
CMU 18-447
S’09 L2-1
© 2009
J. C. Hoe

18-447 Lecture 2:
Computer Arithmetic: Adders

James C. Hoe
Dept of ECE, CMU
January 14, 2009

Announcements: No class on Monday
Verilog Refresher next Wednesday
Review P&H Ch 3

Handouts: Lab 1 and HW1 will be posted on Blackboard this weekend

CMU 18-447
S’09 L2-2
© 2009
J. C. Hoe

Binary Number Representation

 Let bn-1bn-2…b2b1b0 represent an n-bit unsigned
integer
- its value is

- a finite representation between 0 and 2n-1
- e.g., 1011two = 8ten + 2ten + 1ten = 11ten

(more commonly rewritten as b’1011=11)
 Often written in Hex for easier human consumption

- to convert, starting from the LSB, map 4 binary digits at a
time into a corresponding hex digit; and vice versa

- e.g., 1010_1011two=ABhex

For converting between binary and decimal, memorize decimal
values of 20 ~ 210, and remember 210 is about 1000.

1

0
2

n

i
i

i b
value of the i’th digit

weight of the i’th digit

CMU 18-447
S’09 L2-3
© 2009
J. C. Hoe

2’s-Complement Number Representation
 Let bn-1bn-2…b2b1b0 represent an n-bit signed integer

- its value is

- a finite representation between -2n-1 and 2n-1 -1
- e.g., assume 4-bit 2’s-complement

b’1011 = -8 + 2 + 1 = -5
b’1111 = -8 + 4 + 2 + 1 = -1

 To negate a 2’s-complement number
- add 1 to the bit-wise complement
- assume 4-bit 2’s-complement

(- b’1011) = b’0100 + 1 = b’0101 = 5
(- b’0101) = b’1010 + 1 = b’1011 = -5
(- b’1111) = b’0000 + 1 = b’0001 = 1
(- b’0000) = b’1111 + 1 = b’0000 = 0

2

0
1

1 22
n

i
i

i
n

n bb

CMU 18-447
S’09 L2-4
© 2009
J. C. Hoe

b’0000=0 (as unsigned)

b’1000=8

b’0001=1

b’0010=2

b’0011=3

b’0100=4

b’0101=5

b’0110=6

b’0111=7

b’1111=15

b’1110=14

b’1101=13

b’1100=12

b’1011=11

b’1010=10

b’1001=9

Intuition: a 4-bit example

4-bit16 values
(whether signed

or unsigned)

b’0000=0 (as 2’s),0 (as unsigned)

b’1000=-8,8

b’0001=1,1

b’0010=2,2

b’0011=3,3

b’0100=4,4

b’0101=5,5

b’0110=6,6

b’0111=7,7

b’1111=-1,15

b’1110=-2,14

b’1101=-3,13

b’1100=-4,12

b’1011=-5,11

b’1010=-6,10

b’1001=-7,9

 how to add two numbers
 what it means to “overflow” the number representation
 how to negate a number Yes, 0 is a positive number in CS

CMU 18-447
S’09 L2-5
© 2009
J. C. HoeSmaller to Larger

Binary Representation
 Unsigned numbers

- pad the left with as many 0s as you need (aka 0-extension)
e.g. 4’b1111 8’b0000_1111

 2’s-complement numbers
- positive: pad the left with as many 0s as you need
- negative: pad the left with as many 1s as you need

e.g. 4b’1111 8’b1111_1111
4b’1110 8’b1111_1110

- or generically, pad the left with the same value as the
original sign-bit as many times as necessary (aka signed-
extension)

What about converting from larger to smaller
representation?

CMU 18-447
S’09 L2-6
© 2009
J. C. Hoe

c3 c2

(Unsigned) Binary Addition
 Long Hand

b0 a0b1 a1b2 a2b3 a3

s0s1s2s3

c1

What about subtraction?

c4
carry?

CMU 18-447
S’09 L2-7
© 2009
J. C. Hoe

Full Adder

FA

a b

s

cincout

a, b, cin are functionally indistinguishable as inputs

cin a b cout s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

parity3-way
majority

s = a b cin

cout = bcin+acin+ab

CMU 18-447
S’09 L2-8
© 2009
J. C. Hoe

c3 c2

b0 a0b1 a1b2 a2b3 a3

s0s1s2s3

c1c4
overflow?

b0 a0b1 a1b2 a2b3 a3

s0s1s2s3

a b

s
co ci 0

a b

s
co ci

a b

s
co ci

a b

s
co cic4

carry?

Unsigned Binary Addition

Could use a “half-adder”, but let’s wait

CMU 18-447
S’09 L2-9
© 2009
J. C. Hoe

b0 a0b1 a1b2 a2b3 a3

s0s1s2s3

a b

s
co ci 0

a b

s
co ci

a b

s
co ci

a b

s
co cic4

carry?

