Static Logic Implication with Application to Redundancy Identification

Jian-Kun Zhao, Elizabeth M. Rudnick, and Janak H. Patel
Center for Reliable & High-Performance Computing
University of Illinois, Urbana, IL 61801

Abstract

This paper presents a new static logic implication
algorithm. An improved implication procedure
that fully takes advantage of the special context
of static implication, the iterative method, and set
algebra is described. The algorithm discovers at
low cost many indirect implications which are not
discovered by dynamic learning without tremen-
dous time cost. The experimental results show
that a very large number of indirect implications
are found by our algorithm. The static implica-
tion procedure has many useful applications, one
of which is static redundancy identification. Use
of the static implications obtained from the algo-
rithm in static redundancy identification for IS-
CASB85 combinational circuits resulted in a larger
number of redundant faults identified than in pre-
vious methods.

I Introduction

Static logic implication, also called static learning(l], is a
procedure which performs implications on both value as-
signments (0 and 1) for all nodes of a circuit. It is often
included in the preprocessing phase of test generation and
other applications [1]-[6]. For example, it is used in ATPG
to avoid repetitive computation of signal assignments and
accelerate the test pattern generation. Since the usual
direct implications made by forward and backward prop-
agation can be quickly determined during the dynamic
learning phase, the emphasis of static learning should be
put on indirect implications, those necessary assignments
that cannot be found by simple forward and backward
signal propagation [2]. Indirect implications play a criti-
cal role in many processes, such as multi-level logic opti-
mization [4], redundancy identification {7][8], ATPG [2],
and logic verification. A vast majority of indirect impli-
cations, especially unilateral indirect implications[2], can
be easily found in static learning using the contraposi-
tive law, while it is difficult, and sometimes practically
impossible, to discover them in dynamic learning. Some

*This research was supported in part by the Semiconductor
Research Corporation under contract SRC 96-DP-109, in part
by DARPA under contract DABT63-95-C-0069, and by Hewlett-
Packard under an equipment grant.

0-8186-7810-0/97 $10.00 © 1997 IEEE

288

previous work [9] in ATPG also showed that with a com-
plete and efficient preprocessing phase, dynamic calcula-
tion of the logical dependencies among nodes is not re-
quired to process the vast majority of faults. Therefore,
static learning is a very important preprocessing step.

A number of papers have dealt with implication pro-
cedures [1]-[4][9]-[12]. The learning procedures described
in [3] and [5] can discover some indirect implications, but
they are not sufficient for identifying large numbers of in-
direct implications. Rajski and Cox used a 16-value logic
algebra and reduction list method to determine neces-
sary assignments [9]. Chakradhar and Agrawal proposed
a novel transitive closure based algorithm, which guar-
antees the identification of all implications of a partial
set of node values [10][11]. The advantage of the algo-
rithms proposed in [9]-[11] is that they not only identify
necessary value assignments but also keep updating the
logic dependencies between nodes, thus further speeding
up computation of implications. However, the NP-hard
nature of the problem of finding all the implications of set-
ting a node to a particular value restricts the practicality
of such complete algorithms. For the transitive closure
algorithm [10][11], static learning of all the implications
for all value assignments in the circuit needs repetitive
computation of transitive closure, transforming boolean
relationships among nodes, which is prohibitive in time
and space. Another complete algorithm called recursive
learning was proposed by Kunz and Pradhan [12]. In
practical implementation of recursive learning, the depth
of recursion must be restricted to keep the execution time
within reasonable bounds. As a result, some implications
may not be found.

In this work, we present an algorithm for static learning
which discovers a very large number of indirect implica-
tions in reasonable time. Since few explicit results on
static learning have been published (the result reported
in SOCRATES [3] is too limited to be compared with
the huge number of indirect implications found by our al-
gorithm), we applied our static learning results to static
redundant fault identification (RID) to show the efficacy
of our algorithm. The RID procedure is based on the
FIRE algorithm [13][14]. By applying our static implica-
tion results to RID, we obtained better results than those
reported in [13][14].

