a, Electrical & Computer CMU 18-447
) ERGiNEERING 509 Li2-1

18-447 Lecture 12:
Pipelined Implementations:
Control Hazards and Resolutions

James C. Hoe
Dept of ECE, CMU
March 2, 2009

Announcements: Spring break next week!!
Project 2 due the week after spring break
HW3 due Monday after spring break
(no more homework until week 12)

Handouts: Handout #10 Project 2 (On Blackboard)
Electrical & Computer CMU 18-447
) ENGINEERS ?z} ?:192.2
Terminology

+ Dependencies
- ordering requirement between instructions

Pipeline Hazards:
- (potential) violations of dependencies

¢ Hazard Resolution:

- static = schedule instructions at compile time to avoid
hazards

- dynamic = detect hazard and adjust pipeline operation
Stall, Forward/byapss, anything else?
Pipeline Interlock:
- hardware mechanisms for dynamic hazard resolution
- detect and enforce dependences at run time

((a, Electrical & Computer CMU 18-447
ENGINEERING 5091123
© 2009

Forwarding Paths (v1)

_ dist(i,j)=3

5
Y,
Forwardi\ ALU - —
. dist(i,j)=2
e dist(i.j)=]]| e, |
X v M
~_) ;
InTer‘nGl Rs ForwardB
forward? | | ﬂ .
Rd u JJE X/MEM.RegisterR

\J LI(Forwarding IllEMI\NB.Registeer
unit

dist(i,j)=3

[Based on figures from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

L) ENGINEERING Seoied
Data Hazard Analysis (with Forwarding)
Mol w [sw e | | o
IF
ID use
EX prgéﬁce use use use
MEM produce| (use)
wWB

+ Even with data-forwarding, RAW dependence on
an immediate preceding LW instruction produces a
hazard

uuuuuuuuuuuuu CMU 18-447

) ERGiNEERING 0o Lios

Why not very deep pipelines?

J. C. Hoe

+ b-stage pipeline still has plenty of combinational
delay between registers

"Superpipelining” = increase pipelining such that
even infrinsic operations (e.g. ALU, RF access,
memory access) require multiple stages

& What's the problem? Inst,: r:Q‘— r2 +r3
Instird & rl+2

1'3 t4 s —

e J]
l.mm@lllhl@

(0. Electrical & Comy CMU 18-447
ENGINEERING s L1z

Intel P4's Superpipelined Integer ALU"

- S
Alower‘ — (o]
= S
L] = lower
Blower‘ — '(.3
A=t
S
Aupper] S
L _§ Supper
Bupper] O
- OEX, EX,

32-bit addition pipelined over 2 stages, BW=1/latencyyg pit-qdd
No stall between back-to-back dependencies

*0, Electrical & Cormy CMU 18-447

ENGINEERING 5091127
© 2009

_C. Hoe

What if you really can't superpipeline?

\/ I input, outputy RN I
I input, output, /

— ~— _J/
<] 2T delay
A
If you can't double the bandwidth by pipelining, doubling
the resource also doubles the bandwidth
) ERGiNERRNG prtrand

Instruction s,
Ordering/Dependencies

¢ Data Dependence
- True dependence or Read after Write (RAW)
Instruction must wait for all required input operands
- Anti-Dependence or Write after Read (WAR)
Later write must not clobber a still-pending earlier read
- Output dependence or Write after Write (WAW)

Earlier write must not clobber an already-finished later
write

Control Dependence (or Procedural Dependence)
- all instructions are dependent by control flow
- every instruction use and set the PC
Control dependence is data dependence on the PC

CMU 18-447

a, Electrical & Computer
) ERGiNEERING 5091129

PC Data Hazard Analysis

J. C. Hoe

R/I-

e LW SW Br J Jr
IF use use use use use use
ID |produce |produce|produce produce | produce
EX produce
MEM
wB

¢ PC hazard distance is at least 1
Does that mean we must stall after every
instruction?

