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Disk arrays are an
essential tool for
satisfying storage
performance and

reliability

requirements. Proper

selection of a data

organization can tailor
an array to a particular
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environment.

s the performance of other system components continues to improve

rapidly, storage subsystem performance becomes increasingly impor-

tant. Storage subsystem performance and reliability can be enhanced
by logically grouping multiple disk drives into disk arrays. Array data organiza-
tions are defined by their data distribution schemes and redundancy mechanisms.
The various combinations of these two components make disk arrays suitable for
a wide range of environments. Many array implementation decisions also result in
trade-offs between performance and reliability.

Data organization

Data organization for disk arrays can be partitioned cleanly into two orthogo-
nal components: data distribution schemes and redundancy mechanisms. Data
distribution defines the translation from externally visible logical addresses to
storage locations within the subsystem. Two ways to do this are by independently
addressing each disk (the conventional approach) or by disk striping. The latter
scheme often provides improved levels of load balancing, data-transfer paral-
lelism, and/or access concurrency. Redundancy mechanisms specify the type,
scope, and location of any redundant information within the array. Examples
include data replication (disk mirroring) and striped parity. Redundant disk
arrays continue to provide full access to data after a disk failure and while lost
data is being reconstructed on a replacement disk. Many disk arrays combine
striping and redundancy to provide both high performance and high reliability.

Disk array products usually provide software or firmware that lets the customer
choose among several data organization schemes. While this improves an array’s
usability and increases its marketability, system administrators must understand
the trade-offs involved to fully exploit the array’s capabilities.

Data distribution. Data distribution consists of mapping the logical addresses
used by the host onto the disks in the subsystem. Figure 1 shows the three main
methods for performing this translation. The conventional approach is to address
each disk independently and map logical block numbers to disk block numbers
directly. The distribution is performed “manually” by system administrators,
application programs, or system software. Disk striping, also called disk interleay-
ing, folds multiple disk address spaces into a single, unified space seen by the host.
This is accomplished by distributing consecutive logical data units (called stripe
units) among the disks in a round-robin fashion, much like interleaving in a multi-
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bank memory system. We distinguish
between two distinct types of disk strip-
ing. Fine-grained striping (Figure 1b)
distributes the data so that all of the
array’s disks cooperate in servicing
every request. Coarse-grained striping
(Figure lc) allows the disks to cooper-
ate on large requests and service small
requests independently.

Independent addressing. 1f each disk
is independently addressed (see Figure
la), users and/or host applications must
explicitly distribute the data. Generally,
system administrators are responsible
for deciding which data sets to place on
each disk. Load balancing, or distribut-
ing the data so as to balance the work-
load among the disks, is more an art
than a science and often requires spe-
cialists. Biased data-reference patterns
(disk skew) create “hot spots,” making
the task complex. Many corporations
are looking to software products to
automate load balancing. Given the
problem’s intractability, however. a
more fundamental change may be nec-
essary.

Fine-grained striping. In fine-grained
striping, all N disks in the array contain
a fraction of each accessible block (see
Figure 1b). The number of disks and
the stripe unit size are generally chosen
such that their product evenly divides
the smallest accessible data unit (from
the host’s point of view). Popular stripe
unit sizes for fine-grained striping
include one bit, one byte, and one disk
sector (often 512 bytes). The size used
is not really important as long as each
accessible unit is spread among all of
the disks. The load is perfectly bal-
anced, since all disks receive identical
workloads. The effective transfer rate
approaches N times that of an individ-
ual disk, as each disk transfers 1/N of
the requested data. However, the posi-
tioning components of the access time
— seek and rotation — are either
increased or unaffected (if the disks are
synchronized). Also, only one request
can be serviced at a time, because all ¥
disks work on each request. These limi-
tations usually restrict fine-grained
striping to environments in which trans-
fer times dominate service times.

