
CMU 18-447
S’09 L15-1
© 2009
J. C. Hoe

18-447 Lecture 15:
A Whirlwind Tour of Modern

Microarchitectures
James C. Hoe

Dept of ECE, CMU
March 18, 2009

Announcements: Project, project, project,
Midterm, midterm, midterm
This lecture won’t be covered on the midterm or the final

Handouts: H11 Project 3 (on Blackboard)
The Microarchitecture of Superscalar Processors, Smith

and Sohi, Proceedings of IEEE, 12/1995. (on Blackboard)
Practice Midterm

CMU 18-447
S’09 L15-2
© 2009
J. C. Hoe

Performance Factors

Twall-clock = Tcyc × CPI × No.Instructions

cycles-per-instruction
max. combinational delay

ISA and
compilers

CMU 18-447
S’09 L15-3
© 2009
J. C. Hoe

Going after IPC

Scalar Pipeline (baseline)
Operation Latency = 1
Peak IPC = 1
Instruction-Level Parallelism = 1

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

in
st

ru
ct

io
n

st
re

am

base cyc 0 1 2 3 4 5 6 7 8 9 10

CMU 18-447
S’09 L15-4
© 2009
J. C. Hoe

Superpipelined Machine
Superpipelined Execution

OL = 1 baseline cycle (M minor cycles)
Peak IPC = M per baseline cycle (1 per minor cycle)
ILP = M

major cycle = M minor cycles
minor cycle

in
st

ru
ct

io
n

st
re

am

base cyc 0 1 2 3 4 5 6 7 8 9 10

IF ID EX MEM WB
IF IF IF IF

IF IF IF IF
IF IF IF IF

IF IF IF IF
IF IF IF IF

IF IF IF IF

CMU 18-447
S’09 L15-5
© 2009
J. C. Hoe

Superscalar Machines
Superscalar (Pipelined) Execution

OL = 1 baseline cycles
Peak IPC = N per baseline cycle
ILP = N

IF ID EX MEM WB
IF ID EX MEM WB
IF ID EX MEM WB

in
st

ru
ct

io
n

st
re

am

base cyc 0 1 2 3 4 5 6 7 8 9 10

IF ID EX MEM WB
IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB
IF ID EX MEM WB

CMU 18-447
S’09 L15-6
© 2009
J. C. Hoe

Superscalar Datapath

I-cache
Reg
File
Read

PC

D-cacheALU

ALU

Reg
File

Write

2 X
fetch

bandwidth

2 X
read
ports

2 X
Logic

Can’t
always
double

resources

2 X
write
ports

Pipe A

Pipe B

?

CMU 18-447
S’09 L15-7
© 2009
J. C. HoeSuperscalar and Superpipelined

Achieving peak performance on each architecture depends on
finding N or M independent instructions per cycle

Superscalar Parallelism
Operation Latency: 1
Issuing Rate: N
Superscalar Degree: N

Superpipeline Parallelism
Operation Latency: 1
Issuing Rate: M
Superpipelined Degree: M

in
st

ru
ct

io
n

st
re

am

IF ID MEM WB
IF IF IF IF

IF IF IF IF
IF IF IF IF

IF IF IF IF
IF IF IF IF

IF ID MEM WB
IF ID MEM WB
IF ID MEM WB

IF ID MEM WB
IF ID MEM WB
IF ID MEM WB

vs.

in
st

ru
ct

io
n

st
re

am

CMU 18-447
S’09 L15-8
© 2009
J. C. Hoe

Limitations of Inorder Pipelines
CPI of inorder pipelines degrades very sharply if the
machine parallelism is increased beyond a certain
point, i.e. when NxM approaches average distance
between dependent instructions
Even with forwarding, pipeline may never be full due
to frequent dependency stalls!!

