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Abstract

It is well known that for many years, processor cycle
times have continued to increase at a very rapid rate. On
top of this, advances in multiprocessor technology have al-
lowed potential system performance to increase al an cven
faster rate. The result, if we ignore the challenges in such
fields as parallel algorithms, is that the performance of
many of today’s computer systems is limited by the I/0
subsystem. In this paper, we altempt to do two things:
(1) separate I/0 space inlo three categories, based on their
very different raisons d’etre and consequently very differ-
ent characteristics, and (2) focus (the bulk of the paper) on
the issues pertaining to improving the performance of one
basic mechanism in the 1/0 subsystem, the magnetic disk.
We do the former in order to set the framework of the 1/0
space. We believe that if we are to improve the perfor-
mance of the I/0 subsystem, we first have to understand
the nature of 1/0 and not cloud our efforts by treating I/0
as one homogeneous structure. We do the latter as the first
step in dealing with the various mechanisms that make up
the 1/0 space,

1 Introduction

A computing system is somewhat more than the sum
of its individual pieces. Amdahl’s Law argues that the
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performance of a computer system is driven by its weak-
est link. Historically, that weakest link could come from
the algorithm specification, the language or compiler, the
operating system, the instruction set architecture, the im-
plementation of that instruction set architecture, includ-
ing the processor, memory, and I/O subsystem, or the base
technologies. Advances in recent years have put the blame,
at least at the hardware level, on the I/O subsystem.

Microprocessor technology has improved from the Intel
4004 of two decades ago to today’s Intel i860xp, a 50 MHz
part that contains 2.5 million transistors on a single chip.
This has allowed recent microprocessors to provide raw,
unharnessed computing power comparable to state-of-the-
art mainframes and supercomputers.

Concurrently, but not quite as dramatically, main mem-
ory densities and speeds have also improved [Myer86).
Main memory densities have increased at a rate of on the
average 1.5 every year over the last 15 years. Main mem-
ory access times have decreased on the average between
1.3 and 1.8 during the same period {Asai86}. On the other
hand, bus timing and physical topology have not improved
to match, So, while memory technology has not quite kept
pace with processor (i.e., cpu) technology over the years,
it hasn’t been the most serious sluggard in the computer
system.

The 1/O subsystem is a different kettle of fish. Some
parts of the I/O system have done fine, such as the contin-
uing advances in areal density on the surface of a disk.
Harker (Hark81) has shown that improvements in areal
density combined with increases in disk diameters have
kept pace with increases in memory density. Bus technol:
ogy, also, has provided improvements in the raw commu-
nication time available through fiber optics. Other parts
of the 1O subsystem have not kept pace. For example,
access time for disk drives, a function of seek time, rota-
tional latency and transfer rate, has improved only min-
imally over the same time span [Hark8l]. Data handling




capabilities of VDTs are already failing to support the data
rates required by new applications. Networks, a boon to
the utilization of spare computing power, introduce bottle-
necks due to their protocols and data structures, necessary
because of the mutually suspicious environments intrinsic
to their nature.

Each of these bottlenecks is very different, and requires
full treatment in its own right. In this paper, we address
only the bottlenecks due to disk systems. We note that
disk arrays have been in the computer system designer’s
toolbox for at least 15 years [Ouch?78], and have been sug-
gested over the years as the solution for many problems
associated with storage. We review the hardware solutions
proposed to support the efficient storage and retrieval of
data. This includes discussion of both the basic mechan-
ical characteristics of magnetic disk media and the archi-
tectural strategies that govern their use. In companion
papers, we will address issues associated with networks
and non-storage I/0.

This paper is organized in nine sections. Sec-
tion 2 proposes a classification for operations outside the
cpu/memory interaction that the I/O subsystem must sup-
port. We have noted above that the bottlenecks due to disk
access time, VDT data handling, and network protocols
are very different. Since storage devices, networks, and
non-storage devices each have very different raisons d’etre
and therefore very different characteristics, it is not sur-
prising that the bottlenecks they create should also have
very different characteristics. To understand these bottle-
necks, so we can get about the business of removing them,
we devote Section 2 to separating the I/O subsystem into
these three major components: local storage (i.e., not in-
vaolving a network), network activity, and non-storage. We
hope to avoid clouding our efforts by not treating I/O as
some homogeneous structure.

