
CMU 18-447
S’09 L4-1
© 2009
J. C. Hoe

18-447 Lecture 4:
Floating Point

James C. Hoe
Dept of ECE, CMU
January 28, 2009

Announcements: Read P&H Ch 2 (ISA) for Wednesday
Read ARCHITECTURE OF THE IBM SYSTEM/360, Amdahl,

Blaauw, Brooks (on Blackboard)
Lab 1 due this week, both partners need to be present for

check off
Handouts:

CMU 18-447
S’09 L4-2
© 2009
J. C. Hoe

Limitations of Binary Numbers
 N-bit binary numbers

- range: 0 ~ 2n-1
- accuracy: 1 i.e., smallest resolvable difference
- precision: good for large values, bad for small values

precision: total number of digits to express a value
range: the difference between the largest and the

smallest representable values
dynamic range: ratio of largest and smallest

representable (non-zero) values
 Numerical applications often need

- larger range and/or larger dynamic range
- maintain precision, independent of magnitude
- fractions and real numbers

How do you satisfy some or all with the same N bits?

CMU 18-447
S’09 L4-3
© 2009
J. C. HoeFixed-Point Representation

 Let bn-1bn-2…b2b1b0 represent an n-bit unsigned fixed-
point number
- must also specify the weight of b0

(suppose it’s 2x, x could be negative)
- its value is

 a finite representation with range between 0 and
2n+x-2x and with an accuracy of 2x

- if 0>x>-n+1 then the representation includes a whole-number
portion and a fractional portion, i.e., bn-1bn-2…b-x.b-x-1…b2b1b0

- 2’s complement fixed-point representation can be derived
similarly

- arithmetic between identically formatted numbers is
unchanged except for multiplication which requires re-
scaling to position the binary point (just like in long-hand)







1

0

22
n

i
i

ix b






1

0

42
n

i
i

ix bwhy not

CMU 18-447
S’09 L4-4
© 2009
J. C. Hoe

Choosing a Fixed Point Format

 Num. of bits determines dynamic range and precision
 Weight of b0 determines accuracy
 Determine the largest magnitude (say ~2Y) and the

smallest non-zero magnitude (say ~2X) you want to
represent accurately during a computation
- ratio 2Y/2X = dynamic range
- (Y-X+1)-bit fixed-point with b0 weighing 2X

notice: the largest magnitude by itself is unimportant
 Precision and dynamic range matters the most if

- a small value is multiplied by a large value, e.g. 3.14x10000
- comparable large values are subtracted, e.g. 1.0x104-9999
- a small value is used to divide a large value, e.g. 10000/3.14

CMU 18-447
S’09 L4-5
© 2009
J. C. HoeShortcomings of Fixed Point

 Example: let A=263, B=232 and C=232-1
a program with {A, B} requires a 32-bit format for dynamic
range
a program with {B, C} requires a 33-bit format for accuracy
a program with {A, B, C} requires a 64-bit format even if A
and C are never operated together
Dynamic range and accuracy are inflexibly coupled

 Cannot represent large and small values to the same
precision
- e.g. 8’b11111111 / 2 vs. 8’b00000011 / 2

 Compactness of dynamic range encoding
- for N-bit unsigned, dynamic range  2N

Compact?? 32-bit4x109 64-bit16x1018

CMU 18-447
S’09 L4-6
© 2009
J. C. HoeRuntime Re-Scaling

 Range, dynamic range and accuracy requirements
of a computation are not static throughout

 One could design fixed-point algorithms where the
weight of b0 are scaled as necessary

 A very simple example,
- suppose we are summing K same-format N-bit fixed-point

numbers in a binary reduction tree
- final sum could require (log2K+N) bits to not overflow
- Alternatively, suppose N bits of precision is sufficient,

we can retain a N-bit format throughout and only adjust
the “binary point” 1 position to the right after each level
of reduction

 Applicable in many cases but impossible without
deep knowledge of both the algorithm and the
expected input values

CMU 18-447
S’09 L4-7
© 2009
J. C. HoeFloating Point Format

 Scientific notation (e.g., 6.022x1023) in binary
(-1)s x (significandN) x 2 (exponentM)

note** sign-magnitude based scheme
 A number of variants have been implemented

- encoding size  1 + N + M
- bit allocation for exponent vs. significand

range = 0 ~ 22

dynamic range  22

N significant (binary) digits (precise to 1 part in 2N)
Note “accuracy” changes with magnitude but precision
is fixed

- special encodings

s exponent significand

M-1

M

CMU 18-447
S’09 L4-8
© 2009
J. C. Hoe

IEEE 754-1985

 Virtually universally adopted (especially on
anything mass marketed)