The rest of the paper is organized as follows. Section II
describes the basic concept behind our algorithm. Section
ITI presents our algorithm. Section IV describes how the
results of our algorithm can be used in redundant fault
identification. Section V gives the exprimental results,
and Section VI concludes the paper.

n Basic Concept

The proposed static implication algorithm was inspired
by the single pass deductive fault simulation algorithm
of Armstrong [15]. In deductive fault simulation, sets of
faults are propagated from inputs of a gate to its out-
put using set operations of intersection, union, and dif-
ference. In an analogous manner, we propagate sets of
implications from inputs of a gate to its output using the
familiar set operations. The basic concept is illustrated
in Figure 1 with the use of a 2-input AND gate. In the
figure, Ay is the set of implications computed so far for
setting node a to 0; 4, is the set of implications for setting
node a to 1. Similarly By and B are sets of implications
for b = 0 and b = 1, respectively. The implication sets are
“propagated” to the ouput ¢ by set operations indicated
in the figure. Clearly, Cy, the set of implications of set-
ting ¢ to 0, is the common node values implied by a = 0
and b = 0, hence the intersection. Similarly, implications
of ¢ = 1 are all node values implied by a = 1 and b =1,
hence the union. Similar rules can be derived for OR and

NOT gates.
2 Ay .
b E&-B-L Co =AonBo

Ci=A,UB,

Figure 1: Implication example.

The single pass deductive fault simulation algorithm
starts from the primary inputs and traverses the circuit
in a levelized order, computing the sets of implications
at each gate output. Similarly, the proposed implication
algorithm starts from the primary inputs and processes
the gates in a levelized order. In a single pass, this simple
algorithm computes many implications. This algorithm
can be enhanced by computing implications using other
methods. For example, sets Ap and A; in Figure 1 can
be augmented by use of the contrapositive law, transi-
tivity, and forward implication. After one pass of this
algorithm, some sets may have changed, with new im-
plications added. Therefore, another pass of the same
algorithm may create even more implications. The final
algorithm is based on these concepts and is presented in
the next section. The key attributes of this algorithm are:
(a) It is iterative, unlike the recursive method in [11].
(b) Set operations are used to compute new implications.
(c) Nodes are processed concurrently for both 0 and 1

values.
(d) Transitive and contrapositive laws are integrated
with set operations.

11 Static Implication Algorithm

We first define a few terms and introduce some basic laws
that will be used in our algorithm. We then present the
algorithm and discuss implementation issues.

A Terms and basic laws

Direct and indirect implication are defined in [2]. We use
the following terms to represent assignments and impli-
cations:

1. [N,v]: assign logic value v to node N;

2. [M,w] = [N,v]: [M,w] implies [N,v};

3. impl[N,v]: set of implications resulting from setting
node N to value v.

The following laws are used in the process of static

implication:

1. Forward implication: If all the input values of a gate
are known or one of the inputs is at the controlling
value of the gate, then the output value of this gate
can be uniquely determined from its input values.
For example, for an AND gate, if one of the inputs
is set to 0, then the output is 0; if all of the inputs
are set to 1, then the output is 1.

2. Backward implication: Suppose we are generating
implications of [N,a]. Let G be an unjustified gate
with m unspecified input nodes S; and a specified
output node Y.

if G is an AND gate:

if [Y,0] € impl|N, a],

impl[N, a] = impl[N, a] U (N~ impl[S;, 0])

if [Y,1] € impl[N, al,

impl[N, a] = impl[N,a) U (UL, tmpl[S;, 1])
If ¥ =1, then all gate inputs are 1, and we can add
the implications of setting these inputs to 1 to our
list of implications. If ¥ = 0, we find implications
resulting from setting each input to 0, and since at
least one input must be 0, we add the common im-
plications found.

if G is an OR gate:

if [Y,1] € impl[N, al,

impl[N,a) = impl[N,a] U (N, impl[S;, 1])

if [V, 0] € impl[N, a,

impl[N,a] = impl[N,a] U (U, impl[S;,0})

3. Extended backward implication: For gate G with m

unspecified input nodes S; and a specified output
node Y,

if G is an AND gate:
if [Y,0] € impl[N,a] and [Y, 0] is unjustified
by gate inputs S;, then
impl[N,a) = impl[N,a) U (N,
Forward_Imply(impl[N, a) U impl[S;,0]))
Forward_Imply is a procedure performing forward
implications on a set of node assignments.

289

if G is an OR gate:
if [Y, 1] € impl[N, a] and [Y, 1] is unjustified
by gate inputs S;, then
impl[N, a] = impl[N,a] U (N2,

Forward_Imply(impl[N, a] U impl[S;, 1]))

4. Transitive law: If [M,w] — [N,v] AND [N,v] —
[L,y], then [M,w] — [L,y]. In set notation, if
[N,v] € impl[M,w] and [L,y] € impl[N,v], then
[L,y] € impl[M,w].