Coarse-grained striping. With coarse-
grained striping (see Figure lc), it isn’t
necessary for all disks to cooperate on
every request. This technique exploits
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data-transfer parallelism for large
requests while allowing separate disks
to handle small requests concurrently.
Several effects combine to provide
automatic load balancing. First, a hot
file will tend to have its component
blocks distributed over multiple disks,
thereby spreading requests for its data.
Course-grained striping, like hashing,
essentially randomizes the first disk
accessed for each request,! with addi-
tional disks identified in a round-robin
fashion. This statistically balanced load
remains intact under highly biased ref-
erence patterns and rapidly changing
access distributions. For the above rea-
sons, coarse-grained striping has the
potential to provide high performance
with a minimum of maintenance.

Choosing the stripe unit size.
Achieving the performance potential of
coarse-grained striping requires correct
selection of the stripe unit size. This
choice largely determines the number
of disks over which each request’s data
is spread. Large stripe units allow sepa-
rate disks to handle multiple requests
concurrently, reducing overall position-
ing delays. This often results in reduced
queuing delays and higher throughput.
On the other hand, small stripe units
cause multiple disks to access data in
parallel, reducing data transfer times
for individual requests. This trade-off
between transfer parallelism and access
concurrcncy is governed by the stripe
unit size.

For workloads with highly variable
request sizes and no sequentiality or
locality of reference, the key parameter
is the amount of access concurrency in
the workload. The stripe unit size should
increase with the arrival rate of requests,

thereby decreasing the average number
of disks accessed per request.’

For workloads consisting primarily of
aligned. fixed-size requests, the stripe
unit size can be chosen such that the
number of disk accesses per request is a
constant. In particular, using any multi-
ple of the fixed request size allows
every request to be serviced by a single
disk. Examples of such workloads are
those generated by traditional Unix file
systems.

For workloads containing some
degree of sequentiality and/or locality
of reference. load balancing must also
be considered. When requests are
large, load balancing does not signifi-
cantly affect the choice of stripe unit
size. For light workloads, larger stripe
units exploit the positioning-time bene-
fits of sequentiality and locality of ref-
erence.

A more complex trade-off exists for
general-purpose, commercial work-
loads. which are often characterized by
small requests, bursts of high activity,
and biased data-reference patterns.
With such workloads, the ability of
coarse-grained striping to load-balance
an array improves as the stripe unit size
decrecases. Larger stripe units tend to
suffer from the formation of short-term
hot spots. Bates suggests that the stripe
unit should be approximately 10 times
the average request size, rounded up to
a multiple of the track size (based on
studies using real VAX/VMS work-
loads).! The choice of stripe unit size
can be refined by considering additional
information. such as request size distri-
butions and locality characteristics.

One interesting question is whether
the stripe unit size should be a multiple
of the track size. On the one hand, a
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request for a full stripe unit can take
advantage of a disk supporting zero-
latency access. On the other, the track
size may correspond poorly to request
alignment and size, resulting in excessive
multidisk requests. Many workloads
consist of block requests of a specific
size, say, 4 Kbytes or 8 Kbytes. Current
track sizes are multiples of the sector
size — often 512 bytes — chosen to
maximize capacity rather than match
alignment boundaries. Most state-of-
the-art disk drives use multiple-zone
recording to increase storage density.*
When using such disks, matching the
stripe unit to the track size requires a
different stripe unit for each disk zone.
More performance studies are neces-
sary before track-based striping can be
identified as a good design choice in
general.

Redundancy mechanisms. Adding
redundancy to a storage system invari-
ably increases its cost, reduces its
capacity, and/or degrades its perfor-
mance. Instead, many systems make
periodic backup copies of critical data,
usually on magnetic tape. Any data cor-
rupted or lost from the primary system
is restored from the latest backup copy,
and any updates that occurred after the
backup are irrecoverable. Fortunately,
individual disk failures are infrequent,
and total subsystem failure is quite
rare. The mean time to failure (MTTF)
for a modern disk drive is in the range
of 200,000 to 1 million hours, or
roughly 20-100 years.*

However, as the number of disk
drives continues to grow, the MTTF of
a typical nonredundant subsystem
shrinks to months or weeks. Assuming
that the MTTF of each disk is indepen-
dent and exponentially distributed,’ the
MTTF of a group of disks is inversely
proportional to the number of disks.
This threatens the feasibility of nonre-
dundant disk systems.

