

CMU 18-447 5'09 L3-1 © 2009 J. C. Hoe

18-447 Lecture 3: Computer Arithmetic: Multiplication and Division

James C. Hoe Dept of ECE, CMU January 26, 2009

Announcements: Handout00 survey due Lab partner?? Read P&H Ch 3 Read IEEE 754-1985

Handouts: Handout02: Lab1 (download from Blackboard) Handout03: HW1 (download from Blackboard) IEEE 754-1985 (download from Blackboard)

CMU 18-447 5'091.3-2 © 2009 J. C. Hoe

Mult and Divide by Powers of 2

• left shift $b_{n-1}b_{n-2}...b_2b_1b_0$ by s positions yields $b_{n-1}b_{n-2}...b_{2}b_{1}b_{0}000...00$

i.e.,
$$\sum_{i=0}^{n-1} 2^{i+s} b_i = 2^s \sum_{i=0}^{n-1} 2^i b_i$$

Works for 2's-complement numbers (??)

- What about right shifts?
 - Does right-shift $b_{n-1}b_{n-2}...b_2b_1b_0$ by s positions yield

 $000...00 b_{n-1}b_{n-2}...b_{s+1}b_{s}$

- 111...11 $b_{n-1}b_{n-2}...b_{s+1}b_{s}$ or
- $b_{n-1}...b_{n-1}b_{n-1}b_{n-2}...b_{s+1}b_s$ logical right shift vs or

arithmetic r. shift

CMU 18-447 5'09 L3-3 © 2009 J. C. Hoe

Multiply 2 n-bit numbers: a × b

• Given unsigned numbers $a_{n-1}a_{n-2}...a_2a_1a_0$ and $b_{n-1}b_{n-2}...b_2b_1b_0$

$$a \cdot b = \sum_{j=0}^{n-1} \left(2^{j} b_{j} \left(\sum_{i=0}^{n-1} 2^{i} a_{i} \right) \right)$$

- Construct a full adder array where the summand (a_{n-1:0} × 2ⁱ) can be conditionally zero'ed
 [according to b_i of b_{n-1:0}
- 2n bits are required to represent all possible <u>+</u> products without overflow

2's complement?

CMU 18-447 5'09 L3-4 © 2009 J. C. Hoe

Prelude to Multiply: adding many numbers quickly

CMU 18-447 5'09 L3-5 © 2009 J. C. Hoe

Adding k n-bit numbers

k-1 adders to sum k numbers Critical Path: $O(k + \log n)$ or if $n \approx k$ then O(k)

CMU 18-447 5'09 L3-6 © 2009 J. C. Hoe

Using "Pop. Count"

 $s_1 = bc+ac+ab$

Where have you seen this before?

CSA_{delay}=FA_{delay}!!

Takes A, B, and C and produce X and Y such that A+B+C=X+Y

CMU 18-447 5'09 L3-8 © 2009 J. C. Hoe

3:2 CSA Reduction Tree

Critical Path: $O(\log k + \log n)$ or if $n \ge k$ then $O(\log k)$

CMU 18-447 S'09 L3-9 © 2009 J. C. Hoe

SD representations: a detour

Multiplying by a Constant

• Let $b_{n-1}b_{n-2}...b_2b_1b_0$ represent an unsigned constant c, the product $\underline{n-1}$

$$c \cdot x = \sum_{i=0}^{n-1} 2^i b_i x$$

- If c has k non-zero digits, this corresponds to summing k numbers, i.e., k - 1 additions
- Observation: 1111·x is the same as 10000·x - 1·x, and 1 subtraction is the same cost as 1 addition

Signed-Digit Representation

- Let d_{n-1}d_{n-2}...d₂d₁d₀ be the signed-digit (SD) representation of a integer constant c
 - d_i∈{ 1, 0, -1 } written as 1, 0, 1
 - the product

$$c \cdot x = \sum_{i=0}^{n-1} 2^i d_i x$$

- If c has k non-zero digits, the product requires k-1 additions and subtractions
- Given an unsigned binary multiplicative constant, how to minimize the number of additions in the multiplication? For example 10111011

$\Rightarrow 1100\overline{1}011 \Rightarrow 10\overline{1}00\overline{1}011 \Rightarrow 10\overline{1}00\overline{1}10\overline{1} \Rightarrow 10\overline{1}00\overline{0}\overline{1}0\overline{1}$

Sendineering Canonical Signed Digits (CSD)

- CMU 18-447 S'09 L3-12 © 2009 J. C. Hoe
- A canonical SD representation exists such that there are no 2 consecutive non-zero digits
- Reitwiesner Algorithm [1960]
 - assume $c_0 = 0$ (think a carry bit)
 - scan $b_{i\!+\!1}$ and b_i from LSB to generate y_i and $c_{i\!+\!1}$ in a single pass

e.g. 10111011,
$$c_0=0$$

 $\Rightarrow 1011101,1$ $c_1=1$
 $\Rightarrow 101110,01$ $c_2=1$
 $\Rightarrow 10111,101$ $c_3=1$
 $\Rightarrow 1011,0101$ $c_4=1$
 $\Rightarrow 101,00101$ $c_5=1$
 $\Rightarrow 10,000101$ $c_6=1$
 $\Rightarrow 1,1000101$ $c_7=1$
 $\Rightarrow ,01000101$ $c_8=1$
 $\Rightarrow ,101000101$ $c_9=0$

b _{i+1}	b _i	C _i	di	C _{i+1}	
0	0	0	0	0	string of Os
0	0	1	1	0	end of 1s
0	1	0	1	0	single 1
0	1	1	0	1	string of 1s
1	0	0	0	0	string of Os
1	0	1	1	1	single O
1	1	0	1	1	beginning of 1s
1	1	1	0	1	string of 1s

CMU 18-447 5'09 L3-13 © 2009 J. C. Hoe

What else can you do with SD?

