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Unexpected Slowdowns in Multi-Core
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Agenda

 Intro to Multi-Core Systems

 Multi-Core Design Issues

 Shared Main Memory Systems

 Shared Caches

 Core Organization

 Interconnects

 Announcements

 CALCM reading group

 ECE 18-742: Parallel Computers (offered Spring 2010)

 Interested in summer and future research in computer 
architecture and multi-core systems?
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Announcements

 Weekly CALCM Reading Group

 Will start the first week of May (May 5)

 Readings and brainstorming on cutting-edge research in comp 
arch and related areas

 + snacks

 Email me or join CALCM mailing list if you are interested in 
attending and receiving announcements

 https://sos.ece.cmu.edu/mailman/listinfo/calcm-list
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Announcements (II)

 Interested in more Computer Architecture classes?

 18-740: Advanced Comp Arch (Fall 2009, Prof. Mowry)

 18-742: Parallel Comp Arch (Spring 2010, Prof. Mutlu)

 Interested in Summer of Future Research in Comp Arch?

 Talk to me. Some sample projects:

 MS-Manic: Memory systems for 1000-core processors

 On-chip security: attacks, defenses, many-core resource 
management

 BLESS: Bufferless on-chip networks

 Asymmetric Multi-Core Design

 Architectural support for safe/managed programming languages

 Hardware/software/system support for tolerating hardware 
defects and bugs
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 Computer architecture is the science/art of designing high-performance 
processing systems under many different constraints (power, cost, size, 
battery life, reliability, etc)

 Processor performance improvements enabled innovation in software 
development for decades

 Single-thread performance has become very difficult to improve

 Complexity wall 

 Memory wall

 Power wall

 Reliability wall (soon)

 Chip-multiprocessor architectures are mainstream

 Reduce mainly the “complexity wall” by tiling cores

 Create new problems
 shared resources, parallel programming, off-chip bandwidth, serial bottleneck

The State of Computer Architecture

Flynn & Hung, IEEE Micro, 2005

Processor core speed: ~60% per year

DRAM speed: ~7-10% per year

1 memory access > 300 clock cycles

Hard to bridge the gap with a single thread

Moore, FCRC, 2007



Virtuous Cycle, 1950-2005 (per Jim Larus)
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Virtuous Cycle, 2005+
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An Example Multi-Core System
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A Future Multi-Core Chip
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Designing Multi-Core Chips is Difficult

 Designers must confront single-core design options

 Instruction fetch, decode, wakeup, select, out-of-order execution

 Execution unit configuration, operand bypass, SIMD extensions

 Load/store queues, data cache, L2 caches

 Checkpoint, runahead, commit

 Speculative execution: Prefetching, branch prediction

 As well as additional design degrees of freedom

 How many cores? How big each? Heterogeneous/homogeneous?

 Shared caches: levels? How many banks? How to share?

 Shared memory interface: How many controllers? How to share?

 On-chip interconnect: bus, switched, ordered? How to share?

 Prefetching: how to manage prefetchers across cores?
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Problems in Multi Core Chips

 Simplify the design complexity problem

 Somewhat…

 Stamping multiple of the same cores side by side and connect them 
with some interconnection network easier

 However, create many other (new) problems

 Shared resources among multiple cores: how to design and manage?

 More cores, NOT faster cores: single-thread performance suffers, 
serial code performance suffers

 Memory bandwidth: How to supply all the cores with enough data

 Parallel programming: How to write programs that can benefit from 
multiple cores? How to ease parallel programming?

 How to design the cores: what kind? homogeneous or heterogeneous?

 How to design the interconnect between cores/caches/memory?
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Let’s Take a Look at Some of 

These Problems
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Unexpected Slowdowns in Multi-Core
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Why the Disparity in Slowdowns?
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DRAM Bank Operation
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DRAM Controllers

 A row-conflict memory access takes 2-3 times longer than a 
row-hit access

 Current controllers take advantage of the row buffer

 Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*

(1) Row-hit first: Service row-hit memory accesses first

(2) Oldest-first: Then service older accesses first

 This scheduling policy aims to maximize DRAM throughput

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.