In addition, the number of files
affected per failure increases dramati-
cally with the use of disk striping.
Rather than losing 1/N of the files in an
array of N disks, as occurs if the disks
are independently addressed, a striped
subsystem could lose 1/N of every file.
A subsystem incorporating redundancy
into the data organization can survive
the failure of one or more components.
However, additional (critical) failures
result in the loss or inaccessibility of
data. As storage subsystems grow, on-
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line redundancy will be required for
crucial data, possibly becoming stan-
dard for general storage as well.

Data replication. The simplest way to
protect data is through replication.
Separate copies of each data block are
maintained on D (two or more) sepa-
rate disks. Data becomes unavailable
only if all disks containing a copy fail.
This form of redundancy, widely used
for many years, is known as disk mir-
roring, disk shadowing, disk duplexing,
and (recently) RAID1. The cost of
replicating data is essentially propor-
tional to D — 1, as disk cost currently
dominates the price of large storage
subsystems. Since two copies provide
high reliability, additional copies are
rarely used. In fact, the high cost of full
data replication often compels the use

|
An array data
organization has two
orthogonal
components: a data
distribution scheme
and a redundancy
mechanism.

of other redundancy mechanisms that
do not provide the same level of perfor-
mance and reliability.

Maintaining multiple copies of data
affects performance in several ways.
First, writes must be performed on all
copies. Depending on the implementa-
tion, this may create opportunities for
data loss or increase observed response
times (discussed later). Read perfor-
mance, on the other hand, benefits from
additional copies. First, D read requests
can be serviced simultaneously, increas-
ing throughput and decreasing queue
times in most environments. In addi-
tion, a given read request can be sched-
uled to the disk on which it will experi-
ence the smallest access delay. The
improved read performance can actu-
ally make the cost/performance ratio
lower than that of nonredundant disk
systems, even though the absolute cost
is multiplied by D.

The conventional method of imple-
menting data replication “mirrors”
each disk (see Figure 2a). Every set of
D identical disks can survive D - 1 fail-
ures without data loss. In an array with
multiple replicated sets, many failures
can occur without causing data loss, as
long as D of them do not occur within a
single replicated set. However, each
disk failure reduces the performance of
a set relative to other sets. This imbal-
ance can reduce the array’s overall per-
formance if a damaged set becomes a
bottleneck.

Alternately, sets may overlap such
that this performance degradation is
shared equally by all surviving disks.
The term declustering refers to a
method for combining multiple repli-
cated sets. Chained declustering®
divides each disk into D sections. The
first section contains the primary copy
of some data, with each disk having dif-
ferent primary data. When we view the
disks as points on a circle, the sec-
ondary copy of this data appears in the
second section of the next disk, and so
on (see Figure 2b). With clever
scheduling, chained declustering can
maintain a balanced load after a disk
failure, though the probability of sur-
viving multiple failures is reduced.

A second type of declustering,
known as interleaved declustering, also
partitions each disk but stripes the non-
primary copies across all the disks
instead of keeping them in contiguous
chunks (see Figure 2¢). This balances
the additional load caused by a disk
failure but further reduces reliability
(losing any D disks results in critical
failure).

Parity-based protection. Disk subsys-
tem architects have taken advantage of
results from extensive studies of error-
detecting and -correcting codes in other
fields. From work in coding theory, we
know that a single erasure (a lost bit)
can be recovered from a parity bit, the
other protected bits, and knowledge of
the erasure. Because current disk sys-
tem control logic can generally detect
and identify disk failures, parity can be
used to protect a set of disks from a sin-
gle failure. Each bit of parity informa-
tion is calculated from an associated
data bit on each protected disk and
stored on a separate disk. The locations
of the particular data bits protected by
a given parity bit may vary from
scheme to scheme, as may the place-
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ment of the parity. The additional
capacity (one full disk) required to
maintain redundancy via parity is con-
siderably less than what is needed for
data replication.

