
18-447

Computer Architecture

Guest Lecture: Multi-Core Systems

Prof. Onur Mutlu

Carnegie Mellon University

Unexpected Slowdowns in Multi-Core

2

Low priority

High priority

(Core 0) (Core 1)

Agenda

 Intro to Multi-Core Systems

 Multi-Core Design Issues

 Shared Main Memory Systems

 Shared Caches

 Core Organization

 Interconnects

 Announcements

 CALCM reading group

 ECE 18-742: Parallel Computers (offered Spring 2010)

 Interested in summer and future research in computer
architecture and multi-core systems?

3

Announcements

 Weekly CALCM Reading Group

 Will start the first week of May (May 5)

 Readings and brainstorming on cutting-edge research in comp
arch and related areas

 + snacks

 Email me or join CALCM mailing list if you are interested in
attending and receiving announcements

 https://sos.ece.cmu.edu/mailman/listinfo/calcm-list

4

https://sos.ece.cmu.edu/mailman/listinfo/calcm-list
https://sos.ece.cmu.edu/mailman/listinfo/calcm-list
https://sos.ece.cmu.edu/mailman/listinfo/calcm-list

Announcements (II)

 Interested in more Computer Architecture classes?

 18-740: Advanced Comp Arch (Fall 2009, Prof. Mowry)

 18-742: Parallel Comp Arch (Spring 2010, Prof. Mutlu)

 Interested in Summer of Future Research in Comp Arch?

 Talk to me. Some sample projects:

 MS-Manic: Memory systems for 1000-core processors

 On-chip security: attacks, defenses, many-core resource
management

 BLESS: Bufferless on-chip networks

 Asymmetric Multi-Core Design

 Architectural support for safe/managed programming languages

 Hardware/software/system support for tolerating hardware
defects and bugs

5

6

 Computer architecture is the science/art of designing high-performance
processing systems under many different constraints (power, cost, size,
battery life, reliability, etc)

 Processor performance improvements enabled innovation in software
development for decades

 Single-thread performance has become very difficult to improve

 Complexity wall

 Memory wall

 Power wall

 Reliability wall (soon)

 Chip-multiprocessor architectures are mainstream

 Reduce mainly the “complexity wall” by tiling cores

 Create new problems
 shared resources, parallel programming, off-chip bandwidth, serial bottleneck

The State of Computer Architecture

Flynn & Hung, IEEE Micro, 2005

Processor core speed: ~60% per year

DRAM speed: ~7-10% per year

1 memory access > 300 clock cycles

Hard to bridge the gap with a single thread

Moore, FCRC, 2007

Virtuous Cycle, 1950-2005 (per Jim Larus)

7

Increased

processor

performance

Larger, more

feature-full

software

Larger

development

teams

Higher-level

languages &

abstractions

Slower

programs

World-Wide Software Market (per IDC):

$212b (2005)  $310b (2010)

*Slide credit: Mark Hill, HPCA 2007

Virtuous Cycle, 2005+

8

Increased

processor

performance

Larger, more

feature-full

software

Larger

development

teams

Higher-level

languages &

abstractions

Slower

programs

World-Wide Software Market: $212b (2005)  ???

X

Thread Level Parallelism & Multicore Chips

*Slide credit: Mark Hill, HPCA 2007

An Example Multi-Core System

9

CORE 1

L
2
 C

A
C

H
E

 0

S
H

A
R

E
D

 L
3
 C

A
C

H
E

D
R

A
M

 IN
T

E
R

F
A

C
E

CORE 0

CORE 2 CORE 3
L

2
 C

A
C

H
E

 1

L
2
 C

A
C

H
E

 2

L
2
 C

A
C

H
E

 3

D
R

A
M

 B
A

N
K

S

Multi-Core

Chip

*Die photo credit: AMD Barcelona

DRAM MEMORY

CONTROLLER

A Future Multi-Core Chip

10

Designing Multi-Core Chips is Difficult

 Designers must confront single-core design options

 Instruction fetch, decode, wakeup, select, out-of-order execution

 Execution unit configuration, operand bypass, SIMD extensions

 Load/store queues, data cache, L2 caches

 Checkpoint, runahead, commit

 Speculative execution: Prefetching, branch prediction

 As well as additional design degrees of freedom

 How many cores? How big each? Heterogeneous/homogeneous?

 Shared caches: levels? How many banks? How to share?

 Shared memory interface: How many controllers? How to share?

 On-chip interconnect: bus, switched, ordered? How to share?

 Prefetching: how to manage prefetchers across cores?

11

Problems in Multi Core Chips

 Simplify the design complexity problem

 Somewhat…

 Stamping multiple of the same cores side by side and connect them
with some interconnection network easier

 However, create many other (new) problems

 Shared resources among multiple cores: how to design and manage?