- IF stage can't know which PC to fetch next until the
current PC is fetched and decoded

((a. Electrical & Computer CMU 18-447
ENGINEERING 509 L12-10

Control Hazard by Stalling

J. C. Hoe

e tH ot 3 ottty e——
Inst, [IF || ID |[ALU[[MEM|| WB |

Inst, IEEN[IF][ID J[ALUJMEM][WB]
Inst RN IF [ID JJALU]
Inst [TF |

InS‘l‘,

For non-control-flow instructions

((a, Electrical & Computer CMU 18-447
ENGINEERING 09 L12-11

Control Speculation for Dummies

J. C. Hoe

Rather than waiting for true-dependence on PC to
resolve, just guess nextPC = PC+4 to keep fetching
every cycle Is this a good guess?

What do you lose if you guessed incorrectly?

¢ Only ~20% of the instruction mix is control flow
- ~50 % of “forward" control flow (i.c., if-then-else) is taken
- ~90% of “backward” control flow (i.c., loop back) is taken

Over all, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

+ Expect "nextPC = PC+4" ~86% of the time, but what
about the remaining 14%?

((), Electrical & Computer CMU 18-447
ENGINEERING S09L1z-12

Control Speculation: PC+4

J. C. Hoe

to T 1, ts3 t4 s ——
Inst, [T, [ID J[ALUJMEM
Inst; LE AL
Inst, e |
Inst, :m

Inst,

When a branch resolves

- branch target (Inst,) is fetched

- all instructions fetched since
insty, (so called “wrong-path”

Tnst, is a branch instructions) must be flushed

lectrical & Computer CMU 18-447

) ERGiNEERING vt

Pipeline Flush on Misprediction "

J. C. Hoe

1’0 1'1 1’2 1’3 1’4 1-5 -
Inst, [IF,. || ID |[ALUJ[MEM|| WB]
Inst, ILF...| ID Fkiliéd

Inst; IF,.
Inst, [F.J ID J[ALU[WE]
Inst, [IF][ID J[ALU]
| IF || ID |
Inst, is a branch
((3' Eﬁ"&‘i’fﬁ‘é‘ﬁfﬁk’;’ g%\g} Ele‘ffy

© 2009
J. C. Hoe

Pipeline Flush on Misprediction

Yo | to | ta|ts|ta|Ts5|Te |17 | ts]| o]t
IF (| h|i|j|k|Il|m|n
\\
N
ID h|ilbubl k| | |{m|n
S
EX h |bublbub| k | | | m | n
f
MEM h |[bublbubl k | | | m | n
wWB / h |bublbub| k | | | m | n

branch resolved

*(a, Electrical & Computer CMU 18-447
ENGINEERIN 509 L12-15
© 2009

Performance Impact

correct guess = no penalty ~86% of the time
incorrect guess = 2 bubbles

¢ Assume
no data hazards
20% control flow instructions
- 70% of control flow instructions are taken
IPC=1/[1+(0.20%0.7)* 2]=
=1/ [1+014*21=1/128=0.78

— N\

probability of penalty for
a wrong guess a wrong guess

Can we reduce either of the two penalty terms?

*(), Electrical & Computer CMU 18-447
ENGINEERING S09L12-16
© 2009

Reducing Mispredict Penalty

IDEX P C d
WE EXNicu p
Control M W LNlE
EX]| M WB|
g
Read 2
I—"| register 1 2
] Read 4
21 lRea data 1 £
E register 2]
— Registers Read
Write —
M register dal
Write
[dat
Instructi
15-00 © [ggn |2
extend
Instructi
[20-16]
Instructi
[15-11)

[Based on figures from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

CMU 18-447

a, Electrical & Computer
) ERGiNEERING 509 Li2-17

MIPS R2000 Control Flow Design

J. C. Hoe

Simple address calculation based on instruction
only

- Branch PC-offset: 16-bit full-addition + 14-bit half-
addition

- Jump PC-offset: concatenation only
Simple branch condition based on RF
- One register relative (>,<,=)t0 0
- Equality between 2 registers
No addition/subtraction necessary!
An explicit ISA design choice to enable branch
resolution in ID of a 5-stage pipeline