in
st

ru
ct

io
n

st
re

am

CMU 18-447
S’09 L15-9
© 2009
J. C. Hoe

ILP: Instruction-Level Parallelism

ILP is is a measure of the amount of inter-
dependencies between instructions

Average ILP = no. instruction / no. cyc required
code1: ILP = 1

i.e. must execute serially
code2: ILP = 3

i.e. can execute at the same time

code1: r1 ← r2 + 1
r3 ← r1 / 17
r4 ← r0 - r3

code2: r1 ← r2 + 1
r3 ← r9 / 17
r4 ← r0 - r10

CMU 18-447
S’09 L15-10
© 2009
J. C. Hoe

Removing False Dependencies

Anti and output dependencies are false
dependencies

The dependence is on the register name rather
than data

Given infinite number of registers, anti and output
dependencies can always be eliminated

r3 ← r1 op r2
r5 ← r3 op r4
r3 ← r6 op r7

CMU 18-447
S’09 L15-11
© 2009
J. C. Hoe

Register Renaming: Example

Original
r1 ← r2 / r3
r4 ← r1 * r5
r1 ← r3 + r6
r3 ← r1 - r5

ILP=1

Renamed
r1 ← r2 / r3
r4 ← r1 * r5
r8 ← r3 + r6
r9 ← r8 - r5

ILP=2

CMU 18-447
S’09 L15-12
© 2009
J. C. Hoe

Rename
Register

File
(t0 ... t63)

Rename
Table

Hardware Register Renaming

maintain bindings from ISA reg. names to rename registers
When issuing an instruction that updates ‘rd’:
 allocate an unused rename register tx
 recording binding from ‘rd’ to tx

When to remove a binding? When to de-allocate a rename register?

ISA name
e.g. r12

rename
t56

r1 ← r2 / r3
r4 ← r1 * r5
r1 ← r3 + r6

CMU 18-447
S’09 L15-13
© 2009
J. C. Hoe

Out-of-Order Execution
Renaming eliminates WAW and WAR
In a RAW dependent instruction pair, the reader
must wait for the result from the writer
How to get more ILP?

r1 ⇐ r2 + 1
r3 ⇐ r1 / 17
r4 ⇐ r0 - r3

ILP=1

r11⇐ r12 + 1
r13⇐ r19 / 17
r14⇐ r0 - r20

ILP=2

CMU 18-447
S’09 L15-14
© 2009
J. C. Hoe

Dataflow Execution Ordering
Maintain a window of many pending instructions
(a.k.a. Issue Buffer)
Dispatch instructions out-of-order
 find instructions whose operands are available
 give preference to older instructions
 A completing instruction may enable other pending

instructions (RAW)
Need to remember how to put things back in order
(Reorder Buffer)

CMU 18-447
S’09 L15-15
© 2009
J. C. Hoe

Instruction Reorder Buffer

At today’s clock frequency, on a memory load
 a cache hit (best case) takes 4~7 cyc
 a L1 cache miss takes a few 10s of cycles
 an off-chip cache miss takes a few 100s of cycles

ROB is a program-order instruction bookkeeping
structure
 instructions must enter and leave in program order
 holds 10s to 100s of “in-flight” instructions in various

stages of execution
 re-sorts all instructions on exit to appear to complete in

program order
 supports precise exception for any in-flight instruction

CMU 18-447
S’09 L15-16
© 2009
J. C. Hoe

Control Dependencies

Suppose we have an infinitely wide datapath, perfect
renaming and an infinitely large issue buffer, what
is the limit now??

Control transfer instructions (branches and jumps)
occupy 14% of an avg. instruction mix

Average run length between branches = ??

How do we keep the Issue Buffer filled?

CMU 18-447
S’09 L15-17
© 2009
J. C. Hoe

Branch Prediction

Guess the outcome of a branch instruction
Static Prediction
 Let the compiler include a hint with each branch
 90% of backward branches are taken (loop)
 50% of forward branches are taken (if-else)

Dynamic History-Based Prediction
 Past behavior is a good predictor of future actions
 Predicts not only the direction of the branch but the

target of the branch
Modern techniques get better than 95% accuracy

Trace Caching

CMU 18-447
S’09 L15-18
© 2009
J. C. Hoe

Trace Caching

A
B

C

D

E F

G

A

B
C
D

E

F
G

A
B
C

D

F
G

I-cache line
boundaries

Trace-
cache line
boundaries

10% static
90% dynamic

static 90%
dynamic 10%

CMU 18-447
S’09 L15-19
© 2009
J. C. HoeIntel P4 Trace Cache

A 12K-uop trace cache replaces the L1 I-cache
6-uop per trace line, can include branches
Trace cache returns 3-uop per cycle
IA-32 decoder can be simpler and slower

Front End BTB
4K Entries

ITLB &
Prefetcher L2 Interface

IA32 Decoder

Trace Cache
12K uop’s

Trace Cache BTB
512 Entries

CMU 18-447
S’09 L15-20
© 2009
J. C. Hoe

Speculative Execution
Instructions after a predicted branch are
speculative

⇒ Must have ways to undo their effects
Maintain separate copies of
 In-order State: a check-point state up to just before

the first speculated instruction
 Speculative State: include all state changes after check-

point, possibly multiple predicted branches
Commit - admit known-to-be good speculative state
changes into the in-order state
Rewind - discard all, or part of, the speculative state

CMU 18-447
S’09 L15-21
© 2009
J. C. Hoe

MIPS R10000

4xinst decode

map table

pre-decoded I-cache

8x4 entries
Active List

(ROB)

16-entry
int. Q
(R.S.)