 More cores, NOT faster cores: single-thread performance suffers,
serial code performance suffers

 Memory bandwidth: How to supply all the cores with enough data

 Parallel programming: How to write programs that can benefit from
multiple cores? How to ease parallel programming?

 How to design the cores: what kind? homogeneous or heterogeneous?

 How to design the interconnect between cores/caches/memory?

12

Let’s Take a Look at Some of

These Problems

13

Unexpected Slowdowns in Multi-Core

14

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)

15

Why the Disparity in Slowdowns?

CORE 1 CORE 2

L2

CACHE

L2

CACHE

DRAM MEMORY CONTROLLER

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

Shared DRAM

Memory System

Multi-Core

Chip

unfairness

INTERCONNECT

matlab gcc

DRAM

Bank 3

16

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
o
w

 d
e
c
o
d
e
r

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

Access Address:

17

DRAM Controllers

 A row-conflict memory access takes 2-3 times longer than a
row-hit access

 Current controllers take advantage of the row buffer

 Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*

(1) Row-hit first: Service row-hit memory accesses first

(2) Oldest-first: Then service older accesses first

 This scheduling policy aims to maximize DRAM throughput

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.

*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.

18

The Problem

 Multiple threads share the DRAM controller

 DRAM controllers designed to maximize DRAM throughput

 DRAM scheduling policies are thread-unfair

 Row-hit first: unfairly prioritizes threads with high row buffer locality

 Threads that keep on accessing the same row

 Oldest-first: unfairly prioritizes memory-intensive threads

 DRAM controllers vulnerable to denial of service

 Can write programs that deny memory service to others

 Memory performance hogs

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = rand();

A[index] = B[index];

…

}

19

An Example Memory Performance Hog

STREAM

- Sequential memory access

- Very high row buffer locality (96% hit rate)

- Memory intensive

RANDOM

- Random memory access

- Very low row buffer locality (3% hit rate)

- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = j*linesize;

A[index] = B[index];

…

}

streaming random

20

What does the MPH do?

Row Buffer
R

o
w

 d
e
c
o
d
e
r

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0T1: Row 111

T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B

128 (8KB/64B) requests of T0 serviced before T1

Effect of the MPH

0

0.5

1

1.5

2

2.5

3

STREAM RANDOM

21

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP

(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

S
lo

w
d

o
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc

0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Can Be a Bigger Problem with More Cores

1.05

1.85

4.72

7.74

0

1

2

3

4

5

6

7

8

libquantum hmmer h264ref omnetpp

S
lo

w
d
o
w

n

22

DRAM memory is the only shared resource

Memory Performance Hog

(Core 0) (Core 1) (Core 2) (Core 3)

Low priority

High priority

Problems Caused by MPHs

1.05
1.85

4.72

7.74

0

1

2

3

4

5

6

7

8

libquantum hmmer h264ref omnetpp

S
lo

w
d
o
w

n

23

 Vulnerability to denial of service [Usenix Security 2007]

 Inability to enforce thread priorities [MICRO 2007, ISCA 2008]

 System performance loss [MICRO 2007, ISCA 2008]

Cores make

very slow

progress

Memory performance hogLow priority

High priority

24

Preventing Memory Performance Hogs

 Fundamentally hard to distinguish between malicious and
unintentional MPHs

 MATLAB’s memory access behavior is very similar to STREAM’s

 Unfair DRAM scheduling is the fundamental cause of MPHs

 MPHs exploit the unfairness in the DRAM controller

 Solution: Prevent DRAM unfairness

 Contain and limit MPHs by providing fair memory scheduling

25

Solution: Hardware-Software Cooperation

 Hardware provides a fair scheduler that is

 Configurable by software

 High-performance

 Simple to implement (cost- and power-efficient)

 System software decides policy

 Configures the fair scheduler to enforce thread priorities and
quality of service policies

 But, what is fairness in shared DRAM systems?

26

Stall-Time Fairness in Shared DRAM Systems

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads
relative to when each thread is run alone on the same system

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory

 STshared: DRAM-related stall-time when the thread runs with other threads

 STalone: DRAM-related stall-time when the thread runs alone

 Memory-slowdown = STshared/STalone

 Relative increase in stall-time

 Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

 Considers inherent DRAM performance of each thread

 Aims to allow proportional progress of threads

27

STFM Scheduling Algorithm [MICRO’07]

 For each thread, the DRAM controller

 Tracks STshared

 Estimates STalone

 Each cycle, the DRAM controller

 Computes Slowdown = STshared/STalone for threads with legal requests

 Computes unfairness = MAX Slowdown / MIN Slowdown

 If unfairness < 

 Use DRAM throughput oriented scheduling policy

 If unfairness ≥ 

 Use fairness-oriented scheduling policy

 (1) requests from thread with MAX Slowdown first

 (2) row-hit first , (3) oldest-first

28

How Does STFM Prevent Unfairness?

