18-447 Lecture 2: Computer Arithmetic: Adders

James C. Hoe
Dept of ECE, CMU
January 14, 2009

Announcements: No class on Monday
Verilog Refresher next Wednesday
Review P\&H Ch 3

Handouts: Lab 1 and HW1 will be posted on Blackboard this weekend

Binary Number Representation

- Let $b_{n-1} b_{n-2} \ldots b_{2} b_{1} b_{0}$ represent an n-bit unsigned integer
- its value is $\sum_{i=0}^{n-1} \underbrace{2^{i} b_{i}}_{\text {value of the } i^{\prime} \text { 'th digit }}$ weight of the i^{\prime} th digit
- a finite representation between 0 and 2^{n-1}
- e.g., $1011_{\text {two }}=8_{\text {ten }}+2_{\text {ten }}+1_{\text {ten }}=11_{\text {ten }}$ (more commonly rewritten as b'1011=11)
- Often written in Hex for easier human consumption
- to convert, starting from the LSB, map 4 binary digits at a time into a corresponding hex digit; and vice versa
- e.g., 1010_1011 ${ }_{\text {two }}=$ AB $_{\text {hex }}$

For converting between binary and decimal, memorize decimal values of $2^{0} \sim 2^{10}$, and remember 2^{10} is about 1000 .

2's-Complement Number Representation

- Let $b_{n-1} b_{n-2 \ldots} b_{2} b_{1} b_{0}$ represent an n-bit signed integer
- its value is

$$
-2^{n-1} b_{n-1}+\sum_{i=0}^{n-2} 2^{i} b_{i}
$$

- a finite representation between -2^{n-1} and $2^{n-1}-1$
- e.g., assume 4-bit 2's-complement

$$
\begin{aligned}
& b^{\prime} 1011=-8+2+1=-5 \\
& b^{\prime} 111=-8+4+2+1=-1
\end{aligned}
$$

- To negate a 2 's-complement number
- add 1 to the bit-wise complement
- assume 4-bit 2's-complement

$$
\begin{aligned}
& \left(-b^{\prime} 1011\right)=b^{\prime} 0100+1=b^{\prime} 0101=5 \\
& \left(-b^{\prime} 0101\right)=b^{\prime} 1010+1=b^{\prime} 1011=-5 \\
& \left(-b^{\prime} 1111\right)=b^{\prime} 0000+1=b^{\prime} 0001=1 \\
& \left(-b^{\prime} 0000\right)=b^{\prime} 1111+1=b^{\prime} 0000=0
\end{aligned}
$$

Intuition: a 4-bit example

- how to add two numbers
- what it means to "overflow" the number representation
- how to negate a number

Smaller to Larger
 Binary Representation

- Unsigned numbers
- pad the left with as many Os as you need (aka 0-extension) e.g. 4'b1111 \rightarrow 8'b0000_1111
- 2's-complement numbers
- positive: pad the left with as many Os as you need
- negative: pad the left with as many $1 s$ as you need

$$
\text { e.g. } \quad 4 b^{\prime} 1111 \rightarrow 8 \text { 8'b1111_1111 }
$$

$$
4 b^{\prime} 1110 \rightarrow \text { 8'b1111_1110 }
$$

- or generically, pad the left with the same value as the original sign-bit as many times as necessary (aka signedextension)

What about converting from larger to smaller representation?

(Unsigned) Binary Addition

- Long Hand

What about subtraction?

Full Adder

$c_{\text {in }}$	a	b	$c_{\text {out }}$	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	$\underbrace{1}$

3-way parity majority
$a, b, c_{\text {in }}$ are functionally indistinguishable as inputs

Unsigned Binary Addition

Could use a "half-adder", but let's wait

2's-Complement Addition

- can't overflow when adding a pos. and a neg. number
- if 2 pos. numbers yield a neg. number $\Rightarrow \mathrm{V}$; vice

2's-Complement Subtraction

- Subtracting is like adding the negative
- Negation is easy in a 2's-complement representation

How do you build a comparator (i.e.,>, <)?

Analysis of an n-bit "Ripple-Carry" Adder

- Size/Complexity: $O(n)$
- $n \times$ SizeOf(Full Adder)
-Critical Path Delay: $O(n)$
- $n \times$ DelayOf(Full Adder)
- $n \times 2$ gate delays
(assuming 2-level SOP is used)

clock period chosen to be \qquad greater than worst-case $T_{p d}$

What about setup-time, hold-time, skew and such?

