
CMU 18-447
S’09 L10-1
© 2009
J. C. Hoe

18-447 Lecture 10:
Pipelined Implementations

James C. Hoe
Dept of ECE, CMU
February 23, 2009

Announcements: Project 1 is due this week
Midt d d lt t dMidterm graded, results posted

Handouts: H09 Homework 3 (on Blackboard)
Graded Midterms
Midterm solutions with statstics

CMU 18-447
S’09 L10-2
© 2009
J. C. Hoe

Doing laundry more quickly: in theory
Time

76 PM 8 9 10 11 12 1 2 AM

A

Task
order

“place one dirty load of clothes in the washer”
“when the washer is finished, place the wet load in the dryer”

B

C

D

“when the dryer is finished, place the dry load on a table and
fold”
“when folding is finished, ask your roommate (??) to put the
clothes away”

- steps to do a load are sequentially dependent
- no dependence between different loads

Based on figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

CMU 18-447
S’09 L10-3
© 2009
J. C. Hoe

Doing laundry more quickly: in theory
Time

76 PM 8 9 10 11 12 1 2 AM

A

Task
order

Time
76 PM 8 9 10 11 12 1 2 AM

Task

B

C

D

A

B

C

D

order

- latency per load is the same
- throughput increased by 4

- 4-loads of laundry in parallel
- no additional resources

Based on figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

CMU 18-447
S’09 L10-4
© 2009
J. C. Hoe

Time
76 PM 8 9 10 11 12 1 2 AM

A

Task
order

Doing laundry more quickly: in practice

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

Task
order

A

B

C

D

the slowest step decides throughput
Based on figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

CMU 18-447
S’09 L10-5
© 2009
J. C. Hoe

Doing laundry more quickly: in practice
Time

76 PM 8 9 10 11 12 1 2 AM

A

Task
order

Time
76 PM 8 9 10 11 12 1 2 AM

Task
order

B

C

D

A

B

C

D

order

A
B

A
B

Throughput restored (2 loads per hour) using 2 dryers
Based on figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

CMU 18-447
S’09 L10-6
© 2009
J. C. Hoe

Pipeline Idealism
Motivation: Increase throughput with

little increase in hardware
Repetition of identical operationsRepetition of identical operations
The same operation is repeated on a large number of

different inputs
Repetition of independent operations
No ordering dependencies between repeated operations

Uniformly partitionable suboperations
 b l d d d f l bCan be evenly divided into uniform-latency suboperations

(that do not share resources)

Good examples: automobile assembly line,
doing laundry, but instruction pipeline???

CMU 18-447
S’09 L10-7
© 2009
J. C. Hoe

combinational logic
T psec BW=~(1/T)

Ideal Pipelining

T psec ()

BW=~(2/T)T/2 ps T/2 ps

BW=~(3/T)T/3
ps

T/3
ps

T/3
ps

CMU 18-447
S’09 L10-8
© 2009
J. C. Hoe

Nonpipelined version with delay T
BW = 1/(T+S) where S = latch delay

Performance Model

k-stage pipelined version
BWk-stage = 1 / (T/k +S)

T ps

k-stage ()
BWmax = 1 / (1 gate delay + S)

T/k
ps

T/k
ps

CMU 18-447
S’09 L10-9
© 2009
J. C. Hoe

Nonpipelined version with combinational cost G
Cost = G+L where L = latch cost

Cost Model

k-stage pipelined version
Costk-stage = G + Lk

G gates

k-stage

G/k G/K

CMU 18-447
S’09 L10-10
© 2009
J. C. Hoe

Cost/Performance:
C/P = [Lk + G] / [1/(T/k + S)] = (Lk + G) (T/k + S)

= LT + GS + LSk + GT/k

Cost/Performance Trade-off
[Peter M. Kogge, 1981]

C/P

= LT + GS + LSk + GT/k

Optimal Cost/Performance: find min. C/P w.r.t. choice of k

d Lk G+-----------------

0 0 LS GT--------–+ +=

k

kd 1
T
k
--- S+

 0 0 LS

k2
+ +

kopt
GT
LS
--------=

LS GT

k2
--------– 0=

CMU 18-447
S’09 L10-11
© 2009
J. C. HoeThe Reality of Pipelining

Instruction Execution
M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

1

Add ALU
result

M
u
x

0

1 0

Shift
left 226 28 PCSrc1=Jump

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

W it

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

Control

result

ALU
Address

PCSrc2=Br Taken

y
Write
data

Instruction [5– 0]

Sign
extend

16 32Instruction [15– 0]

0

ALU
control

ALU operation

bcond

Based on figures from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

T BW=~(1/T)

CMU 18-447
S’09 L10-12
© 2009
J. C. Hoe

RISC Instruction Processing

5 generic steps
 instruction fetch
 instruction decode and operand fetch
 ALU/execute
 memory access (not required by non-mem instructions)
 write-back