Although the cost is reasonable, par-
ity maintenance can reduce array per-
formance significantly. Read requests
are handled as in a nonredundant
array. [f a disk is added to provide stor-
age capacity for parity, it provides an
additional server for read requests (in
most parity placement schemes). Write
requests require additional disk
accesses to update the parity, often
leading to very poor performance. If all
data bits associated with a parity bit are
updated by a write request, the new
parity bit is calculated and included as
part of the total request. If only a sub-
set of the data bits is being written,
updating the parity bit requires addi-
tional work.

This additional work consists of read-
ing bits from the disks to construct the
new parity bit. The two main ap-
proaches are denoted Read-Modify-
Write and Regenerate-Write. With
RMW, the new parity bit is constructed
from the old value of the parity bit and
the old and new values of the data bits
being written. The other approach,
Regenerate-Write. generates the new
parity bit from the values of all data
bits (that is, the new values of the data
bits being updated and the current val-
ues of the unchanged data bits).
Therefore, RMW requires initial read
accesses to all disks being updated
(including the disk containing the par-
ity). while Regenerate-Write requires
read accesses to all disks not being
updated. The performance penalty for
maintaining parity can be reduced by
dynamically choosing between these
options.

Because of the need to perform disk
reads before updating the parity, per-
formance can be significantly lower
than in an unprotected system or a sys-
tem protected by data replication.
Removing or reducing this performance
degradation is an open research topic.
In a subsequent section we discuss some
of the options being explored.

Three major schemes exist for
spreading the parity information
among the disks in the subsystem. The
straightforward approach is to place all
parity on a dedicated parity disk (see
Figure 3a). While this simplifics the
mapping of logical addresses to disk
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addresses, every write must update the
associated bits on the single parity disk.
Arrays that use fine-grained striping
are well suited for this method, since
they handle only one request at a time.
With other data distribution schemes,
however, the parity disk can limit per-
formance. especially when the old par-
ity is required to participate in RMW
operations. To avoid this potential bot-
tleneck, the parity information can be
striped among the disks (see Figure
3b). By using striped parity. the array
can perform multiple parity updates in
parallel.

A third option has been proposed:
declustered paritv.”® One way to view
this scheme is to imagine combining
(into one large array) several smaller
arrays protected by striped parity. The
data and parity of each array are dis-
tributed throughout the entire set of
available disks (see Figure 3c). With a
clever distribution algorithm. the per-
formance impact of losing a disk can be

shared equally by all disks. Although
the array can survive only a single fail-
ure, it should recover from such a disk
failure more quickly. Alternatively, one
can view parity declustering as a way to
achieve higher reliability and failure-
mode performance by increasing the
quantity of parity data maintained.

Other schemes. Maintaining parity
protects an array only against the loss
of a single disk. An array with two
copies of all data can survive up to one
failure per pair of copies. In both
cases. data may be lost if a second fail-
ure occurs before the first is repaired.
Providing unconditional protection
against multiple failures requires addi-
tional redundancy. In the most promis-
ing approach, two different Reed-
Solomon erasure-correcting codes (for
example. parity) are maintained. With
such redundancy. an array can recon-
struct all data after losing access to
any two disks. The performance trade-
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offs and redundancy placement
options match those for parity-pro-
tected arrays, except that two redun-
dant bits must be maintained rather
than one.

Other schemes, such as multidimen-
sional parity and more aggressive error-
correcting codes, can protect against
greater numbers of failures.” However,
the cost and performance implications,
combined with the fact that storage
device reliability is increasing dramati-

cally. may preclude their use.
The sidebar below summarizes vari-
ous data organization schemes.

Performance versus
reliability
Write requests may cncounter

lengthy delays between their initiation
and the actual writing of new data to

stable storage. Until the host accepts a
request completion message, any asso-
ciated system resources (for example,
memory pages) cannot be reused. Also,
application processes may wait for such
acknowledgments, possibly resulting in
idle processor cycles. By accepting con-
firmation as early as possible, the host
can better utilize its resources and have
fewer idle cycles, resulting in higher sys-
tem performance. However, if request
completion is signaled before the data

A summary of data organization schemes

The table shows a matnx of alternative data organizations,
with the columns representing data distribution schemes and
the rows representing redundancy mechanisms. Each matrix
entry contains names or references for previously proposed
and/or implemented disk array organizations. Unlikely combi-
nations of data distributions and redundancy mechamsms are
labaied urc.

