18-447 Lecture 3: Computer Arithmetic: Multiplication and Division

James C. Hoe Dept of ECE, CMU
January 26, 2009

Announcements: Handout00 survey due
Lab partner??
Read P\&H Ch 3
Read IEEE 754-1985

Handouts: Handout02: Lab1 (download from Blackboard) Handout03: HW1 (download from Blackboard) IEEE 754-1985 (download from Blackboard)

Mult and Divide by Powers of 2

- left shift $b_{n-1} b_{n-2} \ldots b_{2} b_{1} b_{0}$ by s positions yields

$$
b_{n-1} b_{n-2} \ldots b_{2} b_{1} b_{0} 000 \ldots 00
$$

i.e.,

$$
\sum_{i=0}^{n-1} 2^{i+s} b_{i}=2^{s} \sum_{i=0}^{n-1} 2^{i} b_{i}
$$

Works for 2's-complement numbers (??)

- What about right shifts?
- Does right-shift $b_{n-1} b_{n-2} \ldots b_{2} b_{1} b_{0}$ by s positions yield
$000 \ldots 00 _b_{n-1} b_{n-2} . . . b_{s+1} b_{s}$
or 111... 11 _ $b_{n-1} b_{n-2 \ldots} b_{s+1} b_{s}$
or $\quad b_{n-1} \ldots b_{n-1} _b_{n-1} b_{n-2} \ldots b_{s+1} b_{s}$ logical right shift vs arithmetic r. shift

Multiply $2 n$-bit numbers: $a \times b$

- Given unsigned numbers $a_{n-1} a_{n-2} \ldots a_{2} a_{1} a_{0}$ and $b_{n-1} b_{n-}$ ${ }_{2} \ldots b_{2} b_{1} b_{0}$

$$
a \cdot b=\sum_{j=0}^{n-1}\left(2^{j} b_{j}\left(\sum_{i=0}^{n-1} 2^{i} a_{i}\right)\right)
$$

- Construct a full adder array where the summand ($a_{n-1: 0} \times 2^{i}$) can be conditionally zero'ed according to b_{i} of $b_{n-1: 0}$
- $2 n$ bits are required to represent all possible products without overflow $\quad 2$-bit product

Prelude to Multiply: adding many numbers quickly

Adding kn-bit numbers

$k-1$ adders to sum k numbers Critical Path: $O(k+\log n)$ or if $n \approx k$ then $O(k)$

Using "Pop. Count"

ab c

$s_{1} \quad s_{0}$
How many bits of a, b and c are set?
$S_{0}=a \oplus b \oplus c$
$s_{1}=b c+a c+a b$

c	a	b	x	y
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	$\underbrace{1}$

3-way parity majority

Where have you seen this before?

Carry-Save Adder (CSA)

Takes A, B and C and produce X and Y such that $A+B+C=X+Y$
(\Varangle) Electical \& Computer
3:2 CSA Reduction Tree

SD representations: a detour

Multiplying by a Constant

-Let $b_{n-1} b_{n-2} \ldots b_{2} b_{1} b_{0}$ represent an unsigned constant c, the product

$$
c \cdot x=\sum_{i=0}^{n-1} 2^{i} b_{i} x
$$

- If c has k non-zero digits, this corresponds to summing k numbers, i.e., $\mathrm{k}-1$ additions
- Observation: $1111 \times x$ is the same as $10000 \cdot x-1 \cdot x$, and 1 subtraction is the
 same cost as 1 addition

Signed-Digit Representation

- Let $d_{n-1} d_{n-2 \ldots} d_{2} d_{1} d_{0}$ be the signed-digit (SD) representation of a integer constant c
- $d_{i} \in\{1,0,-1\}$ written as $1,0, \overline{1}$
- the product

$$
c \cdot x=\sum_{i=0}^{n-1} 2^{i} d_{i} x
$$

- If c has k non-zero digits, the product requires $k-1$ additionsand subtractions
- Given an unsigned binary multiplicative constant, how to minimize the number of additions in the multiplication? For example 10111011
$\Rightarrow 1100 \overline{1011} \Rightarrow 10 \overline{100} \overline{1011} \Rightarrow 10 \overline{100} \overline{1} 10 \overline{1} \Rightarrow 10 \overline{1000} \overline{10} \overline{1}$

Canonical Signed Digits (CSD)

- A canonical SD representation exists such that there are no 2 consecutive non-zero digits
- Reitwiesner Algorithm [1960]
- assume $c_{0}=0$ (think a carry bit)
- scan b_{i+1} and b_{i} from LSB to generate y_{i} and c_{i+1} in a single pass

$$
\text { e.g. } \begin{array}{rll}
& 10111011, & c_{0}=0 \\
\Rightarrow & 1011101, \overline{1} & c_{1}=1 \\
\Rightarrow 101110, \overline{1} & c_{2}=1 \\
\Rightarrow 10111, \overline{10} \overline{1} & c_{3}=1 \\
\Rightarrow 1011,0 \overline{10} \overline{1} & c_{4}=1 \\
\Rightarrow 101,00 \overline{10} \overline{1} & c_{5}=1 \\
\Rightarrow 10,000 \overline{10} \overline{1} & c_{6}=1 \\
\Rightarrow 1, \overline{1} 000 \overline{10} \overline{1} & c_{7}=1 \\
\Rightarrow, 0 \overline{10} 00 \overline{10} \overline{1} & c_{8}=1 \\
\Rightarrow, 10 \overline{1} 000 \overline{10} \overline{1} & c_{9}=0
\end{array}
$$

b_{i+1}	b_{i}	c_{i}	d_{i}	c_{i+1}	
0	0	0	0	0	string of 0 s
0	0	1	1	0	end of 1 s
0	1	0	1	0	single 1
0	1	1	0	1	string of 1 s
1	0	0	0	0	string of 0 s
1	0	1	1	1	single 0
1	1	0	1	1	beginning of 1 s
1	1	1	0	1	string of 1 s

What else can you do with SD?

