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18-447 Lecture 12:
Pipelined Implementations:
Control Hazards and Resolutions

James C. Hoe
Dept of ECE, CMU
March 2, 2009

Announcements: Spring break next week!!
Project 2 due the week after spring break
HW3 due Monday after spring break
(no more homework until week 12)

Handouts: Handout #10 Project 2 (On Blackboard)
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Terminology

+ Dependencies
- ordering requirement between instructions

# Pipeline Hazards:
- (potential) violations of dependencies

¢ Hazard Resolution:

- static = schedule instructions at compile time to avoid
hazards

- dynamic = detect hazard and adjust pipeline operation
Stall, Forward/byapss, anything else?
# Pipeline Interlock:
- hardware mechanisms for dynamic hazard resolution
- detect and enforce dependences at run time
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Forwarding Paths (v1)
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[Based on figures from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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Data Hazard Analysis (with Forwarding)
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+ Even with data-forwarding, RAW dependence on
an immediate preceding LW instruction produces a
hazard
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Why not very deep pipelines?

J. C. Hoe

+ b-stage pipeline still has plenty of combinational
delay between registers

# "Superpipelining” = increase pipelining such that
even infrinsic operations (e.g. ALU, RF access,
memory access) require multiple stages

& What's the problem? Inst,: r:Q‘— r2 +r3
Instird & rl+2
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Intel P4's Superpipelined Integer ALU"
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32-bit addition pipelined over 2 stages, BW=1/latencyyg pit-qdd
No stall between back-to-back dependencies
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_C. Hoe

What if you really can't superpipeline?

\/ I input, outputy RN I
I input, output, /

— ~— _J/
<] 2T delay
A
If you can't double the bandwidth by pipelining, doubling
the resource also doubles the bandwidth
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Instruction s,
Ordering/Dependencies

¢ Data Dependence
- True dependence or Read after Write (RAW)
Instruction must wait for all required input operands
- Anti-Dependence or Write after Read (WAR)
Later write must not clobber a still-pending earlier read
- Output dependence or Write after Write (WAW)

Earlier write must not clobber an already-finished later
write

# Control Dependence (or Procedural Dependence)
- all instructions are dependent by control flow
- every instruction use and set the PC
Control dependence is data dependence on the PC
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PC Data Hazard Analysis

J. C. Hoe

R/I-

e LW SW Br J Jr
IF use use use use use use
ID |produce |produce|produce produce | produce
EX produce
MEM
wB

¢ PC hazard distance is at least 1
# Does that mean we must stall after every
instruction?

- IF stage can't know which PC to fetch next until the
current PC is fetched and decoded
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Control Hazard by Stalling

J. C. Hoe
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For non-control-flow instructions
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Control Speculation for Dummies

J. C. Hoe

# Rather than waiting for true-dependence on PC to
resolve, just guess nextPC = PC+4 to keep fetching
every cycle Is this a good guess?

What do you lose if you guessed incorrectly?

¢ Only ~20% of the instruction mix is control flow
- ~50 % of “forward" control flow (i.c., if-then-else) is taken
- ~90% of “backward” control flow (i.c., loop back) is taken

Over all, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

+ Expect "nextPC = PC+4" ~86% of the time, but what
about the remaining 14%?
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Control Speculation: PC+4

J. C. Hoe
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Inst,

When a branch resolves

- branch target (Inst,) is fetched

- all instructions fetched since
insty, (so called “wrong-path”

Tnst, is a branch instructions) must be flushed
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Pipeline Flush on Misprediction "

J. C. Hoe
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| IF || ID |
Inst, is a branch
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Pipeline Flush on Misprediction
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branch resolved
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Performance Impact

# correct guess = no penalty ~86% of the time
# incorrect guess = 2 bubbles

¢ Assume
no data hazards
20% control flow instructions
- 70% of control flow instructions are taken
IPC=1/[1+(0.20%0.7)* 2 ]=
=1/ [1+014*21=1/128=0.78

— N\

probability of penalty for
a wrong guess  a wrong guess

Can we reduce either of the two penalty terms?
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Reducing Mispredict Penalty
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[Based on figures from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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MIPS R2000 Control Flow Design