The acronym RAID (for redundant array of mexpenswe

: dssks) was introduced in 1988 with'a partial taxonomy of logi-
cal data orgamzanons Industry has augmented this taxon-
omy. In many circles, the acronym’s meaning has been rede-

- fined to redundant array of independent disks, since the
disks used in such arrays are often state of the art and sel-
dom:-inexpensive, In some sense, the disks are really inferde-
pendent A RAID “level” simply corresponds to a specific

- combination of data distribution scheme and redundancy
mechanism. The ordering of the levels carries no consistent
meaning and doas not represent a measure of goodness.
The data organizations corresponding to current RAID levels
are identified in the table.

We should also point out that several “new (?)” RAID levels
that do not corresponq to new data organizations have
recently been introduced by manufacturers to identify their
products. We have not included these in the table.
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reaches permanent media, the system is
vulnerable to data loss/corruption due
to power failure or component break-
down. When the host relaxes reliability
constraints to improve performance,
other precautionary measures must be
taken or the consequences must be
accepted.

Trading reliability for performance.
An array controller with a cache (or
buffer) can signal completion to the
host as soon as the last byte of a write
request has been copied from main
memory. Such a scheme dramatically
improves write performance as
observed by the host. though the data is
vulnerable until written to disk. The
disk scheduler, which is responsible for
determining the order of service for
pending disk accesses, now has a prob-
lem. Reliability goals require the sched-
uler to expedite disk accesses that
transfer such cached data to stable stor-
age, while performance goals compel
the scheduler to postpone such “back-
ground™ activity.

In arrays using data replication,
reporting completion after only a frac-
tion of the copies have been updated
can similarly improve performance with
little vulnerability. Data is lost only if
multiple failures occur before the
remaining writes are completed. For
parity-protected arrays. caching parity
may improve performance by accumu-
lating the “new™ parity for multiple
writes and performing the parity
updates in a single write. However,
some data remains unprotected until
this parity update is completed.

In parity schemes requiring an
update cycle, the system is vulnerable
to data corruption if the set of disk
writes do not occur simultaneously. If
power fails at an inopportune moment,
only some of the accesses will complete.
This would make the parity incorrect,
causing further corruption if left uncor-
rected and subsequently used in data
reconstruction. On the other hand.
enforcing simultaneous writes necessi-
tates synchronous behavior from multi-
ple disks. This may produce suboptimal
request schedules and increased disk
idle time. If the controller schedules the
individual write requests indepen-
dently, disk utilization can be maxi-
mized.

Improving performance and reliabil-
ity. Most users find any possibility of
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data loss or corruption unnerving, if not
totally unacceptable. Several tech-
niques exist to improve both write per-
formance and reliability. They accom-
plish this by reducing write latencies
while guaranteeing the safety of old
data and cnsuring that new data is
seccure before signaling completion.
These schemes can be implemented
independently by the host system or
within the disk array. One simple (but
expensive) solution is to use non-
volatile RAM (NVRAM) to cache
write data and/or parity. NVRAM
maintains state even when the power
supply is interrupted. The NVRAM’s
organization should provide reliability
guarantees equivalent to the array’s
redundancy scheme.

Write remapping, a form of shadow
paging. has been proposed for many
different data organizations. Write
remapping consists of dynamically
altering the logical-to-physical map-
pings so that write request data is
always placed at new (free) locations.
By maintaining the previous copy of
the logical block until the request com-
pletes. write remapping improves relia-
bility. Of course, the mappings must
also be maintained reliably to prevent
data loss. One approach is to store this
information in NVRAM. A more com-
plex but less expensive option is to aug-
ment each physical data block with the
corresponding logical address and a
time stamp, which can be used to
reconstruct the mappings.