Electrical & Computer CMU 18-447

) EREINEERR S09L1z-18

Branch Resolved in ID

J. C. Hoe

[Based on figures from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

IPC=1/ [1+(0.2*0.7)*1]=0.88

a, Electrical & Cormy CMU 18-447
) ERGiNEERING 509 L12-19
© 2009

Branch Delay Slots
Br 11 [IF (IO Y EX]

L1 if taken else PC+8

PC+4 is already in the pipeline
- throwing PC+4 away cost 1 bubble
- letting PC+4 finish to the end won't hurt performance
R2000 defined branches to have an architectural
latency of 1 instruction

- the instruction immediately after a branch is always
executed

- branch target takes effect on the 2" instruction

- if delay slot can always do useful work, effective IPC=1
without BTB or even a pipeline flush logic

- ~80% of delay slots can be filled automatically by compilers

((3, Electrical & Comy CMU 18-447
ENGINEERING rr. 09 L12-20

Filling Delay Slots by &
Static Reordering Transformation

a. From before b. From target c. From fall through

add $s1, $s2, $s3 sub $t4, 315, $t6 add $s1, $s2, $53

I‘eorder‘lng dOTG if $s2 = 0 then o it $s1 = 0 then
independen.r add $s1, $s2, $s3

(RAW, WAW, if $s1 =0 then
WAR) sub .55 516
instructions
does not change #e°m Becomes Becomes
program

add $s1, $s2, $s3

if $s2 = 0 then if $s1 = 0 then
add $s1, $s2, $s3

add $s1, $s2, $s3 sub $t4, $t5, $t6
if $s1 = 0 then

Safe?

within same _ anew : ew
basic block instruction instruction
added to not- added to

[Based on figures from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.] Taken pafh?? Taken??

ectrical & Computer
) ERGiNEERING

Final Data Hazard Analysis

CMU 18-447
5'09 L12-21
© 2009

J. C. Hoe

Bl w [sw e | |
IF
ID use use
EX prg?!ﬁce use use |
MEM produce
wB

+ With forwarding, hazard distance is O except for
RAW dependence on LW where it is 1

Load delay slot semantics ensures a dependent

instruction to be at least distance 2

) ENGINEERING Soovtees

Final PC Hazard Analysis
Mol w [sw e | | o

IF (pr‘gcsiﬁce)(pr‘gzﬁce)(prggﬁce) use use use

ID produce | produce | produce

EX

MEM

wB

¢ Hazard distance on a taken branch is 1

Again, branch delay slot semantics ensures a

dependent instruction to be at least distance 2

Hazard distance is greater in your project, why?

a, Electrical & Computer CMU 18-447
) ERGiNEERING 509 L1223

Making a Better Guess

J. C. Hoe

For ALU instructions
- can't do better than guessing nextPC=PC+4
- still tricky since must guess nextPC before the current
instruction is fetched
+ For Branch/Jump instructions

- why not always guess in the taken direction since 70%
correct

- again, must guess nextPC before the branch instruction
is fetched (but branch target is encoded in the
instruction)

= Must make a guess based only on the current fetch PC !l
= Fortunately,

- PC-offset branch/jump target is static

- We are allowed to be wrong some of the time

Electrical & Computer CMU 18-447

) EREINEERR 509 Liz-24

The Locality Principle

J. C. Hoe

¢ One's recent past is a very good predictor of
his/her near future.

o Temporal Locality: If you just did something, it is
very likely that you will do the same thing again
soon

- since you are here today, there is a good chance you will
be here again and again regularly

- inverse is also frue
¢ Spatial Locality: If you just did something, it is
very likely you will do something similar/related

- every time I find you in this room, you are probably
sitting in the same seat

- you are probably sitting near the same people

a, zzzzz ieal & Computer CMU 18-447
) ERGiNEERING 509 L12-25
© 2009

Branch Target Buffer (Oracle)

¢ BTB (Oracle)

- agiant table indexed by PC
J - returns the guess for nextPC

—| BTB & When encountering a PC for

the first time, store in BTB

- PC+4 if ALU/LD/ST
PC - PC+offset if Branch or Jump
-2 if JR

Instruction|

Memory + Effectively guessing branches

are always taken

IPC=1/ [1+(0.20%0.3)* 2]
=0.89