The next six sections all deal with storage, and particu-
larly with the major mechanism for storage, the magnetic
disk drive (and, in combination, the disk array). Section 3
briefly reviews the concepts and issues associated with a
storage hierarchy. Section 4 narrows the discussion to the
disk. Two important measures of disk subsystem perfor-
mance and the importance of access time are discussed.
Section 5 describes mechanisms for reducing the compo-
nents of access time. Section 6 discusses some of the trade-
offs involved in designing disk array subsystems. Section 7
describes methods for avoiding accesses to disk drives, Sec-
tion 8 reviews proposals for improving the reliability of I/O
subsystems. Section 9 provides some concluding remarks.

2 A classification of I/O

We define the I/O space as all activity outside the in-
teraction of a cpu and its memory, We partition I/O into
three classes, as illustrated in Figure 1: storage I/O, non-
storage I/O and network I/O.

Storage I/O can be characterized as operations that are
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Figure 1: Three classes of [/O

performed on data that is stored for future use, The
data element is bi-directional; it is written to the storage
medium, and subsequently read from the storage medium.
The ideal storage system can store an infinite amount of
data and reliably retrieve it in a single cycle. Storage must
be non-volatile so power is not needed to retain the data,
Storage is intrinsic to the computer system. It acts deter-
ministically on both input and output with the rest of the
computer system.

Non-storage I/O can be characterized as operations that
involve data that are always unidirectional, i.e., read-
only or write-only. On input, non-storage I/O is non-
deterministic. It is totally independent of the timing of
the computer system. On output, non-storage I/O is pro-
duced for consumption, and not for future use. Devices
that provide a communication link to the outside world
perform non-storage 1/O. Interaction with humans, with
laboratory apparatus, and with process control applica-
tions are all examples of non-storage 1/0.

Examples of the non-deterministic nature of non-storage
input I/O are keystrokes on a keyboard and input data
from a laboratory experiment, Keystrokes occur when the
human operator wishes them to occur, totally independent
of the timing of the computer system the keyboard is con-
nected to, Input data from a laboratory experiment arrive
at the time the experiment wishes, not according to the
timing of the computer system.

Examples of the consumable nature of output I/O are
data displayed on a CRT and data produced for use by a
process controller. Once the data displayed on a CRT has
been changed, the image on the CRT is not retrieved. In
the case of a process control application, data produced by
a computer system is consumed by the process controller,




and not retrieved at some later time by the computer sys-
tem.

Network I/O can be characterized as operations that
are performed to transmit or receive data from another
computer system. Networks enable a computer system to
utilize resources external to it, This permits computing
power unutilized by the "owning” computer system to be
utilized by some other "non-owning” computer system.

Because the two systems are distinct, the fundamen-
tal characteristic of network I/O is that the cooperating
computer systems form a mutually suspicious hostile en-
vironment. Data that is transmitted from one computer
system to another can consist of storage and non-storage
1/0. Availability and the perceived response time of the
data, however, is often beyond the control of the systems
that are interacting, since the mechanisms to deal with
this hostile environment add overhead to the time it takes
to transmit and receive the data.

Examples of network I/O involve the sharing of re-
sources. For example, multiple processors can caoperate
on a single problem, Peripheral devices such as printers
and modems can exist on one computer system but be
used by multiple systems. A single software package can
be physically stored on one system, but be accessible by
any system connected to the network. Some fault tolerant
schemes use networks as communication paths between
components to prepare for eventual fault recovery when
one computer system fails [Gray90).

Finally, it is possible for one application to utilize op-
erations that involve the three distinct types of I/O when
accessing data. For example, data stored on a disk on a re-
mote system can be accessed via a network and displayed
on a local CRT, The retrieval of data on the remote system
requires storage I/O and network 1/O, while displaying the
data on the local CRT requires non-storage 1/O. High per-
formance execution of such an operation requires attention
to potential bottlenecks in all three types of 1/O.