5. Contrapositive law: If [M,w] — [N,v], then
[N,v] = [M,w]. In set notation, if [N,v] €
impl[M,w), then [M,w] € impl[N,7]. This law en-
ables the algorithm to discover unilateral indirect im-
plications [2].

6. Conflicting assignments: If [M,w] — [N,v] AND
[M,w] = [N,7), then [M,w] is an impossible setting.
In other words, M will permanently hold the value
w. This law enables the algorithm to detect those
nodes with constant values. Our algorithm includes
conflict checking. If conflicts are not checked, the
false values will create many useless new implications
during execution of the algorithm, thus affecting the
performance.

Extended backward implication discovers some indirect
implications that cannot be discovered by simply apply-
ing the transitive and contrapositive laws. Although such
implications usually occupy only a small part of the total
implications found, they are hard— to— find implications
and play a critical role in speeding up an ATPG process.
Usually, much time is wasted in a non-solution area of
a decision tree due to some undiscovered global implica-
tions. Therefore, finding such indirect implications is one
of the most important tasks of static learning.

We don’t perform backward implication when ¥ =1
and G is an AND gate, or when ¥ = 0 and G is an
OR gate, since such backward implications can be found
using the contrapositive law during the forward impli-
cation process. For example, in Figure 1, implications
[¢,1] = [a,1] and [¢, 1] — [b,1] can be found by the con-
trapositive law when performing forward implication on

(a,0) and (b, 0).

B The Algorithm

The basic laws decribed above form the core of our al-
gorithm. The main function SIM P and the two subrou-
tines Imply and AddNew are shown in Figures 2, 3 and
4, respectively. Procedure Imply creates new implica~
tions using the transitive law, simple forward implication,
and extended backward implication. Procedure AddNew
checks if each new implication causes a conflicting as-
signment to a node. It also creates the contrapositive
implication of the newly found implication.

Due to the special context of static learning, i.e., per-
forming the learning procedure iteratively on all nodes us-
ing the contrapositive law, our algorithm discovers many
indirect implications that are almost impossible to dis-
cover in dynamic learning. For example, in Figure 3,
impl[c, 0] = {[c, 0], [/, 0], (9,01, [m, 0], [0.0],{s,0]}. Also, 1
is identified as a node with constant value 0. These facts
are learned during the first two iterative phases. The fol-
lowing steps show how the implications in impl[c, 0} and
the constant [i, 0} are discovered.

SIMP()
For every circuit node N
[impl[N,0] = {[N,0]};
impl[N,1] = {[N,1]};
While implications found
For every circuit node N in levelized order
Imply(N,0);
Imply(N,1);

Figure 2: Main function.

Imply (N: node, v: logic-value)
If [N,v]is marked impossible
Then return;
For every [M,w] in impl[N,v]
impl[N,v] = impl[N,v] U impl[M,w];
[/* by transitive law */
AddNew();
Set circuit to values implied by values in impl[N,v}];
Forward_Imply();
AddNew();
For every [M,w] in impl[N,v] not implied by
its gate input values
If M is output of AND-gate and w =0 or
M is output of OR-gate and w = 1
Then Extended_backward_imply(M,w);
[: AddNew();

Figure 3: Imply.

AddNew()

For every new implication [X,a] found
impl[N,v} = impi{N,vl U {[X,a]};
impl[X,a) = impl[X;a] U [N.v]

/* by contrapositive law */
If [X,E] also belongs to impl[N,v]
Then mark [N,v] as impossible;
return;

Figure 4: AddNew.

290

i. During the implication generation for [¢,0], [c,0] —
{£,0] and {¢,0] — [g,0] are learned by forward impli-
cation.

. During the implication generation for [¢,1], [i,1] is

detected as an impossible value assignment; therefore

i is at constant value 0.

During the implication generation for [m, 1], [m, 1] —

[c, 1] is learned through forward and backward impli-

cation. Hence [¢,0] — [m,0] is learned by the con-

trapositive law.

iv. During the implication generation for [o,1], [0,1] —
[¢,1] is learned through forward and backward im-
plication. Hence [c,0] — [0, 0] is learned by the con-
trapositive law.

. During the second iterative phase, in the im-
plication generation for [c,0], [c,0] — [s,0] is
learned by set algebra performed at gate o, since
[5,0] is in Forward Imply(impl[l,1] U implc,0]) N
Forward_Imply(impl[n, 1] U impl{c, 0]).

iil.