2’s-Complement Addition

overflow? = (a3b3) ? 0 : (a3s3)
- can’t overflow when adding a pos. and a neg. number
- if 2 pos. numbers yield a neg. number V; vice

CMU 18-447
S’09 L2-10
© 2009
J. C. Hoe

2’s-Complement Subtraction

 Subtracting is like adding the negative
 Negation is easy in a 2’s-complement

representation

c
v

S

A B
bit-wise complement

cin

sub?

10

How do you build a comparator (i.e., >, <)?

CMU 18-447
S’09 L2-11
© 2009
J. C. HoeAnalysis of an n-bit

“Ripple-Carry” Adder

b0a0b1 a1bn-1an-1

s0s1sn-1

cin

a b

s
co ci

a b

s
co ci

a b

s
co cicout

 Size/Complexity: O(n)
- n x SizeOf(Full Adder)

 Critical Path Delay: O(n)
- n x DelayOf(Full Adder)
- n x 2 gate delays (assuming 2-level SOP is used)

CMU 18-447
S’09 L2-12
© 2009
J. C. Hoe18-447 Simplified Timing

Sync

Sync

Sync

comb

comb

comb

comb

comb

comb

Tpd: combinational propagation delay

Sync

Sync

Sync

Global Clock

clock period chosen to be
greater than worst-case Tpd

No more change to Q’
registers
latch new

value
What about setup-time, hold-time, skew and such?

CMU 18-447
S’09 L2-13
© 2009
J. C. Hoe

High-Performance Adder?

 Intel P4 is designed around a clock period that is
twice the 16-bit adder latency

 Using a rough estimation
gate delay 0.5 ns-per-micron x feature-size

a 90nm process has gate delay = 45ps

 If Intel used a ripple-carry adder then P4 should
be running ~ 1/ (2x2x16x45ps) = 347MHz

 Alternatively speaking, 3GHz P4 would have to add
2 16-bit numbers in ~4 gate delays

CMU 18-447
S’09 L2-14
© 2009
J. C. Hoe

Cutting Down the Carry Chain
 How to reduce the carry-propagation delay?

Remember, long-hand is how most of us add,
but not the only way

 Can we compute an intermediate carry signal
without first computing the earlier ones
- e.g., let cm (or sm) be a function of am....a0 and bm....b0

c2 =(a1a0b0)+(a1a0c0)+(a1b0c0)+(b1a0b0)+(b1a0c0)
+(b1b0c0)+(a1b1)

- Complexity grows exponentially in n
exponential isn’t too bad for small n’s

- gate delay is 2, independent of n
true for small n’s

What about large n’s?

b0a0b1 a1bn-1an-1

s0s1sn-1

cn-1

CMU 18-447
S’09 L2-15
© 2009
J. C. Hoe

Carry-Select Adder

S7:0

A7:0

cin

A15:8 B15:8 B7:0

01

S15:8
cost=1.5nFAsize + mux
delay=0.5nFAdelay+mux-delay
if n=16 ~16 gate-delays

C

adder8 adder8 adder8

3 adders operate in parallel!!

1 01 0

CMU 18-447
S’09 L2-16
© 2009
J. C. Hoe

Multi-Stage CSA

s3:0c

adder4

s15:12

a15:12 b15:12

adder4

c

s11:8

a11:8 b11:8

adder4

c

s7:4

a7:4 b7:4

adder4

a3:0 b3:0

cost=(2k-1)/knFAsize + mux’s --- for k-stage
delay=nFAdelay/k +(k-1)mux-delay

k=4,n=16 ~8 gate-delay + 3 mux-delay
k=8,n=16 ~4 gate-delay + 7 mux-delay
k=16,n=16 ~2 gate-delay + 15 mux-delay

c

CMU 18-447
S’09 L2-17
© 2009
J. C. Hoe

Variable-Length CSA

FA
FAadder3adder5adder6

s0

c

s1

c

s4:2

c

s9:5s15:10c

a1 b1a4:2 b4:2a9:5 b9:5a15:10 b15:10 a0b0

-doubles the cost
-delay set by the longest adder stage, grows by

O(n1/2) with careful critical path tuning

Can we have cut-down the carries without 2x cost?