By choosing free locations near the
current position of the disk’s read-write
head, write remapping can also reduce
costly seek and rotation delays. The
algorithm for choosing among available
locations must prevent this greedy
approach from consuming all free loca-
tions in some regions of the disk and
leaving other regions unused. Also,
over time, logically sequential data can
become scattered throughout the physi-
cal storage space. As a result, subse-
quent read requests may suffer exten-
sive positioning delays unless some
type of relocation is performed (during
periods of low activity) to restore phys-
ical sequentiality.

A third option, logging, writes infor-
mation about updates to a log area
before performing them. Log writes are
sequential and usually experience low
response times, particularly when using
a dedicated log disk. After writing the
log entry, the array controller can

safely send a completion message to
the host and perform the disk accesses
in the background. In case of failure,
the contents of the log allow any
incomplete updates to be repeated. The
information written to the log may con-
sist of a brief description of the update,
a copy of the new data. or copies of
both the new and old data. Generally,
reliability increases with the amount of
information saved. Some form of
checkpointing is normally used to
reduce recovery time and allow reusc
of log space.

Dealing with failures. By maintaining
redundancy. a disk array can survive
disk or path failures that make one or
more disks inaccessible. While the
array continues to provide access to all
data. its performance is almost always
affected by failures. In addition, relia-
bility is reduced. since additional fail-
ures may be critical. In recovering from
a disk failure, the lost data must be
reconstructed from the surviving disks
and written to a replacement disk. a
process referred to as rebuild. Until this
process completes. the disk array is vul-
nerable. Extra disks, called hot spares,
are often included in arrays to allow
rebuild to begin immediately.

In most redundancy schemes, losing
access to a disk reduces the number of
concurrent read requests that can be
serviced. Arrays using data replication
handle requests as usual, albeit with
one less copy to service reads. Also.
write requests update one less copy. In
parity-protected arrays, a read request
to a failed disk requires regeneration of
missing data. Each lost data bit can be
reconstructed from the associated par-
ity bit and the other data bits contribut-
ing to the parity. Therefore, handling
the read request necessitates accesses
to all of the disks containing these bits.
Write performance is also affected in
parity-protected arrays. Because the
old data cannot be accessed,
Regenerate-Write must be used for all
updates to data on the failed disk and
Read-Modify-Write for all updates to
surviving disks.

The simplest form of rebuild sequen-
tially reconstructs the unavailable data
and writes it to the replacement disk. In
a replicated array, the “lost” data is
copied from another disk containing
the same data. In a parity-protected
array, the data must be regenerated
from the parity and data bits (as
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described above). If reliability require-
ments specify that repair times be mini-
mized, host requests can be denied
while rebuild proceeds at full speed;
otherwise, rebuild and host requests
compete for service, resulting in
another trade-off between reliability
and performance. This trade-off is par-
ticularly important in rebuilding parity-
protected arrays, where data regenera-
tion requires access to multiple disks.
The choice of a rebuild algorithm, the
size of the individual rebuild requests,
and the multidisk coordination over-
head must be considered when tuning
the rebuild process.’

he disk array market is expand-
Ting as the cost of disk drives

decreases and typical storage
capacity needs grow. As a result, disk
arrays are becoming standard equip-
ment on a wider range of machines.
Someday an average user’s secondary
storage requirements may be satisfied
without the use of moving mechanical
parts. Until then, disk arrays can pro-
vide the necessary levels of reliability
and performance.

If storage subsystems continue devel-
oping as they have been, the level of
intelligence incorporated into their var-
ious components will continue to
increase. Communication between
these components will increase dramat-
ically, resulting in global optimizations,
more distributed control, and new algo-
rithms that respond dynamically to the
constantly changing flow of disk
requests. New protocols and intercon-
nection schemes will be required to
maintain coherency between multiple
caches and buffers, as well as to coordi-
nate the request streams from multiple
hosts sharing the subsystem’s resources.
Recent improvements in magnetic
media and sensing technologies add to
the life expectancy of magnetic disk
drives, and therefore of disk arrays.