3 Storage Hierarchy

We cannot build an ideal storage system. The best we
can do is to give the illusion of having an ideal storage
system by using a hierarchy of storage devices beginning
with a semiconductor cache and main memory, including
magnetic and optical disks, and ending with archival stor-
age. The semiconductor cache and main memory provide
the mechanism for quick retrieval of data, The disk and
archival storage provide large capacity and non-volatility.

A storage hierarchy is generally characterized by cost
and performance, where cost is expressed in terms of dol-
lars per bit of data stored and performance is expressed in
terms of time to access data from a storage device. Each
level in this hierarchy provides a point in that space, Semi-
conductor cache, for those machines that contain a cache,
has the highest cost and provides the highest level of per-
formance in the storage hierarchy, Semiconductor main
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memory has a lower cost per bit and 2 slower access time
compared to the cache, Magnetic tape has the lowest cost
per bit and the slowest access time of the storage devices
we discuss.

Where a data object resides within the hierarchy de-
pends primarily on how often it is accessed and on its size.
For example, a rarely accessed object should reside at the
lowest level of the hierarchy, A small, regularly accessed
object should reside at the highest level in the hierarchy.
A larger, regularly accessed object could be stored at a
high or low level depending on what other objects need to
be stored and how often they are accessed.

Accesses to the storage subsystem, and especially to
magnetic disks, incur a large time penalty which can re-
sult in degraded system performance. We can reduce this
penalty by improving the access time of the disk, and by
servicing I/O requests without accessing the disks them-
selves,

4 Disk Performance
4,1 Response time and throughput

The two most important performance metrics for stor-
age 1/O are response time and throughput. Response time
is measured from request initiation to request completion.
Throughput is the amount of data that can be transferred
to and from the disk subsystem within a given period of
time, Depending on the application, one measure may be
considerably more important than the other. For exam-
ple, in transaction processing, which is often characterized
by numerous, small 1/O requests, high throughput is the
more important metric, allowing requests to be serviced
independently and in parallel, For supercomputer appli-
cations, which are often characterized by a few, large I/O
requests, response time is the more important measure.
Response time and throughput both depend on the access
time for disks, and there are many techniques for improv-
ing the access time,

4.2 Access time

When the computer system generates an I/O read re-
quest, it places the request in a service queue where it
waits for the appropriate disk drive to become available.
When the disk is available, a path is requested to send
the read request from main memory to the disk. Depend-
ing on the I/O subsystem, this path can be comprised of
several component paths, such as buses, each of which is
responsible for passing the read request part of the way
between main memory and disk. If the path consists of
more than one component path, a request for a path to
disk can be realized as several requests, each for a sepa-
rate component path, The read request can be stored in a
buffer if a request for a component path is pending,




When the read request arrives at the disk, the disk drive
arm moves the read/write head to the target cylinder,
waits for the target sector to rotate to its read/write head,
and transfers the requested data to the disk drive buffer, if
one is available, or directly to the path. The data is then
transferred across each component of the path, although
it may be stored in buffers if a component of the path is
unavailable.

Much progress has been made in reducing the access
time for a disk subsystem, The access time consists of the
following:

o queuing time

¢ path time

o seek time

¢ rotational latency

¢ disk transfer time

Queuing time is the time a request spends waiting for the
disk drive to become available. Path time consists of the
time spent waiting for a path to or from a disk in addition
to the time the path is used for data transfer. If the path
consists of several component paths, the total path time
is the summation of the path times for each component
path. Seek time is the time required to move the disk
read/write head to the target cylinder. Rotational latency
is the time required for the requested sector to rotate to the
read/write head. Disk transfer time is the time required
to transfer data between the disk drive medium and the
disk drive buffer or path. If an I/O request spans more
than one track, multiple path times, seek times, rotational
latencies and disk transfer times may be incurred. The
next section reviews several techniques for reducing. each
component of the access time.

