
CMU 18-447
S’09 L12-1
© 2009
J. C. Hoe

18-447 Lecture 12:
Pipelined Implementations:

Control Hazards and Resolutions
James C. Hoe

Dept of ECE, CMU
March 2, 2009

Announcements: Spring break next week!!
P j t 2 d th k ft i b k Project 2 due the week after spring break
HW3 due Monday after spring break
(no more homework until week 12)

Handouts: Handout #10 Project 2 (On Blackboard)

CMU 18-447
S’09 L12-2
© 2009
J. C. Hoe

Terminology
Dependencies
 ordering requirement between instructions

Pipeline Hazards:
 (potential) violations of dependencies

Hazard Resolution:
 static ⇒ schedule instructions at compile time to avoid

hazards hazards
 dynamic ⇒ detect hazard and adjust pipeline operation

Stall, Forward/byapss, anything else?
Pipeline Interlock:
 hardware mechanisms for dynamic hazard resolution
 detect and enforce dependences at run time

CMU 18-447
S’09 L12-3
© 2009
J. C. Hoe

ID/EX MEM/WB

M

EX/MEM

Forwarding Paths (v1)

dist(i,j)=3

Registers

M
u
x M

u
x

ALU

Data

memory

u
x

ForwardB
Rt
Rs

ForwardA

dist(i,j)=1
dist(i,j)=2

internal

Forwarding
unit

b. With forwarding

Rd EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt
Rt

M
u
x

[Based on figures from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

dist(i,j)=3

forward?

CMU 18-447
S’09 L12-4
© 2009
J. C. Hoe

Data Hazard Analysis (with Forwarding)
R/I-
Type LW SW Br J Jr

IFIF

ID use

EX use
produce use use use

MEM produce (use)

WB

Even with data-forwarding, RAW dependence on
an immediate preceding LW instruction produces a
hazard

CMU 18-447
S’09 L12-5
© 2009
J. C. Hoe

5-stage pipeline still has plenty of combinational
delay between registers
“Superpipelining” ⇒ increase pipelining such that

Why not very deep pipelines?

t t t t t tt t t t t tt t t t t t

Superpipelining ⇒ increase pipelining such that
even intrinsic operations (e.g. ALU, RF access,
memory access) require multiple stages
What’s the problem? Inst0: r1 ← r2 + r3

Inst1: r4 ← r1 + 2

F D E M W
F D E M W

t0 t1 t2 t3 t4 t5

Inst0
Inst1

F D E M W

t0 t1 t2 t3 t4 t5

Inst0
Inst1 Fa Fb Da Db Ea Eb Ma Mb Wa Wb

Fa Fb Da Db Ea Eb Ma Mb Wa Wb

Fa Fb Da Db Ea Eb Ma Mb Wa Wb

t0 t1 t2 t3 t4 t5

Inst0
Inst1 Fa Fb Da Db Ea Eb Ma Mb Wa Wb

Fa Fb Da Db Ea Eb Ma Mb Wa Wb

Fa Fb Da Db Ea Eb Ma Mb Wa Wb

Ea

Db

CMU 18-447
S’09 L12-6
© 2009
J. C. Hoe

t
ad

d

Alower
St

ad
d

Alower
St

ad
d

Alower
S

Intel P4’s Superpipelined Integer ALU

16
-b

itBlower

Aupper

Slower

t
ad

d

16
-b

itBlower

Aupper

Slower

t
ad

d

16
-b

itBlower

Aupper

Slower

t
ad

d

Bupper

Supper

16
-b

it

Bupper

Supper

16
-b

it

Bupper

Supper

16
-b

it

32-bit addition pipelined over 2 stages, BW=1/latency16-bit-add
No stall between back-to-back dependencies

EX1 EX2

CMU 18-447
S’09 L12-7
© 2009
J. C. Hoe

What if you really can’t superpipeline?

input outputinput0

input1

output0

output1

If you can’t double the bandwidth by pipelining, doubling
the resource also doubles the bandwidth

2T delay

CMU 18-447
S’09 L12-8
© 2009
J. C. HoeInstruction

Ordering/Dependencies
Data Dependence
 True dependence or Read after Write (RAW)

I t ti t it f ll i d i t dInstruction must wait for all required input operands
 Anti-Dependence or Write after Read (WAR)

Later write must not clobber a still-pending earlier read
 Output dependence or Write after Write (WAW)

Earlier write must not clobber an already-finished later
write

Control Dependence (or Procedural Dependence)
 all instructions are dependent by control flow
 every instruction use and set the PC

