

18-447 Lecture 9: Microcontrolled Multi-Cycle Implementations

James C. Hoe Dept of ECE, CMU February 18, 2009

Announcements: Read P&H Appendix D Get started on Lab

Handouts: Handout #8: Project 1 (on Blackboard)

Electrical & Computer

CMU 18-447 S'09 L9-3 © 2009 J. C. Hoe

Single-Cycle Datapath Analysis

Assume

- memory units (read or write): 200 ps
- ALU and adders: 100 ps
- register file (read or write): 50 ps
- other combinational logic: 0 ps

steps	IF	ID	EX	MEM	WB	Dalay
resources	mem	RF	ALU	mem	RF	Delay
R-type	200	50	100		50	400
I-type	200	50	100		50	400
LW	200	50	100	200	50	600
SW	200	50	100	200		550
Branch	200	50	100			350
Jump	200					200

emputer RING	Mio	croco	oding	: Ver	1.0		СМU 18-447 5'09 L9-9 © 2009 J. C. Hoe
state	cntrl		condi	tional ta	rgets		
label	flow	R/I- type	LW	SW	Br	Jump	
IF ₁	next	-	-	1	1	-	
IF ₂	next	-	-	-	-	-	
IF ₃	next	-	-	-	-	-	
IF ₄	branch	ID	ID	ID	ID	IF ₁	
ID	next	-	-	-	-	-	
EX_1	next	-	-	1	I	-	
EX ₂	branch	WB	MEM_1	MEM_1	IF_1	-	
MEM_1	next	-	-	-	-	-	
MEM ₂	next	-	-	I	I	-	
MEM ₃	next	-	-	-	1	-	
MEM ₄	next	-	WB	IF ₁	1	-	
WB	branch	IF_1	IF ₁	IF ₁	IF_1	IF ₁	
P	\ syster	natic a	pproach	n to FS	M sequ	encing/	control

CMU 18-447 S'09 L9-17 © 2009 J. C. Hoe

New Sequential Control Signals

	When De-asserted	When asserted		
ALUSrcA	1^{st} ALU input from PC	1 st ALU input from 1 st RF read port (latched in A)		
IorD	PC supplies memory address	ALUOut supplies memory address		
IRWrite	IR latching disabled	IR latching enabled		
PCWrite	no effect	PC latching enabled unconditionally		
PCWriteCond no effect PC latching enabled only if broches condition is satisfied PC latching enabled only if broches PC latching enabled only if broches				
When both PCWrite and PCWriteCond are de-asserted, PC latching is disabled				

Electrical Computer CMU 18-4 SO 19-3 CMU 18-4 SO 19-3 e 2009				
	Nev	v S	Sequential Control Signals	J. C. Hoe
Γ	signal		effect	
		00	2 nd ALU input from 2 nd RF read port (latched in B)	
		01	2 nd ALU input is 4 (for PC increment)	
ľ		10	2 nd ALU input is sign-extended "IR[15:0]"	
		11	2 nd ALU input is sign-extended "IR[15:0],00"	
		00	next PC from ALU	
P	CSource[1:0]	01	next PC from ALUOut	
		10	next PC from IR (jump target)	

()	Electrical & Computer	
----	-----------------------	--

Old Control Signals (similar to single-cycle)

CMU 18-447 5'09 L9-19 © 2009 J. C. Hoe

	When De-asserted	When asserted
RegDest	RF write select according to IR[20:16]	RF write select according to IR[15:11]
RegWrite	RF write disabled	RF write enabled
MemRead	Memory read disabled	Memory read port return load value
MemWrite	Memory write disabled	Memory write enabled
MemtoReg	Steer ALU result (latched in ALUOut) to RF write port	steer memory load result (latched in MDR) to RF write port

CMU 18-447 S'09 L9-21 © 2009 J. C. Hoe