c

CMU 18-447
S’09 L2-18
© 2009
J. C. Hoe

Carry Generate and Propagate

 If ab then cout is 1 regardless of cin (carry generate)
 if ab then cout is the same as cin (carry propagate)

gi=ai bi

pi=aibi local decisions based on ai and bi only

cin a b cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

cin a b cout
X 0 0 0
cin 0 1 cin
cin 1 0 cin
X 1 1 1

CMU 18-447
S’09 L2-19
© 2009
J. C. Hoe

Small Carry-Look-Ahead Adder

Given gi=ai bi

pi=aibi ci+1= gi + (pi ci)
Thus

c1=g0+(p0c0)
c2=g1+(p1c1)=g1+(p1(g0+(p0c0)))=g1+p1g0+p1p0c0

c3=g2+p2g1+p2p1g0+p2p1p0c0

c4=g3+p3g2+p3p2g1+p3p2p1g0+p3p2p1p0c0

and so on

-We can compute cn in O(log n) gate delay and O(n2)
size, only manageable for small n

-Given cn we can compute sn for a constant additional
delay

CMU 18-447
S’09 L2-20
© 2009
J. C. Hoe

Prefix Carry-Look-Ahead

Given
c1=g0+(p0c0)
c2=g1+(p1c1)=g1+(p1(g0+(p0c0)))=g1+p1g0+p1p0c0

c3=g2+p2g1+p2p1g0+p2p1p0c0

c4=g3+p3g2+p3p2g1+p3p2p1g0+p3p2p1p0c0

As a 4-arity group
G4=g3+p3g2+p3p2g1+p3p2p1g0

P4=p3p2p1p0

CLAn

gn-1:0

pn-1:0 Gn
Pn

G P

CMU 18-447
S’09 L2-21
© 2009
J. C. HoePrefix Carry-Look-Ahead

CLA4CLA4CLA4CLA4

g [
3:

0]

p [
3:

0]

g [
7:

4]

p [
7:

4]

p [
11

:8
]

g [
11

:8
]

g [
15

:1
2]

p [
15

:1
2]

CLA16

G16 P16
This structure can be recursed: O(log n) delay, O(n) size

CLA4

Cin0

G0 P0 Cin0G1 P1 Cin4G2 P2 Cin8G3 P3 Cin16

c [
3:

0]

c [
7:

4]

c [
11

:8
]

c [
15

:1
2]

CMU 18-447
S’09 L2-22
© 2009
J. C. Hoe

Computing Individual Carries

G70

P70

Example: 8-bit, 2-ary CLA

=“generate for bits 1~0”
g1

g0p0

p1

g3

g2p2

p3

g5

g4p4

p5

g7

g6p6

p7

cin0 = Cin
cin1 = g0 + p0Cin
cin2 = G10 + P10Cin
cin4 = G30 + P30Cin
Cout= G70 + P70Cin

cin3 = g2 + p2cin2
cin5 = g4 + p4cin4
cin6 = G54 + P54cin4
cin7 = g6+p6(G54 + P54cin4)

CMU 18-447
S’09 L2-23
© 2009
J. C. Hoe

Large Adder using Carry-Skip

addern/4 addern/4 addern/4

CLAn/4

AIV AIV

CLAn/4

AIII BIII

CLAn/4

AII BII

addern/4

CLAn/4

AI BI

cout

cin

SIV SIII SII SI

G+Pc

P
GG+Pc

P
GG+Pc

P
GG+Pc

P
G

Fast enough and cheaper than computing individual ci’s by G.P.

CMU 18-447
S’09 L2-24
© 2009
J. C. Hoe

Adder at a Glance

 Ripple Adder
- O(n) size, O(n) delay

 Carry-Select Adder
- O(n) size, O(n0.5) delay

 Carry-Look-Ahead Adder
- O(n2) size, O(log n) delay

 Prefix Adder
- O(n) size, O(log n) delay

 But, remember all approaches have design sweet-
spots and make different tradeoffs

 There also are circuit-level adder tricks
(e.g., Manchester carry chain)

CMU 18-447
S’09 L2-25
© 2009
J. C. Hoe

Black Magic of Adder Design

 High-performance adder designs are extremely
important to high-performance computing

 Studied extensively in theoretical frameworks
 Worked on extensively in practice
 Nevertheless remain very much a trial-and-error

design exercise
 For a 64-bit adder, one might construct

- adders of various (short) length using 2-level logic
- a 16-bit adder from small adders with variable-length

carry-select
- a 32-bit adder from 2 16-bit CSA with CLA to determine

carry for the upper 16 bits
- a 64-bit 2-stage CSA adder from 3 32-bit adders

CMU 18-447
S’09 L2-26
© 2009
J. C. Hoe

CMU 18-447
S’09 L2-27
© 2009
J. C. HoeBuilding Wide Adders:

the CSA approach

SIc

addern/4

SIV

AIV AIV

addern/4

c

SIII

AIII BIII

addern/4

c

SII

AII BII

addern/4

AI BI

cost=(2k-1)SizeOf(sub-adder) + mux’s
delay=DelayOf(sub-adder)+(k-1)mux-delay

-CSA pays ~2x the cost to avoid the carry delay
-Is there a cheap way to compute carry fast?

The fastest
sub-adder
you can
muster

c