Control dependence is data dependence on the PC

CMU 18-447
S’09 L12-9
© 2009
J. C. Hoe

PC Data Hazard Analysis
R/I-
Type LW SW Br J Jr

IF use use use use use useIF use use use use use use

ID produce produce produce produce produce

EX produce

MEM

WB

PC hazard distance is at least 1
Does that mean we must stall after every
instruction?
 IF stage can’t know which PC to fetch next until the

current PC is fetched and decoded

CMU 18-447
S’09 L12-10
© 2009
J. C. Hoe

IF
t0 t1 t2 t3 t4 t5

I t IDIF
t0 t1 t2 t3 t4 t5

I t ID ALUIF
t0 t1 t2 t3 t4 t5

I t ID ALU MEMIF
t0 t1 t2 t3 t4 t5

I t ID ALU MEM WBIF
t0 t1 t2 t3 t4 t5

I t ID ALU MEM WBIF
t0 t1 t2 t3 t4 t5

I t ID ALU MEM WBIF
t0 t1 t2 t3 t4 t5

I t

Control Hazard by Stalling

IF
Insti
Instj
Instk
Instl

Insth ID
IFIF

IF
Insti
Instj
Instk
Instl

Insth ID ALU
IFIF

IF
Insti
Instj
Instk
Instl

Insth ID ALU
IF

MEM
ID
IF

IF
IF

Insti
Instj
Instk
Instl

Insth ID ALU
IF

MEM
ID
IF

WB
ALU
IF

IF
IF

Insti
Instj
Instk
Instl

Insth ID ALU
IF

MEM
ID
IF

WB
ALU
IF

MEM
ID
IF

IF
IF

Insti
Instj
Instk
Instl

Insth ID ALU
IF

MEM
ID
IF

WB
ALU
IF

MEM
ID
IF

WB
ALU
IF

IF
Insti
Instj
Instk
Instl

Insth

For non-control-flow instructions

CMU 18-447
S’09 L12-11
© 2009
J. C. Hoe

Control Speculation for Dummies

Rather than waiting for true-dependence on PC to
resolve, just guess nextPC = PC+4 to keep fetching

 levery cycle Is this a good guess?
What do you lose if you guessed incorrectly?

Only ~20% of the instruction mix is control flow
 ~50 % of “forward” control flow (i.e., if-then-else) is taken
 ~90% of “backward” control flow (i.e., loop back) is takenp

Over all, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

Expect “nextPC = PC+4” ~86% of the time, but what
about the remaining 14%?

CMU 18-447
S’09 L12-12
© 2009
J. C. Hoe

IF
t0 t1 t2 t3 t4 t5

I t IF
t0 t1 t2 t3 t4 t5

I t IDIF
t0 t1 t2 t3 t4 t5

I t ID ALUIF
t0 t1 t2 t3 t4 t5

I t ID ALU MEM

Control Speculation: PC+4

IFPC

Insti
Instj
Instk
Instl

Insth IFPC

Insti
Instj
Instk
Instl

Insth ID
IFPC+4

first opportunity to decode Insth
should we correct now?

IFPC+4

IFPC

Insti
Instj
Instk
Instl

Insth ID ALU
ID

IFPC+8

Insth branch condition and target

IFPC+4

IFPC

Insti
Instj
Instk
Instl

Insth ID ALU
ID

IFPC+8

ALU
ID

IFtarget

MEM

evaluated in ALU
When a branch resolves
- branch target (Instk) is fetched
- all instructions fetched since
insth (so called “wrong-path”
instructions) must be flushedInsth is a branch

CMU 18-447
S’09 L12-13
© 2009
J. C. Hoe

IF
t0 t1 t2 t3 t4 t5

I t ID ALU MEM WB

Pipeline Flush on Misprediction

IFPC+4

IFPC

Insti
Instj
Instk
Instl

Insth ID ALU
ID

IFPC+8

IFtarget

MEM

ID
IF

WB

killed
killed

ALU
ID
IF

ALU
ID

WB

IF ID
IF

Insth is a branch

CMU 18-447
S’09 L12-14
© 2009
J. C. Hoe

Pipeline Flush on Misprediction

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

n

m

l

n

m n

m

l

k

l

k

bub

k

bub

bub

IF h i j

ID h i

EX h

k

bub

l

k

m

l

n

m n

bub

bub

bub

h

hMEM

WB

branch resolved

CMU 18-447
S’09 L12-15
© 2009
J. C. Hoe

Performance Impact

correct guess ⇒ no penalty ~86% of the time
incorrect guess ⇒ 2 bubblesg
Assume
 no data hazards
 20% control flow instructions
 70% of control flow instructions are taken
 IPC = 1 / [1 + (0.20*0.7) * 2] =

= 1 / [1 + 0.14 * 2] = 1 / 1.28 = 0.78

penalty for
a wrong guess

probability of
a wrong guess

Can we reduce either of the two penalty terms?