2:1 SD Adder

Binary Tree Multiplier using SD

- 2 SD numbers can be added digit-by-digit into their SD sum without ripple-carry (2:1 reduction!!)
- Enables a binary-tree-based multiplier array
- Requires a special SD bit-slice adder to make use of redundancy in the SD representation
- a_{i-1} and b_{i-1} are examined to choose between different but equivalent combinations of c_{i+1} and s_{i} to output

a_{i}	a_{i-1}	b_{i}	b_{i-1}	c_{i+1}	s_{i}
1	\times	1	\times	1	0
1	\times	\bar{I}	\times	0	0
\bar{I}	\times	\bar{I}	\times	$\overline{1}$	0
0	\times	0	\times	0	0
1	≥ 0	0	≥ 0	1	\bar{T}
1	else	0	else	0	1
\bar{I}	≥ 0	0	≥ 0	0	\bar{I}
\bar{I}	else	0	else	\bar{I}	1

Iterative Multiplication and Division

Iterative Shift-and-Add Multiplication

- requires n iterations of "shift-and-add"
- multiplier and product finalized can share the same register since the in-used portions never overlap
- Could combine with earlier techniques to improve performance, e.g. CSA and SD

Iterative Division

- For A / B initialize: dividend ${ }_{n}=A$; divisor $r_{n}=B$; quotient $t_{n}=$ remainder $_{n}=0$;
- In each iteration,

1. left-shift $\left\{\right.$ remainder ${ }_{n}$, dividend ${ }_{n}$ \} and
2. if remainder ${ }_{n}>=$ divisor $_{n}$ then

- subtract divisor r_{n} from remainder r_{n}
- left-shift a 1-bit into quotient ${ }_{n}$
else
- left-shift a O-bit into quotient ${ }_{n}$

Higher Radix Multiplier Array

- right-shift the product registers ($p_{\text {active }}$ and $p_{\text {finalized }}$) by stride-positions after each iteration
- compatible with CSA, binary, or regular adder arrays

Faster (Higher-Radix) Division

- Is it possible to unroll the iterative circuit to generate multiple quotient bits per cycle?
- how to choose the new quotient bits? (Think about how you normally do long division in base 10)
- it would have to be a non-propagating adder (i.e. CSA or SD) to have performance advantages
- Represent quotient in higher-radix SD
- redundant ways to represent the same number
- 1_{10} could be written as $01_{2 \text {-sD }}$ or $11_{2 \text {-SD }}$
- after remainder r_{n} is in range of divisor r_{n}, in each iteration, look at only the top-few digits of divisor ${ }_{n}$ and remainder ${ }_{n}$ to "guess" the new SD quotient bits
- e.g. radix-4 SRT looks at high-order 4 bits of divisor r_{n} and 6 bits of remainder ${ }_{n}$ to chose a quotient between -2 and 2
- typically done with a lookup table

The intuition is to guess new quotient bits "in the right ballpark" to guarantee you can compensate for the worst-case errors in subsequent iterations
e.g. what are the possible values for 2 -bit number, 1"?"

$$
\{2,3\}_{\text {radix-2 }},\{3,2,1\}_{\text {radix2-SD }}
$$

Dividing by Powers of 2 via ARS

- Not quite right for negative 2's-complement numbers
- 4^{\prime} b1000 $\rightarrow_{r} 4^{\prime}$ b1100 $\rightarrow_{r} 4^{\prime}$ b1110 $\rightarrow_{r} 4^{\prime}$ b1111 $\rightarrow_{r} 4^{\prime}$ b1111

$$
\begin{array}{lllll}
-8 & -4 & -2 & -1 & -1
\end{array}
$$

- 4'b1011 $_{\rightarrow_{r}} 4^{\prime}$ b1101 $\rightarrow_{r} 4^{\prime}$ b1110 $\rightarrow_{r} 4^{\prime} b 1111 \rightarrow_{r} 4^{\prime}$ b1111

$$
\begin{array}{lllll}
-5 & -3(-2.5) & -2(-1.25) & -1(-0.625) & -1
\end{array}
$$

"Rounding" to the more negative direction whenever a 1 is shifted off the right!!

Nevertheless, good enough approximation most of the time----can be off by at most 1.

Quotient and Remainder

- Quotient $(A, B)=\lfloor A / B\rfloor$
- Remainder $(A, B)=A-$ Quotient $(A, B) \cdot B$
- In C

$$
5 / 3=1 \quad \text { and } \quad 5 \% 3=2
$$

- What is

Further Readings

- If you are interested about computer arithmetic, a great place to start is Appendix H of Computer Architecture: A quantitative approach by Hennessy and Patterson
- Next Lecture: IEEE Floating Point

