For single-length multiplication operation to be complete, we must be able
to generate full double-length product when required. Included below are the sample
assembly codes for both signed and unsigned double-length multiplication. With the
algorithm for double-length multiplication, any extended-precision multiplication can be
‘achieved with conventional al g_cn’i thms.

#

#-signed double-length muluplication

# give temporary register-tl, 12, 3
#rl X 12 ==> 4,3

o
d mult s
sl 11,32t
srl t],32,11 ¥ lower half rl ==> 11
s r2,32.02
sl 12,32,12 # lower half 12 ==> 12
multr t1,02,r3 #lower rl x lower 12 ==> 13
sra r2,32,t3 # signed upper half of 12 ==> 13
mudti t1,63,r4 # lower rl % upper 12 ==> 14
st r4.32.xl
addec t1,r3,03 # add and modify carry
sra 14,32,r4 _
sra r1,32,t1 # signed upper half of r1 ==>tl
multi (1,t3,(3: # upper 11 x upper rl
acddx t3,rd.r4 # add with carry
muti tl,e2,td # upper r1 x lower 12
s11¢1,32,62
addec r3,02,13 # add and modify carry
sra 31,3241
addx t1.r4,rd # add with carry
retl
#

# unsigned double-length multiplicaiion
# give temporary register 11, 12, 3
#r]l x 12 =2 1413
#
d_mult e
—oslr132,11
srl 11,32.r] # Tower half rl ==> t1
sl 12,3242



srl 12,32,12
multi (1,123
srl 12,3213
multt 11,t3,r4
sil r4,32,11

addee £1,03,+3

sl r4,32,r4
sl rl,32,t1
multi t1,13,63
addx 13.rd,r4
minln t1,12,]

# lower half 12 ==> 2 _
# lower rl x lower 12 ==> 3
# upper half of 12 ==> (3

# lower r1 X upper 12 ==>714

# add and modify ¢arry

# upper half of 1l ==> tl
# upper rl x upper rl

# add with carry

# upper r1 x lower 12

sli 11,3212
addee r3, 02,03
sl 11,32,t1
dddx 1,4,
retl

# add and modify carry

if add with carry

As Amdahl’s law dictates, frequently used cases should be as fast as possible, and
performance of rare cases can be and should be sacrificed for the general cases. Though
it costs significantly more cycle time fo -generate double-length by software, it is not
impossible.  As long as double-length multication iy infrequent, this will not degrade the

overall performance of the processor.

5. Closing

As we have shown, it is possible to inexpensively and efficiently modify many existing
bigh performance multiplier design to comply to our new single-length multiplication
semantic. In most cases, we are not ‘only able o conserve significant chip redl estate
bur also achieve valuable performance gain au the same time. 1f 64-bit integers indeed
have enough éxpressive power for realistic applications, this new _nm-lt_ip_ly_ semantic can
bring about revolutionary changes to both future 64-bit processors’ instruction set’

arehitectures and acithmetic unit designs.,
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