*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.
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The Problem

 Multiple threads share the DRAM controller

 DRAM controllers designed to maximize DRAM throughput

 DRAM scheduling policies are thread-unfair

 Row-hit first: unfairly prioritizes threads with high row buffer locality

 Threads that keep on accessing the same row

 Oldest-first: unfairly prioritizes memory-intensive threads

 DRAM controllers vulnerable to denial of service

 Can write programs that deny memory service to others

 Memory performance hogs



// initialize large arrays A, B

for (j=0; j<N; j++) {

index = rand();

A[index] = B[index];

…

}
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An Example Memory Performance Hog

STREAM

- Sequential memory access 

- Very high row buffer locality (96% hit rate)

- Memory intensive

RANDOM

- Random memory access

- Very low row buffer locality (3% hit rate)

- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = j*linesize;

A[index] = B[index];

…

}

streaming random
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What does the MPH do?
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Effect of the MPH
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1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
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Can Be a Bigger Problem with More Cores
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DRAM memory is the only shared resource

Memory Performance Hog
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Problems Caused by MPHs
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 Vulnerability to denial of service [Usenix Security 2007]

 Inability to enforce thread priorities [MICRO 2007, ISCA 2008]

 System performance loss [MICRO 2007, ISCA 2008]

Cores make 

very slow 

progress

Memory performance hogLow priority

High priority
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Preventing Memory Performance Hogs

 Fundamentally hard to distinguish between malicious and 
unintentional MPHs

 MATLAB’s memory access behavior is very similar to STREAM’s

 Unfair DRAM scheduling is the fundamental cause of MPHs

 MPHs exploit the unfairness in the DRAM controller

 Solution: Prevent DRAM unfairness

 Contain and limit MPHs by providing fair memory scheduling
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Solution: Hardware-Software Cooperation

 Hardware provides a fair scheduler that is

 Configurable by software

 High-performance

 Simple to implement (cost- and power-efficient)

 System software decides policy

 Configures the fair scheduler to enforce thread priorities and 
quality of service policies

 But, what is fairness in shared DRAM systems?
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Stall-Time Fairness in Shared DRAM Systems

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads  
relative to when each thread is run alone on the same system

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory

 STshared: DRAM-related stall-time when the thread runs with other threads

 STalone:  DRAM-related stall-time when the thread runs alone

 Memory-slowdown = STshared/STalone

 Relative increase in stall-time

 Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

 Considers inherent DRAM performance of each thread

 Aims to allow proportional progress of threads
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STFM Scheduling Algorithm [MICRO’07]

 For each thread, the DRAM controller

 Tracks STshared

 Estimates STalone

 Each cycle, the DRAM controller

 Computes Slowdown = STshared/STalone for threads with legal requests

 Computes unfairness = MAX Slowdown / MIN Slowdown

 If unfairness < 

 Use DRAM throughput oriented scheduling policy

 If unfairness ≥ 

 Use fairness-oriented scheduling policy 

 (1) requests from thread with MAX Slowdown first

 (2) row-hit first , (3) oldest-first
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How Does STFM Prevent Unfairness?
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Containing the Memory Performance Hog
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STFM Implementation

 Tracking STshared

 Increase STshared if the thread cannot commit instructions due to an 
outstanding DRAM access

 Estimating STalone

 Difficult to estimate directly because thread not running alone

 Observation: STalone = STshared - STinterference

 Estimate STinterference: Extra stall-time due to interference

 Update STinterference when a thread incurs delay due to other threads
 When a row buffer hit turns into a row-buffer conflict

(keep track of the row that would have been in the row buffer) 

 When a request is delayed due to bank or bus conflict
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Support for System Software

 System-level thread weights (priorities)

 OS can choose thread weights to satisfy QoS requirements

 Larger-weight threads should be slowed down less

 OS communicates thread weights to the memory controller

 Controller scales each thread’s slowdown by its weight

 Controller uses weighted slowdown used for scheduling

 Favors threads with larger weights

 : Maximum tolerable unfairness set by system software

 Don’t need fairness? Set  large.

 Need strict fairness? Set  close to 1.

 Other values of : trade off fairness and throughput



Enforcing Thread Priorities
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Some Issues in Multi-Core Design

 Shared Main Memory System

 Shared vs. Private Caches

 Interconnect Design

 Amdahl’s Law: Asymmetric Multi-Core Chips
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Multi-core Issues in Caching

 How does the cache hierarchy change in a multi-core 
system?

 Private cache: Cache belongs to one core

 Shared cache: Cache is shared by multiple cores

34

CORE 0 CORE 1 CORE 2 CORE 3

L2 

CACHE

L2 

CACHE

L2 

CACHE

DRAM MEMORY CONTROLLER

L2 

CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

L2 

CACHE



Shared Caches Between Cores

 Advantages:

 Dynamic partitioning of available cache space

 No fragmentation due to static partitioning

 Easier to maintain coherence

 Shared data and locks do not ping pong between caches

 Disadvantages

 Cores incur conflict misses due to other cores’ accesses

 Misses due to inter-core interference

 Some cores can destroy the hit rate of other cores

 What kind of access patterns could cause this?

 Guaranteeing a minimum level of service (or fairness) to each 
core is harder (how much space, how much bandwidth?)