High-Performance Adder?

- Intel P4 is designed around a clock period that is twice the 16-bit adder latency
- Using a rough estimation
gate delay ≈ 0.5 ns-per-micron \times feature-size a 90 nm process has gate delay $=45 \mathrm{ps}$
- If Intel used a ripple-carry adder then P4 should be running $\sim 1 /(2 \times 2 \times 16 \times 45 p s)=347 \mathrm{MHz}$
- Alternatively speaking, 3 GHz P4 would have to add 2 16-bit numbers in ~ 4 gate delays

Cutting Down the Carry Chain

- How to reduce the carry-propagation delay?

Remember, long-hand is how most of us add,

but not the only way

- Can we compute an intermediate carry signal without first computing the earlier ones
- e.g., let c_{m} (or s_{m}) be a function of $a_{m} \ldots . . a_{0}$ and $b_{m} \ldots . . b_{0}$

$$
\begin{aligned}
c_{2}=\left(a_{1} a_{0} b_{0}\right) & +\left(a_{1} a_{0} c_{0}\right)+\left(a_{1} b_{0} c_{0}\right)+\left(b_{1} a_{0} b_{0}\right)+\left(b_{1} a_{0} c_{0}\right) \\
& +\left(b_{1} b_{0} c_{0}\right)+\left(a_{1} b_{1}\right)
\end{aligned}
$$

- Complexity grows exponentially in n
exponential isn't too bad for small n's
- gate delay is 2 , independent of n true for small n's

What about large n's?

Carry-Select Adder

Multi-Stage CSA

cost=(2k-1)/k.n.FA size + mux's --- for k-stage delay $=n \cdot F A_{\text {delay }} / k+(k-1) \cdot m u x-$ delay

$$
\begin{aligned}
& k=4, n=16 \Rightarrow \sim 8 \text { gate-delay + } 3 \text { mux-delay } \\
& k=8, n=16 \Rightarrow \sim 4 \text { gate-delay + } 7 \text { mux-delay } \\
& k=16, n=16 \Rightarrow \sim 2 \text { gate-delay + } 15 \text { mux-delay }
\end{aligned}
$$

Variable-Length CSA

-doubles the cost
-delay set by the longest adder stage, grows by $O\left(n^{1 / 2}\right)$ with careful critical path tuning

Can we have cut-down the carries without $2 x \operatorname{cost}$?

Carry Generate and Propagate

$c_{\text {in }}$	a	b	$c_{\text {out }}$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

\rightarrow| $c_{\text {in }}$ | a | b | $c_{\text {out }}$ |
| :---: | :---: | :---: | :---: |
| X | 0 | 0 | 0 |
| $c_{\text {in }}$ | 0 | 1 | $c_{\text {in }}$ |
| $c_{\text {in }}$ | 1 | 0 | $c_{\text {in }}$ |
| X | 1 | 1 | 1 |

- If $a \cdot b$ then $c_{\text {out }}$ is 1 regardless of $c_{\text {in }}$ (carry generate)
- if $a \oplus b$ then $c_{\text {out }}$ is the same as $c_{\text {in }}$ (carry propagate)

$$
g_{i}=a_{i} \cdot b_{i}
$$

$$
\mathrm{p}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}^{\oplus \mathrm{b}_{\mathrm{i}} \quad \text { local decisions based on } \mathrm{a}_{i} \text { and } b_{i} \text { only } . \text { on }}
$$

Small Carry-Look-Ahead Adder

Given $g_{i}=a_{i} \cdot b_{i}$

$$
\mathbf{p}_{\mathrm{i}}=\mathbf{a}_{i} \oplus \mathrm{~b}_{\mathrm{i}} \quad \mathrm{c}_{\mathrm{i}+1}=g_{i}+\left(\mathbf{p}_{\mathrm{i}} \cdot \mathrm{c}_{\mathrm{i}}\right)
$$