CMU 18-447 S'09 L3-14 © 2009 J. C. Hoe

2:1 SD Adder

CMU 18-447 5'09 L3-15 © 2009 J. C. Hoe

Binary Tree Multiplier using SD

- 2 SD numbers can be added digit-by-digit into their SD sum without ripple-carry (2:1 reduction!!)
- Enables a binary-tree-based multiplier array
- Requires a special SD bit-slice adder to make use of redundancy in the SD representation
 - a_{i-1} and b_{i-1} are examined to choose between <u>different</u> but <u>equivalent</u> combinations of c_{i+1} and s_i to output

a _i	a _{i-1}	b _i	b _{i-1}	C _{i+1}	S _i
1	×	1	×	1	0
1	×	1	×	0	0
1	×	1	×	1	0
0	×	0	×	0	0
1	≥0	0	≥ 0	1	1
1	else	0	else	0	1
1	≥ 0	0	≥0	0	1
1	else	0	else	1	1

CMU 18-447 S'09 L3-16 © 2009 J. C. Hoe

Iterative Multiplication and Division

- requires n iterations of "shift-and-add"
- multiplier and product_{finalized} can share the same register since the in-used portions never overlap
- Could combine with earlier techniques to improve performance, e.g. CSA and SD

- For A/B initialize: dividend_n=A; divisor_n=B; quotient_n=remainder_n=0;
- In each iteration,
 - 1. left-shift {remainder_n, dividend_n} and
 - 2. if **remainder**_n>=**divisor**_n then
 - subtract divisor, from remainder,
 - left-shift a 1-bit into quotient,

else

- left-shift a O-bit into quotient,

CMU 18-447 5'09 L3-19 © 2009 J. C. Hoe

Higher Radix Multiplier Array

- requires n/stride iterations of "shift-and-add"
- right-shift the product registers (p_{active} and p_{finalized}) by stride-positions after each iteration
- compatible with CSA, binary, or regular adder arrays

- Is it possible to unroll the iterative circuit to generate multiple quotient bits per cycle?
 - how to choose the new quotient bits? (Think about how you normally do long division in base 10)
 - it would have to be a non-propagating adder (i.e. CSA or SD) to have performance advantages

SRT Division (Sweeney, Robertson, and Tocher)

CMU 18-447

5'09 L3-21 © 2009

J. C. Hoe

- Represent quotient in higher-radix SD
 - redundant ways to represent the same number
 - 1_{10} could be written as 01_{2-SD} or $1\overline{1}_{2-SD}$
- after remainder_n is in range of divisor_n, in each iteration, look at only the top-few digits of divisor_n and remainder_n to "guess" the new SD quotient bits
 - e.g. radix-4 SRT looks at high-order 4 bits of divisor_n and 6 bits of remainder_n to chose a quotient between -2 and 2

- typically done with a lookup table

The intuition is to guess new quotient bits "in the right ballpark" to guarantee you can compensate for the worst-case errors in subsequent iterations

e.g. what are the possible values for 2-bit number, 1"?" $\{2,3\}_{radix-2}$ $\{3,2,1\}_{radix2-5D}$

Dividing by Powers of 2 via ARS

- Not quite right for negative 2's-complement numbers
 - 4'b1000 \rightarrow_r 4'b1100 \rightarrow_r 4'b1110 \rightarrow_r 4'b1111 \rightarrow_r 4'b1111 -8 -4 -2 -1 -1
 - 4'b1011 \rightarrow_r 4'b1101 \rightarrow_r 4'b1110 \rightarrow_r 4'b1111 \rightarrow_r 4'b1111 -5 -3 (-2.5) -2 (-1.25) -1(-0.625) -1

"Rounding" to the more negative direction whenever a 1 is shifted off the right!!

Nevertheless, good enough approximation most of the time----can be off by at most 1.

CMU 18-447 5'09 L3-23 © 2009 J. C. Hoe

Quotient and Remainder

- Quotient(A,B) = $\lfloor A / B \rfloor$
- Remainder(A,B) = A Quotient(A,B) · B

In C

5/3=1 and 5%3=2

What is

CMU 18-447 5'09 L3-24 © 2009 J. C. Hoe

Further Readings

- If you are interested about computer arithmetic, a great place to start is Appendix H of Computer Architecture: A quantitative approach by Hennessy and Patterson
- Next Lecture: IEEE Floating Point