Figure 5: Example from ¢6288 benchmark circuit.

C Implementation Issues

Good data structures and a quick method for storing
circuit information are indispensible in an efficient im-
plementation of the implication procedure. The tech-
nique we use for clearing and storing circuit information
is similar to that of PROOFS [16]. We assign each node
in the circuit a tag and maintain a current tag value.
When clearing the circuit, we simply increment the cur-
rent tag value and update the tags on constant-valued
nodes. Each time we assign a value to a node, we set
its tag to the current tag value. In this way, we can tell
whether the value of a node is currently valid. For set
algebra operations, a fast mapping technique is used in
our implementation. For example, when performing a set
intersection operation for several sets of assignments, we
map each set to the corresponding node assignments in
the circuit. If a node is assigned the same value by each
set, the corresponding node assignment is in the inter-
section. We also use an event-driven logic simulator to
perform direct forward implication.

v Redundant Fault Identification
Using Static Implication

One successful application of static implication is static
redundancy identification. Generally, there are three

291

kinds of redundant faults: unexcitable faults, unprop-
agatable faults, and faults that cannot be excited and
propagated simultaneously. A novel method used in
FIRE [13][14] to identify redundancies without ATPG is
to process conflicting values on the same line. A fault is
redundant if it requires conflicting values on the same line
as a necessary condition to be detected [13][14]. Based on
the same principle, we applied our results of static impli-
cation to redundancy identification. We first introduce
three definitions used in our static implication based re-
dundancy identification procedure, Simprid:

1. Preimage: Let [NV,v] be an assignment. The preim-
age of [N,v] is the set of all assignments that imply
[N,v].
preimage[N,vl={{M,w] | [M,w] - [N,v], M and N
are nodes in a circuit, w € {0,1},v € {0,1}}

a c
e
b 9
DD

Figure 6: Preimage identification.

In our static implication algorithm, the contraposi-
tive law is applied whenever a new implication is found.
Therefore, the preimage of an assignment can be eas-
ily identified from the implication set of its opposite
assignment. For example, consider the circuit in Fig-
ure 6, where implfa,0] = {[a,0],[c, 1],[e,0],[g,0]}. The
preimage of [a, 1] is obtained by inverting all assignments
in impl[a,0]: preimagela,1] = {[a,1],[c,0],[e,1],[g,1]}.
Therefore, faults a/0,¢/1,e/0, and g/0 require assign-
ment {a, 1] as a necessary condition for excitation.

2. Backcone: Let S be a set of nodes in the circuit. We
can merge the nodes in S into a single node in the
circuit graph. The backcone of S is a set of nodes
dominated by the merged node corresponding to S
in the collapsed graph.
backcone|S]={P | every path from node P to a pri-
mary output passes through at least one node in S.}

3. Side-input: The side-inputs of a circuit node N are
nodes that share the same successor node with V.

Let the side-inputs of all nodes that have noncontrol-
ling values in preimage[N,v] form a set S. All faults on
the lines inside backcone[S] will require [N, v] as a neces-
sary condition for propagation. For example, in Figure 6,
a, ¢, and e have noncontrolling values in preimagela, 1];
b, d, and f are the side-inputs of a, ¢, and e, respectively.
All the faults on the lines inside backcone[{b,d, f}] re-
quire [a, 1] for propagation.

Thus, we can determine sety and set; for each node N
in the circuit, where setq is the set of faults that require
[N, 0] as a necessary condition for excitation or propaga-
tion, and similarly for set;. The Simprid procedure is
outlined in Figure 7.

Simprid()
redundantFaults = empty;
For each node N in circuit
setg = find faults that require [N,0] as a necessary
condition for excitation (using preimage[N,0])
and find faults that require [N,0] as a necessary
condition for propagation (using backcone[S],

where S is derived using preimage[N,0]);

sety = find faults that require [N,1] for excitation or
propagation in a similar manner,

If [N,0] is impossible

Then redundantFaults = redundantFauits U setg;
else if [N,1] is impossible

Then redundantFaults = redundantFaults U set|;

else
redundantFaults = redundantFaults U (sety N set);

Figure 7: Static implication based RID procedure.

v Experimental Results

Both the proposed implication algorithm and the redun-
dancy identification procedure were implemented in C on
an HP 9000 J200 workstation with 256 MB RAM. This
section presents experimental results for ISCAS85 combi-
national benchmark circuits. Table 1 shows the results of
our static learning algorithm. For each circuit, the total
number of implications, the number of direct and indirect
implications, the number of constant value assignments
(#Cons), and the CPU time are shown. Constant value
assignments are not counted as implications here. To find
out the number of indirect implications obtained by our
procedure, we ran a program that performs only direct
implication on each node and subtracted the number of
direct implications from the total number of implications
found. We do not discriminate between stems and fanout
branches. A stem and its fanout branches are considered
to be the same node. A very large number of indirect
implications are found by our algorithm, which reveals
the attractive and promising prospect of this algorithm,
especially in its application to ATPG for large sequen-
tial circuits. The performance of the algorithm may be
further improved by removing some redundant computa-
tions in the iterative phases.