 Standard specifies: Only 20 pages!?
- number representations
- precisely defined operations and behaviors
- exceptional conditions and trapping behaviors

seemingly every detail is deliberately chosen
 Goals

- portability of numerical code
- maximize numerical stability and accuracy

for us mortals, use “double” and forget about it
- get it right once and for all
- doesn’t always make it easy for HW implementation

CMU 18-447
S’09 L4-9
© 2009
J. C. Hoe

Formats
 4 formats: single, extended-single, double, extend

double

Note** in normal form (i.e., 1.xxxxx), leading bit is always 1 and
hence 1 bit of the significand is implicit

 single precision double precision
- dynamic range 10-38~1038 - dynamic range 10-307~10307

- precision  1 in 107 - precision  1 in 1016

single single
extended double double

extended

encoding 32-bit  43-bit 64-bit  79bit

significand 24-bit  32-bit 53-bit  64

exponent 8-bit
-126~127  11-bit 11-bit

-1022~1023  15-bit

s e f

CMU 18-447
S’09 L4-10
© 2009
J. C. Hoe

Values

 In normal form, value = (-1)s x 1.f x 2e-bias

- implicit leading 1 (how do you represent 0?)
- biased exponent format (single::127, double::1023)

enable positive values to be compared (>,<) as integers
- note max and min values of e fall outside of allowable range!!

 if e==0 then
if f==0 then value =  0 (depend on sign)
else value = (-1)s x 0.f x 21-bias (denormal values)

 if e==111…111 then
if f==0 then value =   (infinity)
else NaN (Not a Number)

s e f

CMU 18-447
S’09 L4-11
© 2009
J. C. HoeDenormal Number

 The smallest “normal” number is 1.0x21-bias

 Denormal allows a smooth approach toward 0 as
precision gradually underflows

1.0x21-bias / 2 = 0.1x21-bias

 Alternative is to flush denormal directly to 0
- The difference is minute (~10-307 for double)
- Why does it matter?

 suppose x=1.1x21-bias and y=1.0x21-bias

- x!=y (clearly distinguishable using integer comparison)
- with flush-to-0, x-y=0 (contradicts x!=y)
- with denormal, x-y behaves more predictably near the

edge of the representable space

s 0 f

CMU 18-447
S’09 L4-12
© 2009
J. C. Hoe

Special Values and Rules
 NaN

- generated by invalid operations, such SQRT(-1)
- computation continues even after NaN is encountered
- rule: any operation on NaN operands in turn outputs NaN
 enable more streamlined coding where exceptions are

checked once at the end
  

- generated by overflow or 1/0
- certain operations can continue on   values

i.e., 1/  0, 1+   but -  NaN, /  NaN
 negative 0??

- 1/-  -0, a negative value underflows to -0
- if x==y & x!=0 then x - y  +0
- but (+0) + (+0)  +0, (-0)+(-0)  -0

CMU 18-447
S’09 L4-13
© 2009
J. C. HoeFP Exceptions

 Types
- Invalid: when an operation receives unacceptable

operands
- Divide by Zero: 1 / 0
- Overflow and Underflow : exponent too large or too small

after operation
- Inexact: when results are rounded

Very subtle details in specification
 Effects

- Exceptions should not stop computation by default!!
output NAN and keep going

- Exceptions set flags that must be explicitly cleared by
user

- Trapping is an implementation choice
- Certain information must be preserved for the trap

handler if invoked  precise interrupt

CMU 18-447
S’09 L4-14
© 2009
J. C. HoeFP Add (think scientifc notation)

9.999 x101

+ 1.610 x10-1

9.999 x101

+ 0.01610 x101 step 1
10.01510 x101 step 2

1.001510 x102 step 3

Is (e > Emax) or (e < Emin) ?

1.002 x102 step 4

Okay in this case, but 9.9999, for
example, would require re-
normalization after rounding

Done

2. Add the significands

4. Round the significand to the appropriate
number of bits

Still normalized?

Start

Yes

No

No

YesOverflow or
underflow?

Exception

3. Normalize the sum, either shifting right and
incrementing the exponent or shifting left

and decrementing the exponent

1. Compare the exponents of the two numbers.
Shift the smaller number to the right until its
exponent would match the larger exponent

[Figure 3.16 from P&H, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

how many times?

CMU 18-447
S’09 L4-15
© 2009
J. C. HoeDatapath

[Figure 3.17 from P&H, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

0 10 1 0 1

Control

Small ALU

Big ALU

Sign Exponent Significand Sign Exponent Significand

Exponent
difference

Shiftright

Shift leftorright

Rounding hardware

Sign Exponent Significand

Increment or
decrement

0 10 1

Shift smaller
numberright

Compare
exponents

Add

Normalize

Round

step 1

step 2

step 3

implies an addition?
step 4

max shift distance?