 High bandwidth harder to obtain (N cores  N ports?)
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Handling Shared Data in Private Caches

 Shared data and locks ping-pong between processors if 
caches are private

-- Increases latency to fetch shared data/locks

-- Reduces cache efficiency (many invalid blocks)

-- Scalability problem: maintaining coherence across a large 
number of private caches is costly

 How to do better?

 Idea: Store shared data and locks only in one special core’s 
cache. Divert all critical section execution to that core/cache.

 Essentially, a specialized core for processing critical sections 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009.
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Multi-Core Cache Efficiency: Bandwidth Filters

 Caches act as a filter that reduce memory bandwidth 
requirement

 Cache hit: No need to access memory

 This is in addition to the latency reduction benefit of caching

 GPUs use caches to reduce memory BW requirements

 Efficient utilization of cache space becomes more important 
with multi-core

 Memory bandwidth is more valuable

 Pin count not increasing as fast as # of transistors

 10% vs. 2x every 2 years

 More cores put more pressure on the memory bandwidth
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Some Issues in Multi-Core Design

 Shared Main Memory System

 Shared vs. Private Caches

 Interconnect Design

 Amdahl’s Law: Asymmetric Multi-Core Chips

38



On-Chip Interconnects

 Or Networks-On-Chip (NoC)

 Each node on chip consists of

 A core and caches associated with the core

 How should we connect the nodes?

 A shared bus is not scalable

 A crossbar is too expensive

 A ring?

 A 2D mesh?

 A torus?
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On-Chip Interconnects

 What we want

 Fast communication 

 No congestion

 Many paths or good routing

 Small area overhead

 Small energy consumption
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2D Mesh

+ Easy to layout in a 2D chip

+ Many paths, yet relatively simple

-- Large diameter, maximum distance

-- Large energy and area overhead

-- Compared to rings, buses

-- Many buffers in router
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How to Make a 2D Mesh More Efficient

 NoC consumes 20-40% of system power in prototype chips

 Problem: Buffers consume energy, occupy area, increase router/NoC 
complexity/latency

 Question: When are buffers most helpful? Congestion.

 Observation: On-chip networks lightly loaded

 Idea: Eliminate Buffers

 Misroute a packet upon congestion instead of buffering it

 Called Hot Potato routing

 Deflected/misrouted packets eventually reach destination
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Bufferless On-Chip Networks

 Benefits

 Network Energy Savings:  ~40%

 Performance Increase: ~2%

 Reduced router latency

 Network Area Savings: ~40%

 Simpler network/router design

 Adaptivity, deadlock freedom

 Many remaining research issues

 How to provide fairness to cores?

 How to provide quality of service guarantees?

 Better routing and flow-control algorithms to handle congestion

 Prototyping in FPGAs

 How to apply it to other topologies?
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Some Issues in Multi-Core Design

 Shared Main Memory System

 Shared vs. Private Caches

 Interconnect Design

 Amdahl’s Law: Asymmetric Multi-Core Chips
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Remember Amdahl’s Law?

 Begins with Simple Software Assumption (Limit Arg.)

 Fraction F of execution time perfectly parallelizable

 No Overhead for 

 Scheduling

 Communication

 Synchronization, etc.

 Fraction 1 – F Completely Serial

 Time on 1 core = (1 – F) / 1 + F / 1  =  1

 Time on N cores = (1 – F) / 1 +  F / N

 Speedup limited by the serial fraction of the program

45*Slide credit: Mark Hill, HPCA 2007



Accelerating Serial Program Portions

 Tile-large: Good at serial program portions

 Niagara: Good at exploiting thread-level parallelism

 ACMP (Asymmetric Multi-Core)

 Good at both

 Serial: on large core, Parallel: on many small cores
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Asymmetric Multi-Core Approach
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Performance vs. Parallel Fraction
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Performance vs. Parallel Fraction (II)
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Performance vs. Parallel Fraction (III)
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Performance vs. Parallel Fraction (IV)
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Asymmetric Multi-Core Chips

 Powerful execution engines are needed to execute

 Single-threaded applications

 Serial sections of multithreaded applications (remember Amdahl’s law)

 Where single thread performance matters (e.g., transactions, game logic)

 Accelerate multithreaded applications (e.g., critical sections)

 Corollary: Core design and enhancements still very 
important in multi-core chips

 Many research questions

 How many types of cores? How many “powerful” cores?

 Specialized accelerator cores? For what kernels/applications?

 How to allocate cores to threads and applications?

 What should be shipped to and executed on powerful cores?
52



Summary

 Multi-core chips bring about many new challenges

 In Computer Architecture

 Design of uncore components

 Design of cores 

 Allocation of chip real-estate to types of cores and uncore

 In System Software

 Hardware resource allocation and management

 Virtualization and QoS support 

 In Programming Languages and Compilers

 Parallelization, thread extraction, easy parallel programming
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