
CMU 18-447
S’09 L3-1
© 2009
J. C. Hoe

18-447 Lecture 3:
Computer Arithmetic: 

Multiplication and Division
James C. Hoe

Dept of ECE, CMU
January 26, 2009

Announcements: Handout00 survey due
Lab partner??
Read P&H Ch 3
Read IEEE 754-1985

Handouts: Handout02: Lab1 (download from Blackboard)
Handout03: HW1 (download from Blackboard)
IEEE 754-1985 (download from Blackboard)



CMU 18-447
S’09 L3-2
© 2009
J. C. Hoe

Mult and Divide by Powers of 2
 left shift bn-1bn-2…b2b1b0 by s positions yields

bn-1bn-2…b2b1b0000...00
i.e.,

Works for 2’s-complement numbers (??)
 What about right shifts?

- Does right-shift bn-1bn-2…b2b1b0 by s positions 
yield

000...00_bn-1bn-2…bs+1bs

or 111...11 _bn-1bn-2…bs+1bs

or bn-1...bn-1 _bn-1bn-2…bs+1bs










 
1

0

1

0
222

n

i
i

i
n

i

s
i

si bb

logical right shift vs
arithmetic r. shift



CMU 18-447
S’09 L3-3
© 2009
J. C. HoeMultiply 2 n-bit numbers: a x b

 Given unsigned numbers an-1an-2…a2a1a0 and bn-1bn-

2…b2b1b0

 Construct a full adder array where
the summand (an-1:0 x 2i) 
can be conditionally zero’ed
according to bi of bn-1:0

 2n bits are required to
represent all possible 
products without overflow

 

























1

0

1

0

22
n

j

n

i
i

i
j

j abba

2’s complement?

b0? an-1:0 : 0
b1? an-1:0 : 0

b2? an-1:0 : 0

bn-1? an-1:0 : 0+
2n-bit product



CMU 18-447
S’09 L3-4
© 2009
J. C. Hoe

Prelude to Multiply:
adding many numbers quickly



CMU 18-447
S’09 L3-5
© 2009
J. C. Hoe

Adding k n-bit numbers
V0

FA FA FA FA FA
V1

FA FA FA FA FA
V2

FA FA FA FA FA
V3

FA FA FA FA FA
Vk-1

k-1 adders to sum k numbers
Critical Path: O( k + log n ) or  if nk then O(k)



CMU 18-447
S’09 L3-6
© 2009
J. C. Hoe

Using “Pop. Count”
a b

s0

c a b x y
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

c

s1

parity3-way
majoritys0 = a  b  c

s1 = bc+ac+ab Where have you seen this before?

How many bits of a, b 
and c are set?



CMU 18-447
S’09 L3-7
© 2009
J. C. Hoe

0

Takes A, B, and C and produce X and Y such that A+B+C=X+Y

Carry-Save Adder (CSA)

FA

b0 a0c0

FA

b1 a1c1

FA

bn-2an-2cn-2

FA

b2 a2c2

FA

bn-1an-1cn-1

y1

x2

y0

x1xn-2

yn-2

xn-1

y2yn-1

xn

CSAdelay=FAdelay!!



CMU 18-447
S’09 L3-8
© 2009
J. C. Hoe

3:2 CSA Reduction Tree 
V0

CSAn

V1 V2 V3 V4 V5 Vk-3Vk-2 Vk-1

CSAn CSAn

CSAn CSAnCSAn

CSAn CSAn

CSAn

Addern

Critical Path: O( log k + log n ) or  if nk then O(log k)

lo
g 3

/2
 k




CMU 18-447
S’09 L3-9
© 2009
J. C. Hoe

SD representations: a detour



CMU 18-447
S’09 L3-10
© 2009
J. C. Hoe

Multiplying by a Constant

 Let bn-1bn-2…b2b1b0 represent an unsigned constant c, 
the product

 If c has k non-zero digits, this corresponds to 
summing k numbers, i.e., k – 1 additions







1

0
2

n

i
i

i xbxc

eval(b0? x : 0)
eval(b1? x : 0)

eval(b2? x : 0)

eval(bn-1? x : 0)+

 Observation: 
1111∙x is the same
as 10000∙x – 1∙x, and
1 subtraction is the 
same cost as 1 addition 



CMU 18-447
S’09 L3-11
© 2009
J. C. Hoe

Signed-Digit Representation

 Let dn-1dn-2…d2d1d0 be the signed-digit (SD) 
representation of a integer constant c
- di{ 1, 0, -1 } written as 1, 0, 1
- the product 

- If c has k non-zero digits, the product requires k-1 
additionsand subtractions

 Given an unsigned binary multiplicative constant, how 
to minimize the number of additions in the 
multiplication? For example 10111011







1

0

2
n

i
i

i xdxc

11001011101001011 101001101101000101



CMU 18-447
S’09 L3-12
© 2009
J. C. HoeCanonical Signed Digits (CSD)

 A canonical SD representation exists such that 
there are no 2 consecutive non-zero digits

 Reitwiesner Algorithm [1960] 
- assume c0 = 0 (think a carry bit)
- scan bi+1 and bi from LSB to generate yi and ci+1 in a single 

pass
e.g.      10111011, c0=0

 1011101,1 c1=1
 101110,01 c2=1
 10111,101 c3=1
 1011,0101 c4=1
 101,00101 c5=1
 10,000101 c6=1
 1,1000101 c7=1
 ,01000101 c8=1
,101000101 c9=0

bi+1 bi ci di ci+1
0 0 0 0 0 string of 0s
0 0 1 1 0 end of 1s
0 1 0 1 0 single 1
0 1 1 0 1 string of 1s
1 0 0 0 0 string of 0s
1 0 1 1 1 single 0
1 1 0 1 1 beginning of 1s
1 1 1 0 1 string of 1s



CMU 18-447
S’09 L3-13
© 2009
J. C. Hoe

What else can you do with SD?