Row Buffer

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0

T1: Row 111

T0: Row 0T0: Row 0

T1: Row 5

T0: Row 0T0: Row 0

T0: Row 0

T0 Slowdown

T1 Slowdown 1.00

1.00

1.00Unfairness

1.03

1.03

1.06

1.06

 1.05

1.03

1.06

1.031.04

1.08

1.04

1.04

1.11

1.06

1.07

1.04

1.10

1.14

1.03

Row 16Row 111

Containing the Memory Performance Hog

1.07

3.04

0

0.5

1

1.5

2

2.5

3

3.5

4

matlab gcc

S
lo

w
d
o
w

n

29

1.76 1.85

0

0.5

1

1.5

2

2.5

3

3.5

4

matlab gcc

S
lo

w
d
o
w

n

14% improvement in system performance

(Core 0) (Core 1)

30

STFM Implementation

 Tracking STshared

 Increase STshared if the thread cannot commit instructions due to an
outstanding DRAM access

 Estimating STalone

 Difficult to estimate directly because thread not running alone

 Observation: STalone = STshared - STinterference

 Estimate STinterference: Extra stall-time due to interference

 Update STinterference when a thread incurs delay due to other threads
 When a row buffer hit turns into a row-buffer conflict

(keep track of the row that would have been in the row buffer)

 When a request is delayed due to bank or bus conflict

31

Support for System Software

 System-level thread weights (priorities)

 OS can choose thread weights to satisfy QoS requirements

 Larger-weight threads should be slowed down less

 OS communicates thread weights to the memory controller

 Controller scales each thread’s slowdown by its weight

 Controller uses weighted slowdown used for scheduling

 Favors threads with larger weights

 : Maximum tolerable unfairness set by system software

 Don’t need fairness? Set  large.

 Need strict fairness? Set  close to 1.

 Other values of : trade off fairness and throughput

Enforcing Thread Priorities

1.07

3.04

0

0.5

1

1.5

2

2.5

3

3.5

4

matlab gcc

S
lo

w
d
o
w

n

32

1.76 1.85

0

0.5

1

1.5

2

2.5

3

3.5

4

matlab gcc

S
lo

w
d
o
w

n

2.78

1.06

0

0.5

1

1.5

2

2.5

3

3.5

4

matlab gcc

S
lo

w
d
o
w

n

Low priority

High priority

(Core 0) (Core 1)

Some Issues in Multi-Core Design

 Shared Main Memory System

 Shared vs. Private Caches

 Interconnect Design

 Amdahl’s Law: Asymmetric Multi-Core Chips

33

Multi-core Issues in Caching

 How does the cache hierarchy change in a multi-core
system?

 Private cache: Cache belongs to one core

 Shared cache: Cache is shared by multiple cores

34

CORE 0 CORE 1 CORE 2 CORE 3

L2

CACHE

L2

CACHE

L2

CACHE

DRAM MEMORY CONTROLLER

L2

CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

L2

CACHE

Shared Caches Between Cores

 Advantages:

 Dynamic partitioning of available cache space

 No fragmentation due to static partitioning

 Easier to maintain coherence

 Shared data and locks do not ping pong between caches

 Disadvantages

 Cores incur conflict misses due to other cores’ accesses

 Misses due to inter-core interference

 Some cores can destroy the hit rate of other cores

 What kind of access patterns could cause this?

 Guaranteeing a minimum level of service (or fairness) to each
core is harder (how much space, how much bandwidth?)

 High bandwidth harder to obtain (N cores  N ports?)
35

Handling Shared Data in Private Caches

 Shared data and locks ping-pong between processors if
caches are private

-- Increases latency to fetch shared data/locks

-- Reduces cache efficiency (many invalid blocks)

-- Scalability problem: maintaining coherence across a large
number of private caches is costly

 How to do better?

 Idea: Store shared data and locks only in one special core’s
cache. Divert all critical section execution to that core/cache.

 Essentially, a specialized core for processing critical sections

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

36

Multi-Core Cache Efficiency: Bandwidth Filters

 Caches act as a filter that reduce memory bandwidth
requirement

 Cache hit: No need to access memory

 This is in addition to the latency reduction benefit of caching

 GPUs use caches to reduce memory BW requirements

 Efficient utilization of cache space becomes more important
with multi-core

 Memory bandwidth is more valuable

 Pin count not increasing as fast as # of transistors

 10% vs. 2x every 2 years

 More cores put more pressure on the memory bandwidth

37

Some Issues in Multi-Core Design

 Shared Main Memory System

 Shared vs. Private Caches

 Interconnect Design

 Amdahl’s Law: Asymmetric Multi-Core Chips

38

On-Chip Interconnects

 Or Networks-On-Chip (NoC)

 Each node on chip consists of

 A core and caches associated with the core

 How should we connect the nodes?

