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Unexpected Slowdowns in Multi-Core
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Agenda

 Intro to Multi-Core Systems

 Multi-Core Design Issues

 Shared Main Memory Systems

 Shared Caches

 Core Organization

 Interconnects

 Announcements

 CALCM reading group

 ECE 18-742: Parallel Computers (offered Spring 2010)

 Interested in summer and future research in computer 
architecture and multi-core systems?
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Announcements

 Weekly CALCM Reading Group

 Will start the first week of May (May 5)

 Readings and brainstorming on cutting-edge research in comp 
arch and related areas

 + snacks

 Email me or join CALCM mailing list if you are interested in 
attending and receiving announcements

 https://sos.ece.cmu.edu/mailman/listinfo/calcm-list
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Announcements (II)

 Interested in more Computer Architecture classes?

 18-740: Advanced Comp Arch (Fall 2009, Prof. Mowry)

 18-742: Parallel Comp Arch (Spring 2010, Prof. Mutlu)

 Interested in Summer of Future Research in Comp Arch?

 Talk to me. Some sample projects:

 MS-Manic: Memory systems for 1000-core processors

 On-chip security: attacks, defenses, many-core resource 
management

 BLESS: Bufferless on-chip networks

 Asymmetric Multi-Core Design

 Architectural support for safe/managed programming languages

 Hardware/software/system support for tolerating hardware 
defects and bugs
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 Computer architecture is the science/art of designing high-performance 
processing systems under many different constraints (power, cost, size, 
battery life, reliability, etc)

 Processor performance improvements enabled innovation in software 
development for decades

 Single-thread performance has become very difficult to improve

 Complexity wall 

 Memory wall

 Power wall

 Reliability wall (soon)

 Chip-multiprocessor architectures are mainstream

 Reduce mainly the “complexity wall” by tiling cores

 Create new problems
 shared resources, parallel programming, off-chip bandwidth, serial bottleneck

The State of Computer Architecture

Flynn & Hung, IEEE Micro, 2005

Processor core speed: ~60% per year

DRAM speed: ~7-10% per year

1 memory access > 300 clock cycles

Hard to bridge the gap with a single thread

Moore, FCRC, 2007



Virtuous Cycle, 1950-2005 (per Jim Larus)
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Virtuous Cycle, 2005+
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An Example Multi-Core System
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A Future Multi-Core Chip
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Designing Multi-Core Chips is Difficult

 Designers must confront single-core design options

 Instruction fetch, decode, wakeup, select, out-of-order execution

 Execution unit configuration, operand bypass, SIMD extensions

 Load/store queues, data cache, L2 caches

 Checkpoint, runahead, commit

 Speculative execution: Prefetching, branch prediction

 As well as additional design degrees of freedom

 How many cores? How big each? Heterogeneous/homogeneous?

 Shared caches: levels? How many banks? How to share?

 Shared memory interface: How many controllers? How to share?

 On-chip interconnect: bus, switched, ordered? How to share?

 Prefetching: how to manage prefetchers across cores?
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Problems in Multi Core Chips

 Simplify the design complexity problem

 Somewhat…

 Stamping multiple of the same cores side by side and connect them 
with some interconnection network easier

 However, create many other (new) problems

 Shared resources among multiple cores: how to design and manage?

 More cores, NOT faster cores: single-thread performance suffers, 
serial code performance suffers

 Memory bandwidth: How to supply all the cores with enough data

 Parallel programming: How to write programs that can benefit from 
multiple cores? How to ease parallel programming?

 How to design the cores: what kind? homogeneous or heterogeneous?

 How to design the interconnect between cores/caches/memory?
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Let’s Take a Look at Some of 

These Problems

13



Unexpected Slowdowns in Multi-Core

14

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)



15

Why the Disparity in Slowdowns?

CORE 1 CORE 2

L2 

CACHE

L2 

CACHE

DRAM MEMORY CONTROLLER

DRAM 

Bank 0

DRAM 

Bank 1

DRAM 

Bank 2

Shared DRAM

Memory System

Multi-Core

Chip

unfairness

INTERCONNECT

matlab gcc

DRAM 

Bank 3



16

DRAM Bank Operation
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DRAM Controllers

 A row-conflict memory access takes 2-3 times longer than a 
row-hit access

 Current controllers take advantage of the row buffer

 Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*

(1) Row-hit first: Service row-hit memory accesses first

(2) Oldest-first: Then service older accesses first

 This scheduling policy aims to maximize DRAM throughput

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.

*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.