ALU1 ALU2

64-entry
Int GPR
7R3W

LD/ST

64-entry
FPR

5R3W

ALU1 ALU2

16-entry
FP. Q
(R.S.)

map table(16R4W)

Read [Yeager 1996, IEEE Micro] if you are really interested

CMU 18-447
S’09 L15-22
© 2009
J. C. Hoe

In Vogue: Very Long Instruction Words

Fetch
Unit

Decode

FMult
(4 cyc)

FAdd
(2 cyc)

A
LU

1
A

LU
2

Load/Store
(variable)

Fdiv, unpipe
(16 cyc)

Write
Back
Unit

Decode

Decode

Decode

Decode

Decode

In
st

ru
ct

io
n

Bu
nd

le

CMU 18-447
S’09 L15-23
© 2009
J. C. Hoe

In Vogue: Simultaneous Multi-Threading

FMult
(4 cyc)

FAdd
(2 cyc)

A
LU

1
A

LU
2

Load/Store
(variable)

Fdiv, unpipe
(16 cyc) WB

Unit
A

WB
Unit

B

Fetch
Unit

A

Decode
Unit

A

Fetch
Unit

B

Decode
Unit

B

How do you get more performance by letting
two threads share the same functional units?

CMU 18-447
S’09 L15-24
© 2009
J. C. Hoe

Bigger L3

In Vogue: Chip-Multiprocessor

Core
$

Core
$

Core
$

Fat Interconnect

Big L2

It is a power issue. How to get more performance without
increasing clock frequency.......

CMU 18-447
S’09 L15-25
© 2009
J. C. Hoe

per-core/total

Intel
Itanium

9050

6

8

inorder

1+12

1720

104
14.5/1534

17.3/1671

1.60

Fijitsu
SPARC 7

4

15

64

6

600

135
10.5/2088

25.0/1861

2.52

IBM
P6

7

13

limited

8

790

>100
15.8/1837

20.1/1822

5

IBM
P5

5

15

200

1.92

276

100
10.5/197

12.9/229

2.2

2x2 4x22x22x2

AMD
Opteron
8360SE

3 (x86)

12/17

72(rop)

2+2

463

Issue Rate

Pipeline depth

Out-of-order

on-chip$ (MB)

Trans (106)

Power (W) 105
14.4/170SPECint 2006

SPECfp 2006 18.5/156

2.5Clock (GHz)

4x1cores/threads

22/274

Intel
Xeon

X7460

4 (rop)

14

96(rop)

9+16

1900

130

22/142

2.67

6x1

per-core/total

State of the Art

Microprocessor Report, Oct 2008

SUN
T2

2

8/12

inorder

4

503

95

--/142

--/111

1.8

8x8

CMU 18-447
S’09 L15-26
© 2009
J. C. Hoe

Moore’s Law?

One thing to remember is that without the extensive instruction reordering and
speculation in modern pipelines, we would not be able to run the CPU at muliti-
GHz against 50ns DRAM cycles

CMU 18-447
S’09 L15-27
© 2009
J. C. Hoe

New Challenges: Power

[Shekhar Borkar, IEEE Micro, July 1999]

Think about power and
current density! The chips
are not getting any bigger.

CMU 18-447
S’09 L15-28
© 2009
J. C. Hoe

New Challenges: Complexity

[International Roadmap for Semiconductor 1999: Design]

CMU 18-447
S’09 L15-29
© 2009
J. C. Hoe

New Challenges: Reliability

[P.Shivakumar, et al. DSN’02]

Soft Errors: errors not caused by a permanent
defect in hardware, e.g., energy from a cosmic ray
strike flipping a bit in a register or SRAM
Memory arrays are protected
by parity or error-correcting
code (ECC)
What about registers and
logic in deep submicron?
 low node capacitance
 low voltage
 lots and lots of them on

a chip