As reported in [17], by performing logic simulation of
an exhaustive set of input vectors for c432, the upper limit
of the number of static implications for c432 is found to
be 2830. Our algorithm found 2806 implications.

Table 2 shows the distribution of implications. It is
surprising to see that a single node assignment can imply
hundreds of other nodes assignments.

To save the run time spent in extended backward im-
plication, we also implemented the simplified backward
implication (Rule 2 in Section III). Table 3 shows the re-

292

Table 1: Static learning results

Number of Implications # Time
Ckt | Total | Direct | Indirect | Cons | (sec)
cl7 70 60 10 0 0.1
c432 2806 1608 1198 0 0.6
c499 7366 3838 3528 0 1.4
c880 7006 4881 2125 0 0.6
¢1355 | 31990 18406 13584 0 3.6
c1908 | 47440 11046 36394 0 6.11
¢c2670 | 61658 17972 43686 11 15.5
c3540 | 313470 33758 279712 1 92.7
c5315 | 108130 | 36668 71462 1 51.4
c6288 | 30996 16507 14489 17 49.1
c7552 | 302064 | 64567 237497 4 182.2
Table 2: Distribution of implications
Number of Assignments with
Number n Implications
of 10<n | 80 n
Ckt Nodes n < 10 < 50 <100 | n>100
cl7 13 26 0 0 0
c432 203 286 120 0 0
c499 275 402 100 48 0
c880 469 661 275 2 0
c1355 619 769 281 76 112
¢1908 938 702 943 115 116
c2670 1566 1655 1120 247 99
c3540 1741 1139 1252 207 883
c5315 2608 2284 2532 282 117
c6288 2480 3636 1275 29 3
c7552 3827 2945 3421 511 767

sults of this experiment. The run time is reduced at the
expense of finding fewer implications. However, we still
can find a large number of implications.

Table 4 compares the results of our redundancy iden-
tification procedure Simprid and those of the original
FIRE implementation [14]. The number of redundancies
identified by each procedure is shown in the table for each
circuit. For most of the ISCAS85 circuits where redun-
dancies are found, the Simprid procedure identified more
redundancies than FIRE did. The key to our success lies
in the extremely large number of implications found in
the static learning preprocessing phase.

vi Conclusion

This paper has presented a new static learning algorithm
for use in static redundancy identification and other ap-
plications. Using the iterative method and the transitive
law, our algorithm accomplishes transitive closure on the
implications found during the procedure. Circuit infor-
mation storage and set algebra are the main bottlenecks
of our static learning algorithm. Efficient data structures
were used to reduce the execution time of such opera-
tions. Experimental results show that most of the run
time is spent in discovering a few implications with very

Table 3: Results of static learning with simplified back-
ward implication

Number of Implications # Time
Ckt | Total | Direct | Indirect | Cons | (sec)
cl7 70 60 10 0 0.1
c432 2734 1608 1126 0 0.4
c499 7366 3838 3528 0 14
c880 6990 4881 2109 0 0.5
¢1355 | 31990 | 18406 13584 0 2.9
c1908 | 47290 11046 36244 0 4.8
c2670 | 61646 17972 43674 11 12.3
c3540 | 313192 | 33758 279434 1 77.5
¢5315 | 107046 36668 70378 1 25.0
c6288 | 30024 16507 13517 17 11.0
7552 | 301608 64567 237041 4 131.3
Table 4: Comparison of original FIRE with Simprid
FIRE [14] Simprid
Ckt # Time # Time
Red | (sec) | Red | (sec)
c1908 6 1.8 4 2.2
c2670 29 1.5 39 2.5
c3540 93 11.9 105 14.7
¢b315 20 2.8 20 26.6
c6288 33 1.3 34 2.7
c7552 30 4.7 42 15.6

long distance. If time is an important consideration, we
may restrict the number of iterative steps or simplify the
backward implication procedure in several ways. By do-
ing so, we can reduce the run time and still find a very
large number of implications. Improvements may also be
achieved by avoiding redundant computations in iterative
phases. If enough memory space for saving the circuit in-
formation is provided, the static learning procedure may
be further enhanced by combining the iterative and the
recursive methods [12] together.