5 Reducing the Access Time
5.1 Reducing the queuing time

The queuing time is the time a request spends waiting
for the disk drive to become available. The time depends
on the other access time components and the workload.
It can be reduced by providing more actuators to service
1/O requests [Scra83]. Actuators can be added to exist-
ing disk drives, Alternately, disk drives can be added to
the disk subsystem. Either method reduces the amount
of data stored per actuator [Gray90]. It has often been
observed that disk skew, the observed phenomenon where
a few disks service most of the disk requests, may reduce
the benefit of adding independent disks [Kim86). Many
researchers have suggested that interleaving data across
multiple disks can more evenly distribute the requests (see
Section 6 for more discussion).

Another method is to use shadowed disks [Bate85]
[Bitt88]. Disk shadowing keeps N copies of the same data
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on N different disks. Each disk can then service a different
1/0O read request to the same data, thus reducing the queu-
ing time for accesses’to that data. The drawback to using
shadowed disks appears when I/O write requests must be
serviced, since all N disks must service each write request.
As a result, the completion time for a write request to a
set of shadowed disks is the completion time for the last
disk drive to process that request.

5.2 Reducing the path time

The path time for an I/O request consists of two com-
ponents - the time spent waiting for a path to become free,
referred to as the path wait time, and the time spent using
the path, referred to as the path hold time. If the path
consists of several components, then the path wait time
and path hold time are the sum of the path wait times
and path hold times for the individual components. Path
wait time is a function of the number of requests for the
required path and the path hold time. It can be reduced
by increasing the number of paths. If all else is constant,
increasing the number of paths reduces path contention by
permitting more than one simultaneous path request to be
handled, increasing the performance of the disk subsystem
[Ngs8].

When a disk drive first initiates a seek to the target
cylinder, it can disconnect from the controller, releasing
the path to service other I/O requests. This reduces the
path hold time, which in turn reduces the path wait time.
After the disk arm has moved to the target cylinder, the
connection is reestablished. The path is then held until
the target sector rotates to the read/write head. Since ro-
tational latency can be large, on the same order as seek
time, many disk drives have hardware that allows the disk
to disconnect from the controller while the target sector is
rotating to the read/write head, again releasing the path
to service other I/O requests [Ng91]. These disk drives
have rotational position sensing (RPS) logic which allows
them to detect when the requested data will be beneath
the read/write head, at which time the disk requests re-
connection, This also reduces the path hold time and path
wait time,

If the controller or path is not available when the disk
drive attempts a reconnection, an RPS miss occurs. The
penalty for an RPS miss is the full rotation required before
the target sector is again under the read/write head. RPS
misses can be eliminated by placing a full-track buffer on
the disk drive. For read requests, the data is read from the
disk medium into the buffer as soon as the disk arm reaches
the target cylinder, up to and including the target sector.
Depending on the implementation, data following the tar-
get sector may also be read into the buffer. When the disk
drive / controller connection is again established, data is
transferred from the buffer to the controller. If the disk
drive requests and establishes the connection to the con-
troller before the data is completely transferred from the
disk medium to the buffer, data transfer between medium




and bufler and data transfer between buffer and path can
be overlapped. Overhead is incurred to transfer data from
the medium to the buffer. By overlapping data transfers,
this overhead is reduced.

Buffers provide another advantage since data can now
be transferred at the speed of the buffer, which is usually
substantially faster than the disk medium transfer rate.
This can result in a significant reduction in path hold time,
which in turn reduces path wait time. Another advantage
is that buffers allow the disk drive to temporarily release
the controller and path during a data transfer. This pre-
vents a long data transfer from dominating the path, allow-
ing other disk requests to be serviced. For example, the
controller can initiate seek/rotate requests on idle disks
[Cher90), reducing the path wait time.

Buffers also allow data to be transferred to a disk drive
while the disk arm is moving to the target cylinder and
the target sector is rotating to the read/write head. This
reduces the perceived path time since the path time is
overlapped with the seck time and rotational latency. This
technique can only be applied for I/O writes.