CMU 18-447
S’09 L3-14
© 2009
J. C. Hoe

SD SUM

2:1 SD Adder
b0 a0b1 a1bn-2an-2 b2 a2bn-1an-1

s1

c2

s0

cn-2

sn-2

cn-1

s2sn-1

cn c1



CMU 18-447
S’09 L3-15
© 2009
J. C. Hoe

ai bi ci+1 si
1 1 1 0
1 1 0 0
1 1 1 0
0 0 0 0
1 0 1 1
1 0 0 1
1 0 0 1
1 0 1 1

Binary Tree Multiplier using SD
 2 SD numbers can be added digit-by-digit into their 

SD sum without ripple-carry (2:1 reduction!!)
 Enables a binary-tree-based multiplier array 
 Requires a special SD bit-slice adder to make use of 

redundancy in the SD representation

ai bi

sici+1
11else0else1

11000 1

10 0001
10else0else1

00x0x0
01x1x1
00x1x1
01x1x1
sici+1bi-1biai-1aiai-1bi-1

- ai-1 and bi-1 are examined to choose between different but 
equivalent combinations of ci+1 and si to output 



CMU 18-447
S’09 L3-16
© 2009
J. C. Hoe

Iterative Multiplication and 
Division



CMU 18-447
S’09 L3-17
© 2009
J. C. Hoe

Iterative Shift-and-Add 
Multiplication

 requires n iterations of “shift-and-add”
 multiplier and productfinalized can share the same 

register since the in-used portions never overlap
 Could combine with earlier techniques to improve 

performance, e.g. CSA and SD

multiplicandn

productactive-n productfinalized-n

multipliern

zero? LSB

+
(include carry-out)



CMU 18-447
S’09 L3-18
© 2009
J. C. HoeIterative Division

 For A/B initialize: dividendn=A; divisorn=B; quotientn=remaindern=0;
 In each iteration, 

1. left-shift {remaindern,dividendn} and
2. if remaindern>=divisorn then

- subtract divisorn from remaindern
- left-shift a 1-bit into quotientn

else
- left-shift a 0-bit into quotientn

divisorn

remaindern

quotientn

-

dividendn

?? remaindern>=divisorn



CMU 18-447
S’09 L3-19
© 2009
J. C. Hoe

sub-array

pactive

 






11

2
strideiter

strideiteri
i

i xb






1

0
2

strideiter

i
i

i xb

pfinalized

stride

Higher Radix Multiplier Array

 requires n/stride iterations of “shift-and-add”
 right-shift the product registers (pactive and pfinalized) by 

stride-positions after each iteration
 compatible with CSA, binary, or regular adder arrays



CMU 18-447
S’09 L3-20
© 2009
J. C. HoeFaster (Higher-Radix) Division

 Is it possible to unroll the iterative circuit to 
generate multiple quotient bits per cycle? 
- how to choose the new quotient bits?  (Think about how 

you normally do long division in base 10)
- it would have to be a non-propagating adder (i.e. CSA or 

SD) to have performance advantages

divisorn

remaindern

quotientn

-

dividendn

?? remaindern>=divisorn



CMU 18-447
S’09 L3-21
© 2009
J. C. HoeSRT Division (Sweeney, Robertson, and Tocher)

 Represent quotient in higher-radix SD
- redundant ways to represent the same number
- 110 could be written as 012-SD or 112-SD

 after remaindern is in range of divisorn,, in each 
iteration, look at only the top-few digits of divisorn
and remaindern to “guess” the new SD quotient bits 
- e.g. radix-4 SRT looks at high-order 4 bits of 
divisorn and 6 bits of remaindern to chose a 
quotient between -2 and 2

- typically done with a lookup table
The intuition is to guess new quotient bits “in the right 

ballpark” to guarantee you can compensate for the 
worst-case errors in subsequent iterations

e.g. what are the possible values for 2-bit number, 1”?” 
{2,3}radix-2,  {3,2,1}radix2-SD



CMU 18-447
S’09 L3-22
© 2009
J. C. HoeDividing by Powers of 2 via ARS

 Not quite right for negative 2’s-complement 
numbers

- 4’b1000 r 4’b1100 r 4’b1110 r 4’b1111 r 4’b1111
-8 -4 -2 -1 -1

- 4’b1011 r 4’b1101 r 4’b1110 r 4’b1111 r 4’b1111
-5 -3 (-2.5)     -2 (-1.25) -1(-0.625) -1

“Rounding” to the more negative direction whenever 
a 1 is shifted off the right!!

Nevertheless, good enough approximation most of 
the time----can be off by at most 1.



CMU 18-447
S’09 L3-23
© 2009
J. C. Hoe

Quotient and Remainder

 Quotient(A,B) =  A / B
 Remainder(A,B) = A - Quotient(A,B)  B
 In C

5/3=1 and 5%3=2
 What is

(-5)/3= and (-5)%3= 

(5,5)

(-5,-5)

(1,1)

(-1,-1)

(1,1)

(-2,-2)

scale
graphics 
by 1/3

if (-5)/3=-1 if (-5)/3=-2



CMU 18-447
S’09 L3-24
© 2009
J. C. Hoe

Further Readings

 If you are interested about computer arithmetic, 
a great place to start is Appendix H of Computer 
Architecture: A quantitative approach by 
Hennessy and Patterson

 Next Lecture: IEEE Floating Point