Thus

$$
\begin{aligned}
& c_{1}=g_{0}+\left(p_{0} \cdot c_{0}\right) \\
& c_{2}=g_{1}+\left(p_{1} \cdot c_{1}\right)=g_{1}+\left(p_{1} \cdot\left(g_{0}+\left(p_{0} \cdot c_{0}\right)\right)\right)=g_{1}+p_{1} \cdot g_{0}+p_{1} \cdot p_{0} c_{0} \\
& c_{3}=g_{2}+p_{2} \cdot g_{1}+p_{2} \cdot p_{1} \cdot g_{0}+p_{2} \cdot p_{1} \cdot p_{0} c_{0} \\
& c_{4}=g_{3}+p_{3} \cdot g_{2}+p_{3} \cdot p_{2} \cdot g_{1}+p_{3} \cdot p_{2} \cdot p_{1} \cdot g_{0}+p_{3} \cdot p_{2} \cdot p_{1} \cdot p_{0} c_{0}
\end{aligned}
$$

and so on
-We can compute c_{n} in $O(\log n)$ gate delay and $O\left(n^{2}\right)$ size, only manageable for small n
-Given c_{n} we can compute s_{n} for a constant additional delay

Prefix Carry-Look-Ahead

Given

$$
\begin{aligned}
& c_{1}=g_{0}+\left(p_{0} \cdot c_{0}\right) \\
& c_{2}=g_{1}+\left(p_{1} \cdot c_{1}\right)=g_{1}+\left(p_{1} \cdot\left(g_{0}+\left(p_{0} \cdot c_{0}\right)\right)\right)=g_{1}+p_{1} \cdot g_{0}+p_{1} \cdot p_{0} c_{0} \\
& c_{3}=g_{2}+p_{2} \cdot g_{1}+p_{2} \cdot p_{1} \cdot g_{0}+p_{2} \cdot p_{1} \cdot p_{0} c_{0} \\
& c_{4}=\underbrace{g_{3}+p_{3} \cdot g_{2}+p_{3} \cdot p_{2} \cdot g_{1}+p_{3} \cdot p_{2} \cdot p_{1} \cdot g_{0}}_{G}+\underbrace{p_{3} \cdot p_{2} \cdot p_{1} \cdot p_{0} c_{0}}_{P}
\end{aligned}
$$

As a 4-arity group
$G 4=g_{3}+p_{3} \cdot g_{2}+p_{3} \cdot p_{2} \cdot g_{1}+p_{3} \cdot p_{2} \cdot p_{1} \cdot g_{0}$ $P 4=p_{3} \cdot p_{2} \cdot p_{1} \cdot p_{0}$

Prefix Carry-Look-Ahead

This structure can be recursed: $O(\log n)$ delay, $O(n)$ size

Computing Individual Carries

Example: 8-bit, 2-ary CLA

$$
\begin{aligned}
& c_{\text {in0 }}=C_{i n} \\
& c_{\text {in1 }}=g_{0}+p_{0} \cdot C i n \\
& c_{\text {in2 }}=G 10+P 10 \cdot C \text { in } \\
& c_{\text {in } 4}=G 30+P 30 \cdot C \text { in } \\
& C_{\text {out }}=G 70+P 70 \cdot C \text { in }
\end{aligned}
$$

$$
\begin{aligned}
& c_{i n 3}=g_{2}+p_{2} \cdot c_{i n 2} \\
& c_{i n 5}=g_{4}+p_{4} \cdot c_{i n 4} \\
& c_{i n 6}=G 54+P 54 \cdot c_{i n 4} \\
& c_{i n 7}=g_{6}+p_{6}\left(G 54+P 54 \cdot c_{i n 4}\right)
\end{aligned}
$$

Large Adder using Carry-Skip

Fast enough and cheaper than computing individual ci's by G.P.

Adder at a Glance

- Ripple Adder
- $O(n)$ size, $O(n)$ delay
- Carry-Select Adder
- $O(n)$ size, $O\left(n^{0.5}\right)$ delay
- Carry-Look-Ahead Adder
- $O\left(n^{2}\right)$ size, $O(\log n)$ delay
- Prefix Adder
- O(n) size, O(log n) delay
- But, remember all approaches have design sweetspots and make different tradeoffs
- There also are circuit-level adder tricks
(e.g., Manchester carry chain)

Black Magic of Adder Design

- High-performance adder designs are extremely important to high-performance computing
- Studied extensively in theoretical frameworks
- Worked on extensively in practice
- Nevertheless remain very much a trial-and-error design exercise
- For a 64-bit adder, one might construct
- adders of various (short) length using 2-level logic
- a 16-bit adder from small adders with variable-length carry-select
- a 32-bit adder from 2 16-bit CSA with CLA to determine carry for the upper 16 bits
- a 64-bit 2-stage CSA adder from 3 32-bit adders

CMU 18-447

The fastest sub-adder

Building Wide Adders:

 the CSA approach you can muster
-CSA pays $\sim 2 x$ the cost to avoid the carry delay -Is there a cheap way to compute carry fast?