The large number of implications found during the
static implication preprocessing phase is the key to the su-
perior performance of Simprid over FIRE. The Simprid
procedure may be further improved by applying Theo-
rems 1 and 2 in [7}. The experimental results for both
static learning and redundancy identification only show
the feasibility of our algorithm. There are many other
applications for static learning, such as ATPG, tristate
bus resolution, redundancy identification in sequential
circuits, logic optimization, and illegal state identifica-
tion in sequential circuits. Since static learning does not
rely on any other procedure, it can be easily interfaced
with many applications.

References

[1] M. H. Schulz and E. Auth, “Improved Deterministic
Test Pattern Generation with Applications to Redun-
dancy Identification,” IEEE Trans. Computer-Aided De-
sign, pp. 811-816, July 1989.

293

2]

(11}

[12]

(15]

(16}

(17]

W. Kunz and D. K. Pradhan, “Accelerated Dynamic
Learning for Test Pattern Generation in Combinational
Circuits,” IEEE Trans. Computer-Aided Design, pp. 684-
694, May 1993.

M. H. Schulz, E. Trischler, and T. M. Sarfert,
“SOCRATES: A Highly Efficient Automatic Test Pat-
tern Generation System,” IEEE Trans. Computer-Aided
Design, pp. 126-136, January 1988.

W. Kunz and P. Menon, “Multi-Level Logic Optimiza-
tion by Implication Analysis,” Proc. IEEE Int. Conf.
Computer-Aided Design, pp. 6-13, 1994.

H. Fujiwara and T. Shimono, “On the Acceleration of
Test Generation Algorithms,” IEEE Trans. Computers,
pp- 1137-1144, December 1983.

P. Wohl and J. Waicukauski, “Test Generation for
Ultra-Large Circuits Using ATPG Constraints And Test-
Pattern Templates,” Proc. Int. Test Conf., pp. 13-20,
October 1996.

P. R. Menon and M. Harihara, “Redundancy Identifica-
tion and Removal in Combinational Circuits,” Proc. Int.
Conf. Computer Design, pp. 290-293, October 1989.

P. R. Menon and H. Ahuja “Redundancy Removal and
Simplification of Combinatinal Circuits,” Proc. IEEE
VLSI Test Symp., pp. 268-273, April 1992.

J. Rajski and H. Cox, “A Method to Calculate Necessary
Assignments in Algorithmic Test Pattern Generation,”
Proc. IEEE Int. Test Conf., pp. 25-34, September 1990.

S. T. Chakradhar and V. D. Agrawal, “A Transitive
Closure Based Algorithm for Test Generation,” Proc.
ACM/IEEE Design Automnation Conf., pp. 353-358,
June 1991.

S. T. Chakradhar, V. D. Agrawal, and S. G. Rothweiler,
“A Transitive Closure Algorithm for Test Generation,”
IEEE Trans. Computer-Aided Design, pp. 1015-1028,
July 1993.

W. Kunz and D. Pradhan, “Recursive Learning: An At-
tractive Alternative to the Decision Tree for Test Gen-
eration in Digital Circuits,” Proc. Int. Test Conf., pp.
816-825, September 1992,

M. A. Iyer and M. Abramovici, “Low Cost Redundancy
Identification for Combinational Circuits,” Proc. Int.
Conf. VLSI Design, pp. 315-318, January 1994.

M. A. Iyer and M. Abramovici, “FIRE: A Fault-
Independent Combinational Redundancy Identification
Algorithm,” IEEE Trans. VLSI Systems, pp. 295-301,
June 1996.

D.B.Armstrong, “A Deductive Method for Simulating
Faults in Logic Circuits,” IEEE Trans. Computers, pp.
464-471, May 1972.

T. M. Niermann, W. T. Cheng, and J. H. Patel,
“PROOFS: A Fast, Memory-Efficient Sequential Circuit
Fault Simulator,” IEEE Trans. Computer-Aided Design,
pp- 198-207, February 1992.

J. A. Newquist, “Fast Logic Implication Discovery,”
M.S. Thesis, University of Illinois at Urbana-Champaign,
1997.