18

The Problem

 Multiple threads share the DRAM controller

 DRAM controllers designed to maximize DRAM throughput

 DRAM scheduling policies are thread-unfair

 Row-hit first: unfairly prioritizes threads with high row buffer locality

 Threads that keep on accessing the same row

 Oldest-first: unfairly prioritizes memory-intensive threads

 DRAM controllers vulnerable to denial of service

 Can write programs that deny memory service to others

 Memory performance hogs



// initialize large arrays A, B

for (j=0; j<N; j++) {

index = rand();

A[index] = B[index];

…

}
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An Example Memory Performance Hog

STREAM

- Sequential memory access 

- Very high row buffer locality (96% hit rate)

- Memory intensive

RANDOM

- Random memory access

- Very low row buffer locality (3% hit rate)

- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = j*linesize;

A[index] = B[index];

…

}

streaming random
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What does the MPH do?
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Effect of the MPH
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1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
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Can Be a Bigger Problem with More Cores

1.05

1.85

4.72

7.74

0

1

2

3

4

5

6

7

8

libquantum hmmer h264ref omnetpp

S
lo

w
d
o
w

n

22

DRAM memory is the only shared resource

Memory Performance Hog
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Problems Caused by MPHs
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 Vulnerability to denial of service [Usenix Security 2007]

 Inability to enforce thread priorities [MICRO 2007, ISCA 2008]

 System performance loss [MICRO 2007, ISCA 2008]

Cores make 

very slow 

progress

Memory performance hogLow priority

High priority
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Preventing Memory Performance Hogs

 Fundamentally hard to distinguish between malicious and 
unintentional MPHs

 MATLAB’s memory access behavior is very similar to STREAM’s

 Unfair DRAM scheduling is the fundamental cause of MPHs

 MPHs exploit the unfairness in the DRAM controller

 Solution: Prevent DRAM unfairness

 Contain and limit MPHs by providing fair memory scheduling
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Solution: Hardware-Software Cooperation

 Hardware provides a fair scheduler that is

 Configurable by software

 High-performance

 Simple to implement (cost- and power-efficient)

 System software decides policy

 Configures the fair scheduler to enforce thread priorities and 
quality of service policies

 But, what is fairness in shared DRAM systems?
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Stall-Time Fairness in Shared DRAM Systems

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads  
relative to when each thread is run alone on the same system

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory

 STshared: DRAM-related stall-time when the thread runs with other threads

 STalone:  DRAM-related stall-time when the thread runs alone

 Memory-slowdown = STshared/STalone

 Relative increase in stall-time

 Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

 Considers inherent DRAM performance of each thread

 Aims to allow proportional progress of threads
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STFM Scheduling Algorithm [MICRO’07]

 For each thread, the DRAM controller

 Tracks STshared

 Estimates STalone

 Each cycle, the DRAM controller

 Computes Slowdown = STshared/STalone for threads with legal requests

 Computes unfairness = MAX Slowdown / MIN Slowdown

 If unfairness < 

 Use DRAM throughput oriented scheduling policy

 If unfairness ≥ 

 Use fairness-oriented scheduling policy 

 (1) requests from thread with MAX Slowdown first

 (2) row-hit first , (3) oldest-first
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How Does STFM Prevent Unfairness?
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Containing the Memory Performance Hog
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STFM Implementation

 Tracking STshared

 Increase STshared if the thread cannot commit instructions due to an 
outstanding DRAM access

 Estimating STalone

 Difficult to estimate directly because thread not running alone

 Observation: STalone = STshared - STinterference

 Estimate STinterference: Extra stall-time due to interference

 Update STinterference when a thread incurs delay due to other threads
 When a row buffer hit turns into a row-buffer conflict

(keep track of the row that would have been in the row buffer) 

 When a request is delayed due to bank or bus conflict



31

Support for System Software

 System-level thread weights (priorities)

 OS can choose thread weights to satisfy QoS requirements

 Larger-weight threads should be slowed down less

 OS communicates thread weights to the memory controller

 Controller scales each thread’s slowdown by its weight

 Controller uses weighted slowdown used for scheduling

 Favors threads with larger weights

 : Maximum tolerable unfairness set by system software

 Don’t need fairness? Set  large.

 Need strict fairness? Set  close to 1.

 Other values of : trade off fairness and throughput



Enforcing Thread Priorities
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Some Issues in Multi-Core Design

 Shared Main Memory System

 Shared vs. Private Caches

 Interconnect Design

 Amdahl’s Law: Asymmetric Multi-Core Chips
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Multi-core Issues in Caching

 How does the cache hierarchy change in a multi-core 
system?

 Private cache: Cache belongs to one core

 Shared cache: Cache is shared by multiple cores
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Shared Caches Between Cores

 Advantages:

 Dynamic partitioning of available cache space

 No fragmentation due to static partitioning

 Easier to maintain coherence

 Shared data and locks do not ping pong between caches

 Disadvantages

 Cores incur conflict misses due to other cores’ accesses

 Misses due to inter-core interference

 Some cores can destroy the hit rate of other cores

 What kind of access patterns could cause this?

 Guaranteeing a minimum level of service (or fairness) to each 
core is harder (how much space, how much bandwidth?)