Many current disk drives have buffers and hardware to
implement the RPS feature, including Maxtor [Maxt89],
Seagate [Seag90], and Fujitsu [Fujigo}.

Other methods exist for reducing the path hold time,
such as making the path faster and/or wider. Both changes
will reduce the path hold time and path wait time, These
are two improvements being made in the SCSI-2 bus pro-
tocol [NCR90).

5.8 Reducing the seek time

The seek time is the time required to move the disk
drive read/write head to the target cylinder. The disk
manufacturer specifies the average seek time required to
move the read/write head from one track to any other
track. Scranton et al. [Scra83), however, observed that
the number of tracks a read/write head traverses when
servicing 1/O requests is often very small. In fact, for
many requests, the head does not move at all.

There are several techniques for reducing the seek time.
One method is to use shadowed disks Bitt88).. Since there
are N copies of the same data on N different disk drives,
any of the N disks can provide data for an I/O read request,
The disk drive whose actuator has the shortest seek time
to the desired track is the one designated to service the
1/O request.

When several I/O requests are queued for service, disk
scheduling policies [Teor72, Geis87a, Bitt89] can be used
to reorder them to minimize the average seck time, indi-
vidual waiting time, and/or variance in waiting time. Sev-
eral algorithms have been proposed, including First-Come-
First-Served (FCFS), Shortest-Seek-Time-First (SSTF)
and SCAN. FCFS is the simplest and fairest scheduling
policy, but it often results in high average seck and wait-
ing times. Shortest-Seek-Time-First, in which the request
closest to the current cylinder is processed regardless of
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the direction the disk arm must move, has the lowest aver-
age seek time and can have the lowest waiting time. The
drawback to SSTF is that requests can remain indefinitely
in the quene if the load is high. SCAN is similar to SSTF
except that the disk arm services the closest request in the
queue as it moves across the disk in one direction. When
it reaches the last track, it reverses direction and contin-
ues servicing requests. This policy is fairer than SSTF
and attempts to reduce the variance in waiting times while
still achieving low average seek and waiting times, SCAN
is less efficient than SSTF for light workloads, since the
disk arm moves back and forth from one end of the tracks
to the other regardless of where the outstanding requests
are. LOOK accounts for this by moving the disk arm in
one direction until no more requests can be serviced in
that direction, and then reversing direction. This improves
performance over SCAN for light workloads. C-LOOK, a
modification on LOOK, reduces the variation in the av-
erage waiting time by scanning the disk in one direction
only. When there are no more requests to be serviced in
that direction, the disk arm moves back across the disk
without servicing any requests, and then begins again.

Geist et al. [Geis87) studied SSTF and SCAN, and sug-
gested a modification of SSTF. A window of tracks can be
defined starting at the current disk arm position. If there
are requests lying within this window, the next request to
be serviced is chosen from among these requests using the
SCAN policy. If there is no request within the window, re-
quests outside the window are considered using a variation
on the SSTF policy where a penalty equal to the number
of tracks in the window is paid if the disk arm must re-
verse its direction., For example, if there is a request on a
track far beyond the window and another request nearby
but in the opposite direction, the request in the opposite
direction is serviced next.

5.4 Reducing the rotational latency

Rotational latency is the time taken for the desired
sector to rotate to the read/write head. The average
rotational latency is usually stated as 1/2 the time for
one disk spindle rotation. The rotation speed has been
roughly 3600 RPM for the last 20 years although state-
of-the-art disk drives have reached 4400 RPM and even
5400 RPM [Seag9la, Fujigl). Physical constraints such
as higher power requirements and greater heat dissipation
have made it difficult to increase this speed [Ng91). In ad-
dition, more sophisticated electronics are required to sup-
port the increased data rate.

Ng [Ng91) has proposed several architectural strategies
for reducing rotational latency. His firat strategy uses mir-
rored disks, also known as dual copy or duplex disks, which
are shadowed disks where the number of disk drives is two.
If both disks are synchronized so their disk arms move to-
gether, their seek times are the same. In addition, if their
spindles are synchronized so data on the two disks are 180
degrees out-of-phase, rotational latency for data can be re-




duced to 1/4 of a rotation instead of 1/2 as in the conven-
tional case. The disadvantage to this approach, however,
is that an 1/O write request must be serviced by both disk
drives. Ng proposes that non-volatile storage be added to
the control unit to allow the second write to complete at
a later time, independent of when the current I /O request
is considered complete, If another 1/O request is received
by the disks, it is stalled until the second write completes.