DataIF
WB

Registers
Register #

Register #

Data

memory

Address

Data

Register #

PC Instruction ALU

Instruction

memory

Address

IF

ID EX
MEM

Based on figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

CMU 18-447
S’09 L10-13
© 2009
J. C. Hoe

200ps
Dividing into Stages

M
u
x

0

1

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write back
100ps 200ps 200ps 100ps

ignore
until

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

Instruction

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
dataAddress

Data
memory

1

ALU
result

M
u
x

ALU
Zero

RF
write

until
Lec 13

3216
Sign

extend

Is this the correct partitioning?
Why not 4 or 6 stages? Why not different boundaries

Based on figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

CMU 18-447
S’09 L10-14
© 2009
J. C. HoePipelining

Instruction
fetch Reg ALU Data

access Reg

Time

lw $1, 100($0)

2 4 6 8 10 12 14 16 18
Program
execution
order
(in instructions)

200 400 600 800 1000 1200 1400 1600 1800

8 ns
Instruction

fetch Reg ALU Data
access Reg

8 ns Instruction
fetch

 8 ns

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14

...

Instruction
f t h Reg ALU Data Reg

Time

lw $1, 100($0)

Program
execution
order
(in instructions)

200 400 600 800 1000 1200 1400

800ps

800ps

800ps

fetch g U access glw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns Instruction
fetch Reg ALU Data

access Reg

2 ns Instruction
fetch Reg ALU Data

access Reg

2 ns 2 ns 2 ns 2 ns 2 ns

200ps200ps200ps200ps200ps

200ps

200ps

5-stage speedup is 4, not 5 as predicated by the ideal model
Based on figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

CMU 18-447
S’09 L10-15
© 2009
J. C. Hoe

M
u
x

0

1

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write back

Pipeline Registers

M
u
x

0

1

No resource is used by more than 1 stage!

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

Instruction

Add

PC

M
u

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write

Read
dataAddress

Data
memory

ALU
result

M
u
x

ALU
ZeroInstruction

memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

Add

PC

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write

Read
data

ALU
result

M
u
x

ALU
Zero

ID/EX

Data
memory

AddressIR
D

PC
F

PC
D
+4

PC
E+

4

nP
C M

A
E

B E

A
ou

t M

M
D
R W

T

32

0Write
data

x

16
Sign

extend

Write
data

memory
1
x

32

0Write
data

x

16
Sign

extend

data 1
memory

Im
m

E B M

A
ou

t W

Based on figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

T/k
ps

T/k
ps

CMU 18-447
S’09 L10-16
© 2009
J. C. HoePipelined Operation

M
u
x

0

1

Instruction fetch
lw

M
u
x

0

1

Instruction decode
lw

M
u
x

0

1

Execution
lw

M
u
x

0

1

Memory
lw

M
u
x

0

1
Write back

lw
M
u
x

0

1

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

Add

PC

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Address

Data
memory

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

Add

PC

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Address

Data
memory

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

Add

PC

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Address

Data
memory

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

Add

PC

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
dataData

memory

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Address

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

Add

PC

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

Read
dataData

memory

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Write
register

Address
Instruction

memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

Add

PC

Address
M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
d t

Read
data

Data
memory

ALU
result

M
u
x

ALU
Zero

ID/EX

32

0Write
data

16
Sign

extend

data 1

32

0Write
data

16
Sign

extend

data 1

32

0Write
data

16
Sign

extend

data 1

32

0Write
data

16
Sign

extend

data 1

32

0Write
data

x

16
Sign

extend

data 1

32

0Write
data

x

16
Sign

extend

data 1

Based on figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

All instruction classes must follow the same path and timing
through the pipeline stages. Any performance impact?

CMU 18-447
S’09 L10-17
© 2009
J. C. Hoe

Pipelined Operation

M
0

Instruction fetch
lw $10, 20($1)

M
0

Instruction decode
lw $10, 20($1)

Instruction fetch
sub $11, $2, $3

M
0

Execution
lw $10, 20($1)

Instruction decode
sub $11, $2, $3

M
0

Memory
lw $10, 20($1)

Execution
sub $11, $2, $3

W it b kM
0

lw $10, 20($1)