 High bandwidth harder to obtain (N cores  N ports?)
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Handling Shared Data in Private Caches

 Shared data and locks ping-pong between processors if 
caches are private

-- Increases latency to fetch shared data/locks

-- Reduces cache efficiency (many invalid blocks)

-- Scalability problem: maintaining coherence across a large 
number of private caches is costly

 How to do better?

 Idea: Store shared data and locks only in one special core’s 
cache. Divert all critical section execution to that core/cache.

 Essentially, a specialized core for processing critical sections 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009.
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Multi-Core Cache Efficiency: Bandwidth Filters

 Caches act as a filter that reduce memory bandwidth 
requirement

 Cache hit: No need to access memory

 This is in addition to the latency reduction benefit of caching

 GPUs use caches to reduce memory BW requirements

 Efficient utilization of cache space becomes more important 
with multi-core

 Memory bandwidth is more valuable

 Pin count not increasing as fast as # of transistors

 10% vs. 2x every 2 years

 More cores put more pressure on the memory bandwidth
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Some Issues in Multi-Core Design

 Shared Main Memory System

 Shared vs. Private Caches

 Interconnect Design

 Amdahl’s Law: Asymmetric Multi-Core Chips
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On-Chip Interconnects

 Or Networks-On-Chip (NoC)

 Each node on chip consists of

 A core and caches associated with the core

 How should we connect the nodes?

 A shared bus is not scalable

 A crossbar is too expensive

 A ring?

 A 2D mesh?

 A torus?
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On-Chip Interconnects

 What we want

 Fast communication 

 No congestion

 Many paths or good routing

 Small area overhead

 Small energy consumption
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2D Mesh

+ Easy to layout in a 2D chip

+ Many paths, yet relatively simple

-- Large diameter, maximum distance

-- Large energy and area overhead

-- Compared to rings, buses

-- Many buffers in router
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How to Make a 2D Mesh More Efficient

 NoC consumes 20-40% of system power in prototype chips

 Problem: Buffers consume energy, occupy area, increase router/NoC 
complexity/latency

 Question: When are buffers most helpful? Congestion.

 Observation: On-chip networks lightly loaded

 Idea: Eliminate Buffers

 Misroute a packet upon congestion instead of buffering it

 Called Hot Potato routing

 Deflected/misrouted packets eventually reach destination
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Bufferless On-Chip Networks

 Benefits

 Network Energy Savings:  ~40%

 Performance Increase: ~2%

 Reduced router latency

 Network Area Savings: ~40%

 Simpler network/router design

 Adaptivity, deadlock freedom

 Many remaining research issues

 How to provide fairness to cores?

 How to provide quality of service guarantees?

 Better routing and flow-control algorithms to handle congestion

 Prototyping in FPGAs

 How to apply it to other topologies?
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Some Issues in Multi-Core Design

 Shared Main Memory System

 Shared vs. Private Caches

 Interconnect Design

 Amdahl’s Law: Asymmetric Multi-Core Chips
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Remember Amdahl’s Law?

 Begins with Simple Software Assumption (Limit Arg.)

 Fraction F of execution time perfectly parallelizable

 No Overhead for 

 Scheduling

 Communication

 Synchronization, etc.

 Fraction 1 – F Completely Serial

 Time on 1 core = (1 – F) / 1 + F / 1  =  1

 Time on N cores = (1 – F) / 1 +  F / N

 Speedup limited by the serial fraction of the program

45*Slide credit: Mark Hill, HPCA 2007



Accelerating Serial Program Portions

 Tile-large: Good at serial program portions

 Niagara: Good at exploiting thread-level parallelism

 ACMP (Asymmetric Multi-Core)

 Good at both

 Serial: on large core, Parallel: on many small cores
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Asymmetric Multi-Core Approach
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Performance vs. Parallel Fraction
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Performance vs. Parallel Fraction (II)
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Performance vs. Parallel Fraction (III)
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Performance vs. Parallel Fraction (IV)
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Asymmetric Multi-Core Chips

 Powerful execution engines are needed to execute

 Single-threaded applications

 Serial sections of multithreaded applications (remember Amdahl’s law)

 Where single thread performance matters (e.g., transactions, game logic)

 Accelerate multithreaded applications (e.g., critical sections)

 Corollary: Core design and enhancements still very 
important in multi-core chips

 Many research questions

 How many types of cores? How many “powerful” cores?

 Specialized accelerator cores? For what kernels/applications?

 How to allocate cores to threads and applications?

 What should be shipped to and executed on powerful cores?
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Summary

 Multi-core chips bring about many new challenges

 In Computer Architecture

 Design of uncore components

 Design of cores 

 Allocation of chip real-estate to types of cores and uncore

 In System Software

 Hardware resource allocation and management

 Virtualization and QoS support 

 In Programming Languages and Compilers

 Parallelization, thread extraction, easy parallel programming
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