 A shared bus is not scalable

 A crossbar is too expensive

 A ring?

 A 2D mesh?

 A torus?

39

On-Chip Interconnects

 What we want

 Fast communication

 No congestion

 Many paths or good routing

 Small area overhead

 Small energy consumption

40

2D Mesh

+ Easy to layout in a 2D chip

+ Many paths, yet relatively simple

-- Large diameter, maximum distance

-- Large energy and area overhead

-- Compared to rings, buses

-- Many buffers in router

41

How to Make a 2D Mesh More Efficient

 NoC consumes 20-40% of system power in prototype chips

 Problem: Buffers consume energy, occupy area, increase router/NoC
complexity/latency

 Question: When are buffers most helpful? Congestion.

 Observation: On-chip networks lightly loaded

 Idea: Eliminate Buffers

 Misroute a packet upon congestion instead of buffering it

 Called Hot Potato routing

 Deflected/misrouted packets eventually reach destination

42

Bufferless On-Chip Networks

 Benefits

 Network Energy Savings: ~40%

 Performance Increase: ~2%

 Reduced router latency

 Network Area Savings: ~40%

 Simpler network/router design

 Adaptivity, deadlock freedom

 Many remaining research issues

 How to provide fairness to cores?

 How to provide quality of service guarantees?

 Better routing and flow-control algorithms to handle congestion

 Prototyping in FPGAs

 How to apply it to other topologies?
43

Some Issues in Multi-Core Design

 Shared Main Memory System

 Shared vs. Private Caches

 Interconnect Design

 Amdahl’s Law: Asymmetric Multi-Core Chips

44

Remember Amdahl’s Law?

 Begins with Simple Software Assumption (Limit Arg.)

 Fraction F of execution time perfectly parallelizable

 No Overhead for

 Scheduling

 Communication

 Synchronization, etc.

 Fraction 1 – F Completely Serial

 Time on 1 core = (1 – F) / 1 + F / 1 = 1

 Time on N cores = (1 – F) / 1 + F / N

 Speedup limited by the serial fraction of the program

45*Slide credit: Mark Hill, HPCA 2007

Accelerating Serial Program Portions

 Tile-large: Good at serial program portions

 Niagara: Good at exploiting thread-level parallelism

 ACMP (Asymmetric Multi-Core)

 Good at both

 Serial: on large core, Parallel: on many small cores

46

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Large

core

ACMP Approach

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

“Niagara” Approach

Large

core

Large

core

Large

core

Large

core

“Tile-Large” Approach

Asymmetric Multi-Core Approach

47

Performance vs. Parallel Fraction

48

Performance vs. Parallel Fraction (II)

49

Performance vs. Parallel Fraction (III)

50

Performance vs. Parallel Fraction (IV)

51

Asymmetric Multi-Core Chips

 Powerful execution engines are needed to execute

 Single-threaded applications

 Serial sections of multithreaded applications (remember Amdahl’s law)

 Where single thread performance matters (e.g., transactions, game logic)

 Accelerate multithreaded applications (e.g., critical sections)

 Corollary: Core design and enhancements still very
important in multi-core chips

 Many research questions

 How many types of cores? How many “powerful” cores?

 Specialized accelerator cores? For what kernels/applications?

 How to allocate cores to threads and applications?

 What should be shipped to and executed on powerful cores?
52

Summary

 Multi-core chips bring about many new challenges

 In Computer Architecture

 Design of uncore components

 Design of cores

 Allocation of chip real-estate to types of cores and uncore

 In System Software

 Hardware resource allocation and management

 Virtualization and QoS support

 In Programming Languages and Compilers

 Parallelization, thread extraction, easy parallel programming

53

References and Readings

 Moscibroda and Mutlu, "Memory Performance Attacks: Denial
of Memory Service in Multi-Core Systems,“ USENIX
SECURITY 2007.

 Mutlu and Moscibroda, "Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors,“ MICRO 2007.

 Moscibroda and Mutlu, "A Case for Bufferless Routing in On-
Chip Networks,“ ISCA 2009.

 Suleman et al., "Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures," ASPLOS 2009.

 Hill and Marty, “Amdahl's Law in the Multicore Era,” IEEE
Computer 2008.

54

http://www.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf
http://www.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf
http://www.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf
http://www.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://www.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://www.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://www.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf

