Electrical & Computer CMU 18-447

A ENGNEERINE 509 L41
© 2009

J.C. Hoe

18-447 Lecture 4:
Floating Point

James C. Hoe
Dept of ECE, CMU
January 28, 2009

Announcements: Read P&H Ch 2 (ISA) for Wednesday
Read ARCHITECTURE OF THE IBM SYSTEM/360, Amdahl,
Blaauw, Brooks (on Blackboard)

Lab 1 due this week, both partners need to be present for

check of f
Handouts:

A ENGIREERNG
Limitations of Binary Numbers

¢ N-bit binary numbers
- range: O ~ 2n-1
- accuracy: 1 i.e., smallest resolvable difference
- precision: good for large values, bad for small values
precision: tfotal number of digits to express a value
range: the difference between the largest and the
smallest representable values
dynamic range: ratio of largest and smallest
representable (non-zero) values
¢ Numerical applications often need
- larger range and/or larger dynamic range
- maintain precision, independent of magnitude
- fractions and real numbers

How do you satisfy some or all with the same N bits?

CMU 18-447
509 L4-2

© 2009

J. C. Hoe

(). Electrical & Computer CMU 18-447
€Y ENGINEERING $09 L4.3

Fixed-Point Representation

¢ Let b, ;b, ,..b,b;byrepresent an n-bit unsigned fixed-
point number
- must also specify the weight of b,

. . n—1
- its value is —t why not 2" .Z4ibi
273" 2', =0
i=0
¢ a finite representation with range between O and
2mx-2% and with an accuracy of 2%
- if O>x>-n+1 then the representation includes a whole-number
portion and a fractional portion, i.e., b, b, ,..b_.b_ ;..b,b;bg
- 2's complement fixed-point representation can be derived
similarly
- arithmetic between identically formatted numbers is

unchanged except for multiplication which requires re-
scaling to position the binary point (just like in long-hand)

(). Electrical & Computer CMU 18-447
€Y ENGINEERING <09 L4 4

Choosing a Fixed Point Format

J.C. Hoe

¢ Num. of bits determines dynamic range and precision
¢ Weight of by determines accuracy

¢ Determine the largest magnitude (say ~2¥) and the
smallest non-zero magnitude (say ~2*) you want to
represent accurately during a computation
- ratio 2Y/2% = dynamic range
- (Y-X+1)-bit fixed-point with by weighing 2%

¢ Precision and dynamic range matters the most if
- a small value is multiplied by a large value, e.g. 3.14x10000
- comparable large values are subtracted, e.g. 1.0x10%-9999
- a small value is used to divide a large value, e.g. 10000/3.1

(). Electrical & Computer CMU 18-447
€\ ENGINEERING 509 L4-5
© 2009

Shortcomings of Fixed Point ***

¢ Example: let A=263, B=232and C=232-1
a program with {A, B} requires a 32-bit format for dynamic
range
a program with {B, C} requires a 33-bit format for accuracy

a program with {A, B, C} requires a 64-bit format even if A
and C are never operated together

¢ Cannot represent large and small values to the same
precision
- eg. 8bl1111111 / 2 VS. 8'b00000011 / 2

¢ Compactness of dynamic range encoding
- for N-bit unsigned, dynamic range ~ 2N

(). Electrical & Computer C{V\U 18-447
€\ ENGINEERING 509 La-6
© 2009

Runtime Re-Scaling

¢ Range, dynamic range and accuracy requirements
of a computation are not static throughout

¢ One could design fixed-point algorithms where the
weight of b, are scaled as necessary

¢ A very simple example,

- suppose we are summing K same-format N-bit fixed-point
numbers in a binary reduction tree

- final sum could require (log,K+N) bits to not overflow

- Alternatively, suppose N bits of precision is sufficient,
we can retain a N-bit format throughout and only adjust
the "binary point"” 1 position to the right after each level
of reduction

¢ Applicable in many cases but impossible without
deep knowledge of both the algorithm and the

expected input values

(). Electrical & Computer C{V\U 18-447
€7 ENGINEERIN 509 L4.7
© 2009

Floating Point Format

¢ Scientific notation (e.g., 6.022x1023) in binary

(-1)5 x (significand) x 2 (€xponentm)

s| exponent significand

note** sign-magnitude based scheme

¢ A number of variants have been implemented
- encoding size~1+N+M
- bit allocation for exponent vs. significand

range = O ~ Zé\/l 1
dynamic range = ZZM
N significant (binary) digits (precise to 1 part in 2N)
Note "accuracy” changes with magnitude but precision
is fixed

- special encodings

(). Electrical & Computer CMU 18-447
€Y ENGINEERING $09 L4.8

TEEE 754-1985

¢ Virtually universally adopted (especially on
anything mass marketed)

¢ Standard specifies:
- number representations

- precisely defined operations and behaviors
- exceptional conditions and trapping behaviors

¢ Goals
- portability of numerical code
- maximize numerical stability and accuracy

- get it right once and for dll
- doesn't always make it easy for HW implementation

{(). Electrical & Computer C{V\U 18-447
ENGINEERIN 509 L4-9

© 2009
J.C. Hoe

Formats
¢ 4 formats: single, extended-single, double, extend
double
s e f
: single double
single extended double extended

encoding 32-bit > 43-bit 64-bit > 79bit

significand | 24-bit | >32-bit | 53-bit > 64
8-bit : 11-bit :
exponent | .5, 157 > 11-bit 1022~1023| > 15-bit
¢ single precision double precision

- dynamic range 10-38~1038 - dynamic range ~10-397~10307
- precision = 1in 107 - precision ~ 1 in 10

) ENGNEERRIE S0 Lo
© 2009

J. C. Hoe
s e f

¢ In normal form, value = (-1)% x 1.f x 2¢-bias
- implicit leading 1 (how do you represent 0?)
- biased exponent format (single::127, double::1023)
enable positive values to be compared (> <) as integers
- note max and min values of e fall outside of allowable range!!

o if e==0 then
if f==0 thenvalue= £0 (depend on sign)
else value = (-1)5 x 0.f x 21-bies (denormal values)
e if e==111._111 then
if f==0 then value = + o (infinity)
else NaN (Not a Number)

A ENENERRNE

Denormal Number

S

0 f

¢ The smallest "normal” number is 1.0x21-bias

¢ Denormal allows a smooth approach toward O as
precision gradually underflows

1.0x21-bias / 2 = 0.1x21bias

¢ Alternative is to flush denormal directly to O

The difference is minute (~10-397 for double)
Why does it matter?

¢ suppose x=1.1x21-bias and y=1.0x2!-bias

xl=y

with flush-to-0, x-y=0 xlzy
with denormal, x-y behaves more predictably near the
edge of the representable space

CMU 18-447
S'09 L4-11
® 2009
J.C. Hoe

(). Electrical & Computer CMU 18-447
€Y ENGINEERING S09 L4-12

Special Values and Rules

J.C. Hoe

¢ NaN

- generated by invalid operations, such SQRT(-1)
- computation continues even after NaN is encountered
- rule: any operation on NaN operands in turn outputs NaN

— enable more streamlined coding where exceptions are
checked once at the end

¢ T ©

- generated by overflow or 1/0

- certain operations can continue on + o values

i.e., 1/00 = 0, 1+00 = o0 but w0-c0 = NaN, co/0 = NaN

¢ negative 0??

- 1/-00 = -0, a negative value underflows to -0

- if x==y & x|=0 then x -y = +0

- but (+0) + (+0) = +0, (-0)+(-0) = -0

Electrical & Computer CMU 18-447

A ENGNEERINE 509 1413
© 2009

FP Exceptions
¢ Types

Invalid: when an operation receives unacceptable
operands

- Divide by Zero: 1/0

- Overflow and Underflow : exponent too large or too small
after operation

- Inexact: when results are rounded

¢ Effects
- Exceptions should not stop computation by default!!

- Exceptions set flags that must be explicitly cleared by
user

- Trapping is an implementation choice

- Certain information must be preserved for the trap
handler if invoked

). Electrical & Computer CMU 18-447
€7 ENGINEE 509 La-14

FP Add (think scientifc notation)
(s) 9.999 x10!

+ 1610 x10-!

y

1. Compare the exponents of the two numbers.
Shift the smaller number to the right until its 9999)(101
exponent would match the larger exponent
+ 0.01610__ x10! step 1
\4 1
2. Add the significands 1001510 XIO STep 2
VV
3. Normalize the sum, either shifting right and 1 0015 10 xlOZ s-l-ep 3
incrementing the exponent or shifting left :
and decrementing the exponent
Overflow or _Yes
underflow?
1 Exception }
4. Round the significand to the appropriate 2
number of bits 1002 XIO STep 4
No
Still normalized?

Okay in this case, but 9.9999, for
example, would require re-
normalization after rounding

how many times?

[Figure 3.16 from P&H, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

W\t

Electrical & Computer

ENGINEERING

Datapath

Sign| Exponent Significand Sign| Exponent Significand .\
\4
N Compare
Small ALY exponents
v
Exponent
J diﬁ‘gr\ence
4 \ 4 v v 4
Co) @ 1)|—>(o 1)
v
y
Shift smaller
corrl right number'r‘igh'r)
A
Add
\4
—(0 1
- Irgjzr‘cerr;\;rgn?r‘ 7 Shift left or right Normalize

I_l

\ 4

Rounding hardware

v

v

Sign

Exponent

Significand

CMU 18-447
S'09 L4-15
® 2009
J.C. Hoe

> step 1

step 2

step 3

max shift distance?

Round

step 4

implies an addition?

[Figure 3.17 from P&H, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

{(). Electrical & Computer C{V\U 18-447
ENGINEERING S'09 L4-16
© 2009
J.C. Hoe

Rounding

¢ "Nearest" rounding
- the default rounding mode

- as if arithmetic is performed with infinite precision and
the infinitely precise result is rounded to the closet
representable value

- if the infinitely precise result is exactly mid-way
between 2 representable values then choose the one that
has an “"even" significand

¢ Also, directed rounding modes
- toward O
- toward o«
- toward -«

(). Electrical & Computer CMU 18-447
€Y ENGINEERING S09 L4-17

Round and Sticky

J.C. Hoe

¢ When two significands are aligned for addition,
some bits of the smaller value appears to not
matter 9.999 x10!

Can we throw them away? Not quite! + 0.01610 x10’
10.01510 x10!

o Given the number b_,..b,bb,bbbbb ..

b,1....0,b1bg r $4558;......

g Y. . J/ T A\ Y’ J
precision round or'ed
. bit into a
lf r'——O Then bn_l....bzblbo us_l_ickyn blT

if r==1 && sticky==1 then b, ;....b,b;by*1
if r==1 && sticky==0 then round to even

{(). Electrical & Computer CMU 18-447

ENGINEERING gCJ29OI6491-18
J.C. Hoe
Guard
¢ When sub’rr'ac’ring 2 significands 1.000 x 20
- may lose the MSB - 1111 x 23
- requires a left-shift o normalize B
- must keep an extra "quard” bit just in case 1000 x 20

- 0.0011(s=1) x 2°
0.1100(s=1) x 20

¢ What happens if you lose more 1
than 1 MSB in subtraction?
- only possible if two subtracted values 1.100(s=1) x 2

are similar in magnitude
- at most 1 initial right-shift in the first place

guard, 1 round sticky

(). Electrical & Computer
€Y ENGINEERING

(Start ’

v

FP Mult

(1.110 x 10%) x (9.200 x 10-5)
(1.110 x 9.200) x (101° x 10-5)

1. Add the biased exponents of the two
numbers, subtracting the bias from the sum
to get the new biased exponent

v

2. Multiply the significands

v

3. Normalize the product if necessary, shifting
it right and incrementing the exponent

l

Overflow or Yes

underflow?

No

A

(Exception ’

4. Round the significand to the appropriate
number of bits

Still normalized?

Yes

5. Set the sign of the product to positive if the
signs of the original operands are the same;
if they differ make the sign negative

v

(Done ’

(1.110 x 9.200)
step 1

10.212000 x10°

1.021 x106

Is (e > Emax) or (e < Emin) ?

1.021 x106

nho carry, looks good

sign, @ signg

[Figure 3.18 from P&H, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

x 10°

CMU 18-447
S'09 L4-19
® 2009
J.C. Hoe

step 2

step 3

step 4

step b

(). Electrical & Computer C{V\U 18-447
€\ ENGINEERING 509 L4-20
© 2009

FP Division by Newton Iteration -

¢ Compute 1/b by finding the root of f(x)=1/x - b using
Newton-Raphason
- guess initial x,
- for x; find root of a straight line
going through (x;, f(x;))

Precision double each iteration

with slope f'(x;) slope = f'(x;)
- iterate using solved root as
new guess x;,=x;-f(x;)/f'(x;)
#xi(2-xb) p (x;, ()

¢ Fast division and sqrt if
fast addition and

multiplication are available E x \
(either as HW or SW techniques) !

computing 1/3 using "double” and x,=0.3 converges to 16 decimal places in 4 iter

(). Electrical & Computer CMU 18-447
€Y ENGINEERING $09 L4-21

Typical FP Latencies

J.C. Hoe

¢ FAdd: 1~ 2 cycles, fully pipelined
¢ FMult: ~4 cycles, fully pipelined
¢ FDiv: 15~20 cycles, unpipelined

Relative to 1-cycle integer add

(). Electrical & Computer
€Y ENGINEERING

von Neumann on Floating Point

5.3. Several of the digizal computers being built or planned
in this countrv and England are to contain a so-called “Hoating
decimal point”. This is 2 mechanism for expressing each word as
a characteristic and a mantissa—e.g. 123.45 would be carried in
the machine as (0.12345.03), where the 3 is the exponent of 10
associated with the number. There appear to be two major pur-
poses in a “Hoating~ decimal point system both of which arise from
the fact that the number of digits in a word is a constant, fixed
bv design considerations for each particular machine. The first of

these purposes is to refain in a sum or product as many significant

digits as possible and|the second of these is to free the human
operator from the burden of estimating and inserting into a prob-
lem “scale factors”—multiplicative constants which serve to keep
numbers within the limits of the machine.

There is, of course, no denying the fact that human time is
consumed in arranging for the introduction of suitable scale fac-

CMU 18-447
5'09 L4-22
® 2009
J.C. Hoe

to us not at all clear whether the modest advantages of a floating
binary point offset the loss of memory capacity and the increased
complexity of the arithmetic and control cireuits.

There are certainly some problems within the scope of our
device which really require more than 2=% precision. To handle
such problems we wish to plan in terms of words whose lengths
are some fixed integral multiple of 40, and program the machine
in such a manner as to give the corresponding aggregates of 40
digit words the proper treatment. We must then consider an addi-
tion or multiplication as a complex operation programmed from
a number of primitive additions or multiplications (cf. §9, Part
11). There would seem to be considerable extra difficulties in the
way of such a procedure in an instrument with a floating binary
point.

The reader may remark upon our alternate spells of radicalism

tors. We only argue that the time so consumed)|is a very small
percentage of the total time we will spend in preparing an inter-

esting problem for our machine. The first advantage of the floating
point is. we feel, somewhat illusory. In order to have such a floating
point one must waste memory capacity which could otherwise be
used for carrving more digits per word. It would therefore seem

and conservatism in deciding upon various possible features for
our mechanism. We hope, however, that he will agree, on closer
inspection, that we are guided by a consistent and sound principle
in judging the merits of anyv idea.|We wish to incorporate into

the machine—in the form of circuits—only such logical concepts
as are either necessary to have a complete system or highly con-
venient because of the frequency with which they occur and
influence thev exert in the relevant mathematical situations.

Burks, Goldstein, von Neumann, Preliminary discussion of the
logical design of an electronic computing instrument,1946.

() Electrical & Computer CMU 18-447
€Y ENGINEERING $09 L4.23

Intel Pentium FDIV Bug

lntﬂtnuwknnﬂdtﬂmpﬂtnhﬁ]rhmnhlg

':'] T e —
HHH livtasake Rt LRt Y]
I!r|||..|]-|u1El: u.ml

ﬂwed-l:hrp'-

L L, Lt L AR]

Intel 5 Flmtlum Problem Persi~*

e
Lesmey |

| w

l'utiJl 'lﬂ:!i-’ﬂ'l'll.l

T FyFAiledn et Moliteadegpen
= nETIIpEEs 108 P sy

1L18
.|: I I | II 1
fidif | al |I |

If you believe "bug-free" processor designs exist in this world, try reading
the Intel Core 2 Duo errata sheet (aka "Specification Updates” in polite
circles) ftp://download.intel.com/design/mobile/SPECUPDT/31407906.pdf

[Figure 3.23 from P&H, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

(). Electrical & Computer CMU 18-447
€Y ENGINEERING S09 L4-24

Further Reading

J.C. Hoe

¢ If you are interested about computer arithmetic,
a great place to start is Appendix H of Computer
Architecture: A quantitative approach by
Hennessy and Patterson

¢ go to www.mkp.com/CA3 and follow link to
“companion site"