CMU 18-447
S’09 L12-16
© 2009
J. C. Hoe

Reducing Mispredict Penalty

Control M

WB

WB

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

PC d

PC produce

PC

Instruction
memory

In
st

ru
ct

io
n

Add

M
em

to
R

eg

Branch

ALUSrc

4

0

Add Add
result

Registers
Write
register

Write

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

ALU
result

Zero

Read
data

M
u
x

1

Shift
left 2

R
eg

W
rit

e

ALU

EX M WBIF/ID

M
em

W
rit

e

Address
Data

memory

Address

PC use

PC produce

Instruction
[20– 16]

ALUOp

RegDst

16 32Instruction
[15– 0]

0

M
u
x

0

1

data

Sign
extend

1
Write
data

x

ALU
control

MemRead

Instruction
[15– 11]

6

[Based on figures from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

CMU 18-447
S’09 L12-17
© 2009
J. C. Hoe

MIPS R2000 Control Flow Design

Simple address calculation based on instruction
only
 Branch PC-offset: 16-bit full-addition + 14-bit half-

addition
 Jump PC-offset: concatenation only

Simple branch condition based on RF
 One register relative (>, <, =) to 0
 Equality between 2 registers

N dditi / bt ti !No addition/subtraction necessary!
An explicit ISA design choice to enable branch
resolution in ID of a 5-stage pipeline

CMU 18-447
S’09 L12-18
© 2009
J. C. Hoe

Branch Resolved in ID

WB

ID/EX

EX/MEM

Hazard
detection

unit

IF.Flush

M
u
x

PC Instruction
memory

4

Registers

M
u
x

M
u
x

ALU

EX

M

M

WB

WB

0

EX/MEM

MEM/WB

Data
memory

M
u
x

IF/ID

Sign

Control

=

Shift
left 2

M
u
x

M
u
x

Forwarding
unit

Sign
extend

IPC = 1 / [1 + (0.2*0.7) * 1] = 0.88

[Based on figures from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

CMU 18-447
S’09 L12-19
© 2009
J. C. Hoe

??

??

Branch Delay Slots
Br r- L1 ID

IFPC+4

IF EX
ID

PC+4 is already in the pipeline
 throwing PC+4 away cost 1 bubble
 letting PC+4 finish to the end won’t hurt performance

R2000 defined branches to have an architectural
latency of 1 instruction

?? IFL1 if taken else PC+8

latency of 1 instruction
 the instruction immediately after a branch is always

executed
 branch target takes effect on the 2nd instruction
 if delay slot can always do useful work, effective IPC=1

without BTB or even a pipeline flush logic
 ~80% of delay slots can be filled automatically by compilers

CMU 18-447
S’09 L12-20
© 2009
J. C. HoeFilling Delay Slots by

Static Reordering Transformation
a. From before b. From target c. From fall through

sub $t4, $t5, $t6

…

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s2 = 0 then reordering data

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

if $s2 = 0 then

g
independent

(RAW, WAW,
WAR)

instructions
does not change

program

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

 add $s1, $s2, $s3

within same
basic block

a new
instruction

added to not-
taken path??

a new
instruction
added to
taken??

Safe?

[Based on figures from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

CMU 18-447
S’09 L12-21
© 2009
J. C. Hoe

Final Data Hazard Analysis
R/I-
Type LW SW Br J Jr

IFIF

ID use use

EX use
produce use use

MEM produce (use)

WB

With forwarding, hazard distance is 0 except for
RAW dependence on LW where it is 1
Load delay slot semantics ensures a dependent
instruction to be at least distance 2

CMU 18-447
S’09 L12-22
© 2009
J. C. Hoe

Final PC Hazard Analysis
R/I-
Type LW SW Br J Jr

IF use
(d)

use
(d)

use
(d) use use useIF (produce) (produce) (produce) use use use

ID produce produce produce

EX

MEM

WB

Hazard distance on a taken branch is 1
Again, branch delay slot semantics ensures a
dependent instruction to be at least distance 2

MIPS R2000 can be interlock-free!!
Hazard distance is greater in your project, why?

CMU 18-447
S’09 L12-23
© 2009
J. C. Hoe

Making a Better Guess
For ALU instructions
 can’t do better than guessing nextPC=PC+4

till t i k i t tPC b f th t still tricky since must guess nextPC before the current
instruction is fetched

For Branch/Jump instructions
 why not always guess in the taken direction since 70%

correct
 again, must guess nextPC before the branch instruction

is fetched (but branch target is encoded in the (g
instruction)

⇒ Must make a guess based only on the current fetch PC !!!
⇒ Fortunately,

- PC-offset branch/jump target is static
- We are allowed to be wrong some of the time

CMU 18-447
S’09 L12-24
© 2009
J. C. Hoe

The Locality Principle
One’s recent past is a very good predictor of
his/her near future.
Temporal Locality: If you just did something it is Temporal Locality: If you just did something, it is
very likely that you will do the same thing again
soon
 since you are here today, there is a good chance you will

be here again and again regularly
 inverse is also true

Spatial Locality: If you just did something, it is Spat a Loca ty f you just som th ng, t s
very likely you will do something similar/related
 every time I find you in this room, you are probably

sitting in the same seat
 you are probably sitting near the same people

CMU 18-447
S’09 L12-25
© 2009
J. C. Hoe

Branch Target Buffer (Oracle)
BTB (Oracle)
 a giant table indexed by PC

returns the guess for nextPC returns the guess for nextPC

When encountering a PC for
the first time, store in BTB
 PC + 4 if ALU/LD/ST
 PC+offset if Branch or Jump
 ?? if JR

BTB

PC
 ?? if JR

Effectively guessing branches
are always taken
IPC = 1 / [1 + (0.20*0.3) * 2]

= 0.89

Instruction
Memory