M

sub $11, $2, $3
Write backM

0
sub $11, $2, $3

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x
1

Add

PC

Registers

Read
data 1

Read

Read
register 1

Read
register 2

R dALUALU
Zero

ID/EX

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x
1

Add

PC

Registers

Read
data 1

Read

Read
register 1

Read
register 2

R dALUALU
Zero

ID/EX

Instruction

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

1

Add

PC

Registers

Read
data 1

Read

Read
register 1

Read
register 2

R dALUALU
Zero

ID/EX

Instruction
memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

1

Add

PC

Registers

Read
data 1

Read

Read
register 1

Read
register 2

Memory

R dALUALU
Zero

ID/EX

Execution

Instruction
memory

Address

4

0

Add Add
result

ALU
Zero

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

1

Add

PC

Registers

Read
data 1

Read

Read
register 1

Read
register 2

ALU
R d

Memory

Instruction
memory

Address

4

0

Add Add
result

ALU
Zero

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

1

Add

PC

Registers

Read
data 1

Read

Read
register 1

Read
register 2

ALU
ReadW itmemory

32

0

0Write
data

M
u
x

1
Read

data 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

Address

Data
memory

Clock 1

memory

32

0

0Write
data

M
u
x

1
g Read

data 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

Address

Data
memory

Clock 2

memory 0

0Write
data

M
u
x

1
g Read

data 2Write
register

Write
data

Read
data

1

ALU
result

M
u
x

3216
Sign

extend

Address

Data
memory

Clock 3

memory 0

0Write
data

M
u
x

1
g Read

data 2

3216
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

Data
memory

Address

Clock 4

memory

32

0

1

ALU
result

0Write
data

M
u
x

1
Read

data 2

16
Sign

extend

M
u
x

Read
data

Write
register

Write
data

Address

Data
memory

Clock 5

memory

32

0

1

result

0Write
data

M
u
x

1data 2

16
Sign

extend

M
u
x

Read
data

Write
register

Write
data

Address

Data
memory

Clock 6

Based on figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

CMU 18-447
S’09 L10-18
© 2009
J. C. Hoe

WB

Illustrating Pipeline Operation:
Operation View

IF
t0 t1 t2 t3 t4 t5

I t ID EX MEM
MEM
EX
ID
IFInst4

WB

MEM

IF

MEM
EX
ID

EXIF ID

Inst0 ID
IFInst1

EX
ID
IFInst2

MEM
EX
ID
IFInst3

WB

WBMEM
EX

WB

IF

EXIF ID
IF ID

CMU 18-447
S’09 L10-19
© 2009
J. C. HoeIllustrating Pipeline Operation:

Resource View

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

I0

I0

I1

I0

I1

I2

I1

I2

I3

I2

I3

I4

I3

I4

I5

I4

I5

I6

I5

I6

I7

I6

I7

I8

I7

I8

I9

I8

I9

I10IF

ID

EX

I0

I0

I1

I1

I2

I2

I3

I3

I4

I4

I5

I5

I6

I6

I7MEM

WB

CMU 18-447
S’09 L10-20
© 2009
J. C. Hoe

Control Points
PCSrc

0

1

M
u
x

PC

Instruction
memory

Address

In
st

ru
ct

io
n

MemtoReg

Branch

ALUSrc

4

0

0
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

1
Write

Read

data M
u
x

1

RegWrite

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data
memory

Zero

Add Add
result

Shift
left 2

ALU
result

ALU
Zero

Add

Instruction
[20– 16]

ALUOp

RegDst

16 32
Instruction
[15– 0] Sign

extend

Write
data

ALU
control MemRead

Instruction
[15– 11]

6

0

1

M
u
x

Identical set of control points as the single-cycle datapath!!

Based on figures from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL

RIGHTS RESERVED.]

CMU 18-447
S’09 L10-21
© 2009
J. C. HoeSequential Control: Special Case

For a given instruction
 same control settings as single-cycle, but
 control signals required at different cycles, depending on

tstage
⇒decode once using the same logic as single-cycle and buffer

control signals until consumed

Control

EX

M

WB

M

WB

WB

Instruction

⇒or carry relevant “instruction word/field” down the pipeline
and decode locally within each stage (still same logic)

IF/ID ID/EX EX/MEM MEM/WB

CMU 18-447
S’09 L10-22
© 2009
J. C. Hoe

Pipelined Control

Control M

WB

WB

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

PC

Instruction
memory

In
st

ru
ct

io
n

Add

M
em

to
R

eg

Branch

ALUSrc

4

0

Add Add
result

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u

ALU
result

Zero

Read
data

M
1

Shift
left 2

R
eg

W
rit

e

ALU

EX M WBIF/ID

M
em

W
rit

e

Address
Data

Address

Instruction
[20– 16]

ALUOp

RegDst

16 32Instruction
[15– 0]

0

M
u
x

0

1

Write
data

Sign
extend

u
x

1
Write
data

u
x

ALU
control

MemRead

Instruction
[15– 11]

6

Data
memory

Based on figures from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL

RIGHTS RESERVED.]

CMU 18-447
S’09 L10-23
© 2009
J. C. Hoe

Instruction Pipeline Reality
Identical operations ... NOT!
⇒ unifying instruction types

- coalescing instruction types into one “multi-function” pipe
- external fragmentation (some idle stages)

Uniform Suboperations ... NOT!
⇒ balance pipeline stages

- stage quantization to yield balanced stages
- internal fragmentation (some too-fast stages)nternal fragmentat on (some too fast stages)

Independent operations ... NOT!
⇒ resolve data and resource hazards

- duplicate contended resources
- inter-instruction dependency detection and resolution

MIPS ISA features are engineered for improved pipelineability

CMU 18-447
S’09 L10-24
© 2009
J. C. Hoe

How to do better on Midterm 2

Read the text before lecture
Pay attention in lecturey
Do homework
Do lab
Ask questions in lecture, lab, office hour
Eat breakfast every morning
Don’t run with scissors

. Do you really need me to tell you any of these?