In short, we expect disk arrays to be
the implementation mechanism of
choice for secondary storage subsys-
tems for some time to come. W
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An Introduction to Disk Drive Modeling, pp. 17-28

Chris Ruemmler and John Wilkes

If I/O systems are to keep pace with
current microprocessor technology,
disk drive performance becomes more
critical and must be better understood.
This means that high-quality disk drive
models are needed, and these models
must be based on correct assumptions
about disk drive behavior.

The authors describe the various
components of modern disk drives,
emphasizing how each affects perfor-
mance. This overview, which includes
recording components, positioning
components, and the disk controller,
covers how each component and its
functions contribute to the current
state of the art in disk drive technology.

Having evaluated the many perfor-

mance factors, the authors go on to
show how they create accurate disk
drive simulation models. They present
graphs and tables that show how adding
features to the model leads to more
accurate performance figures. Data
caching characteristics turn out to be the
most important feature to model, fol-
lowed by the data transfer model and
the seek-time and head-switching costs.

Disk Arrays: High-Performance, High-Reliability Storage Subsystems, pp. 30-36

Gregory R. Ganger, Bruce L. Worthington, Robert Y. Hou, and Yale N. Patt

Storage subsystem performance and
reliability can be enhanced by logically
grouping multiple disk drives into disk
arrays. However, many combinations
of data distribution schemes and redun-
dancy mechanisms are possible in an
array data organization, so trade-offs
between performance and reliability
must be considered.

The authors explain how disk striping
is used to distribute data in the array

and how the choice of stripe unit size
affects performance. They also discuss
data replication and parity-based pro-
tection, focusing on their implementa-
tion in disk arrays as a way to deal with
disk failure. Should a failure occur, lost
data can be reconstructed from the sur-
viving disks. Of course, performance is
usually affected while this rebuild is
taking place, and an additional failure
at this time could be critical.

Caching Strategies to Improve Disk System

Performance, pp. 38-46

Ramakrishna Karedla, J. Spencer Love, and Bradley G. Wherry

Processor speeds have increased dra-
matically over the last few years and are
expected to continue to double every
year, with main memory density dou-
bling every two years. At the same time,
our appetite for /O continues to grow,
especially with the emergence of appli-
cations such as multimedia and scientific
modeling.

Although rapid technological
advances have doubled disk capacity
every 1-1/2 years since 1990, no similar
advances are expected to reduce
mechanical latency and, thus, the access
times of storage devices; access times of
main memory and storage devices will
likely remain many orders of magnitude
apart. As a result, I/O subsystems limit
overall system response time and leave
the CPU underutilized.
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This article examines the use of
caching as a means to increase system
response time and improve the data
throughput of I/O subsystems. The
authors describe a number of cache
parameters that affect cache design and
performance, including cache size, vari-
ous popular line-replacement algo-
rithms, read-ahead and write-to-cache
strategies, and cache location.

Using simulations, the authors ana-
lyze the effectiveness of three cache
replacement algorithms for workload
traces from four different systems.
Using an algorithm with low implemen-
tation overhead, known as segmented
least recently used (SLRU), the authors
find that in certain circumstances SLRU
halves the cache size required by other
popular caching strategies.

Striking the right balance between
performance and reliability is an impor-
tant consideration for users, and tech-
niques are available for improving both.
These include the use of nonvolatile
RAM, write remapping, and logging.
The promise of additional developments
in disk drives suggests that disk arrays
will become the implementation mecha-
nism of choice for secondary storage
subsystems in the near future.

A Systematic Approach to
Host Interface Design for
High-Speed Networks,

Pp. 47-57

Peter A. Steenkiste

Optical fiber has made it possible to
build networks with link speeds
exceeding a gigabit per second; howev-
er, these networks are pushing end sys-
tems to their limits. For high-speed
networks (100 Mbits per second and
up), network throughput is typically
limited by software overhead on the
sending and receiving hosts.

This article describes how software
optimization and hardware support on
the network adapter can reduce over-
head and improve throughput. The
author begins with a typical network
interface and systematically adds soft-
ware optimizations, such as buffered
communication primitives and check-
sum during copy, as well as hardware
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