CMU 18-447
S’09 L4-16
© 2009
J. C. Hoe

Rounding
 “Nearest” rounding

- the default rounding mode
- as if arithmetic is performed with infinite precision and

the infinitely precise result is rounded to the closet
representable value

- if the infinitely precise result is exactly mid-way
between 2 representable values then choose the one that
has an “even” significand

 Also, directed rounding modes
- toward 0
- toward 
- toward -

CMU 18-447
S’09 L4-17
© 2009
J. C. Hoe

 When two significands are aligned for addition,
some bits of the smaller value appears to not
matter

Can we throw them away? Not quite!

 Given the number bn-1….b2b1b0 b b b b b ….

if r==0 then bn-1….b2b1b0

if r==1 && sticky==1 then bn-1….b2b1b0+1
if r==1 && sticky==0 then round to even

Round and Sticky

9.999 x101

+ 0.01610 x101

10.01510 x101

precision round
bit

or’ed
into a

“sticky” bit

bn-1….b2b1b0 r s1s2s3……

CMU 18-447
S’09 L4-18
© 2009
J. C. HoeGuard

 When subtracting 2 significands
- may lose the MSB
- requires a left-shift to normalize
- must keep an extra “guard” bit just in case

 What happens if you lose more
than 1 MSB in subtraction?
- only possible if two subtracted values

are similar in magnitude
- at most 1 initial right-shift in the first place

1 guard, 1 round and 1 sticky are sufficient always!

1.000 x 20

- 1.111 x 2-3

1.000 x 20

- 0.0011(s=1) x 20

0.1100(s=1) x 20

1.100(s=1) x 2-1

CMU 18-447
S’09 L4-19
© 2009
J. C. Hoe

[Figure 3.18 from P&H, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

FP Mult
(1.110 x 1010) x (9.200 x 10-5)
(1.110 x 9.200) x (1010 x 10-5)

(1.110 x 9.200) x 105

step 1
don’t forget exponent is biased in IEEE
float
10.212000 x105 step 2

1.0212000 x106 step 3

Is (e > Emax) or (e < Emin) ?

1.021 x106 step 4

no carry, looks good

signA  signB step 5

2. Multiply the significands

4. Round the significand to the appropriate

number of bits

Still normalized?

Start

Yes

No

No

YesOverflow or
underflow?

Exception

3. Normalize the product if necessary, shifting

it right and incrementing the exponent

1. Add the biased exponents of the two

numbers, subtracting the bias from the sum
to get the new biased exponent

Done

5. Set the sign of the product to positive if the
signs of the original operands are the same;

if they differ make the sign negative

CMU 18-447
S’09 L4-20
© 2009
J. C. HoeFP Division by Newton Iteration

 Compute 1/b by finding the root of f(x)=1/x – b using
Newton-Raphason
- guess initial x0

- for xi find root of a straight line
going through (xi, f(xi))
with slope f’(xi)

- iterate using solved root as
new guess xi+1=xi-f(xi)/f’(xi)

=xi(2-xib)
Precision double each iteration

 Fast division and sqrt if
fast addition and
multiplication are available
(either as HW or SW techniques)

slope = f’(xi)

xi+1xi

(xi, f(xi))

f(x)

computing 1/3 using “double” and x0=0.3 converges to 16 decimal places in 4 iter

CMU 18-447
S’09 L4-21
© 2009
J. C. Hoe

Typical FP Latencies

 FAdd: 1 ~ 2 cycles, fully pipelined

 FMult: ~4 cycles, fully pipelined

 FDiv: 15~20 cycles, unpipelined

Relative to 1-cycle integer add

CMU 18-447
S’09 L4-22
© 2009
J. C. Hoe

von Neumann on Floating Point

Burks, Goldstein, von Neumann, Preliminary discussion of the
logical design of an electronic computing instrument,1946.

CMU 18-447
S’09 L4-23
© 2009
J. C. Hoe

Intel Pentium FDIV Bug

[Figure 3.23 from P&H, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

If you believe “bug-free” processor designs exist in this world, try reading
the Intel Core 2 Duo errata sheet (aka “Specification Updates” in polite
circles) ftp://download.intel.com/design/mobile/SPECUPDT/31407906.pdf

CMU 18-447
S’09 L4-24
© 2009
J. C. Hoe

Further Reading

 If you are interested about computer arithmetic,
a great place to start is Appendix H of Computer
Architecture: A quantitative approach by
Hennessy and Patterson

 go to www.mkp.com/CA3 and follow link to
“companion site”