J. C. Hoe

# Simple address calculation based on instruction
only

- Branch PC-offset: 16-bit full-addition + 14-bit half-
addition

- Jump PC-offset: concatenation only
# Simple branch condition based on RF
- One register relative (>,<,=)t0 0
- Equality between 2 registers
No addition/subtraction necessary!
# An explicit ISA design choice to enable branch
resolution in ID of a 5-stage pipeline
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Branch Resolved in ID

J. C. Hoe

[Based on figures from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED. ]

IPC=1/ [1+(0.2*0.7)*1]=0.88
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Branch Delay Slots
Br 11 [IF (IO Y EX]

L1 if taken else PC+8

# PC+4 is already in the pipeline
- throwing PC+4 away cost 1 bubble
- letting PC+4 finish to the end won't hurt performance
# R2000 defined branches to have an architectural
latency of 1 instruction

- the instruction immediately after a branch is always
executed

- branch target takes effect on the 2" instruction

- if delay slot can always do useful work, effective IPC=1
without BTB or even a pipeline flush logic

- ~80% of delay slots can be filled automatically by compilers
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Filling Delay Slots by &
Static Reordering Transformation

a. From before b. From target c. From fall through

add $s1, $s2, $s3 sub $t4, 315, $t6 add $s1, $s2, $53

I‘eorder‘lng dOTG if $s2 = 0 then o it $s1 = 0 then
independen.r add $s1, $s2, $s3

(RAW, WAW, if $s1 =0 then
WAR) sub .55 516
instructions
does not change #e°m Becomes Becomes
program

add $s1, $s2, $s3

if $s2 = 0 then if $s1 = 0 then
add $s1, $s2, $s3

add $s1, $s2, $s3 sub $t4, $t5, $t6
if $s1 = 0 then

Safe?

within same _ anew : ew
basic block instruction instruction
added to not- added to

[Based on figures from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.] Taken pafh?? Taken??
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Final Data Hazard Analysis
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J. C. Hoe

Bl w [ sw e | |
IF
ID use use
EX prg?!ﬁce use use |
MEM produce
wB

+ With forwarding, hazard distance is O except for
RAW dependence on LW where it is 1

# Load delay slot semantics ensures a dependent

instruction to be at least distance 2
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Final PC Hazard Analysis
Mol w [ sw e | | o

IF (pr‘gcsiﬁce)(pr‘gzﬁce)(prggﬁce) use use use

ID produce | produce | produce

EX

MEM

wB

¢ Hazard distance on a taken branch is 1

# Again, branch delay slot semantics ensures a

dependent instruction to be at least distance 2

# Hazard distance is greater in your project, why?




a, Electrical & Computer CMU 18-447
) ERGiNEERING 509 L1223

Making a Better Guess

J. C. Hoe

# For ALU instructions
- can't do better than guessing nextPC=PC+4
- still tricky since must guess nextPC before the current
instruction is fetched
+ For Branch/Jump instructions

- why not always guess in the taken direction since 70%
correct

- again, must guess nextPC before the branch instruction
is fetched (but branch target is encoded in the
instruction)

= Must make a guess based only on the current fetch PC !l
= Fortunately,

- PC-offset branch/jump target is static

- We are allowed to be wrong some of the time
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The Locality Principle

J. C. Hoe

¢ One's recent past is a very good predictor of
his/her near future.

o Temporal Locality: If you just did something, it is
very likely that you will do the same thing again
soon

- since you are here today, there is a good chance you will
be here again and again regularly

- inverse is also frue
¢ Spatial Locality: If you just did something, it is
very likely you will do something similar/related

- every time I find you in this room, you are probably
sitting in the same seat

- you are probably sitting near the same people
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Branch Target Buffer (Oracle)

¢ BTB (Oracle)

- agiant table indexed by PC
J - returns the guess for nextPC

—| BTB & When encountering a PC for

the first time, store in BTB

- PC+4 if ALU/LD/ST
PC - PC+offset if Branch or Jump
-2 if JR

Instruction|

Memory + Effectively guessing branches

are always taken

IPC=1/ [1+(0.20%0.3)* 2 ]
=0.89