A variation of this approach is to duplicate data within
each disk drive. For example, data on one half of each
track can be duplicated on the other half of the track.
Again, rotational latency is reduced to 1 /4 of a rotation,
The disadvantage to this approach, as with the previous
approach, is that disk storage is essentially halved. Non-
volatile storage can be used to complete the second write
as previously described.

One method for avoiding the storage loss associated with
duplicated data is to put two diametrically opposing actu-
ators on one disk drive. In this configuration, both heads
move together to the same cylinder, with the head closest
to the target sector selected to process the 1/0O request.
An additional advantage is that an I/O write request only
requires a single physical write since data is not duplicated.

5.5 Reducing the disk transfer time

The disk transfer time is the time required to copy data
from the disk drive medium to a disk drive buffer, if one
is available, or directly to a path. It is limited by the
rate at which data passes under the read/write head. By
increasing either the linear bit density of the disk drive
medium and/or the rotational speed, the disk transfer time
can be reduced.

Many researchers [Kim86, Livn87, Sale86] have sug-
gested interleaving data, also known as striping data,
across several disk drives. This allows parallel transfer of
data to and from the disk medium, thereby reducing the
disk transfer time. Large amounts of data can be quickly
transferred to and from disks using this method. Kim
[Kim86) examined the effects of interleaving data at the
byte level across disks in which the actuators and spin-
dles were synchronized. She compared this disk organi-
zation with a more conventional disk subsystem in which
the disks were independent and disk requests were skewed
and unevenly distributed across the disks. Kim made the
interesting observation that a conventional disk subsystem
becomes saturated before all the disk drives are fully uti-
lized, due to the skewed nature of the I/O requests. An
interleaved system, on other hand, is almost fully utilized
when it reaches its saturation point, since all disks service
all I/O requests.

Livay et al. [Livn87] examined the effects of inter-
leaving data among disks at the track level, which they
called declustering. They considered independent disks
and investigated the effects of having simultaneous re-
quests serviced by the disk subsystem. They also con-
sidered multiple-block requests.
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Reddy et al. [Redd89] examined the effects of interleav-
ing data at the byte level, which they termed disk synchro-
nization, and interleaving data at the block level, which
they termed declustering. Interleaving data at the byte
level enables the disks to function together as a single logi-
cal disk when servicing a request., The seek time and rota-
tional latency remain the same as for a single disk. Declus-
tering data enables several disks to simultaneously gervice
a multi-block request or enables them to independently ser-
vice separate single-block requests. A set of disks can be
separated into several groups. Disks within a group can
cooperate to service individual requests, providing high
transfer rates. Each group functions independently of the
other groups and can service separate requests. Thus data
is declustered between groups of disks and is interleaved
within each group.

6 Some tradeoffs in disk array design

A set of disks can be treated as independent disks, a sin-
gle laxge logical disk, or some combination of the two. Ng
[Ng89) notes that the organization will affect the number
of logical devices available to service I/O requests, which
in turn affects quening time. When the workload for a disk
subsystem is light, the number of logical devices available
is not a primary concern, and techniques can be used to
reduce the access time. As an example, interleaving data
at the byte level across two or more disks can be used to re-
duce the disk transfer time. This also distributes the load
on the disks more evenly compared to a non-interleaved
disk subsystem. In addition, the interleaved disks appear
as one logical device. This is an advantage since it is eas-
jer to control one or a few logical devices than multiple
independent disk units.

If, however, the disk subsystem workload is heavy and
the I/O requests require small transfers, interleaving data
at the byte level has disadvantages. Fewer logical devices
are available to service I/O requests, negatively impacting
the queuing delay [Ng89]. This occurs because the disk
transfer time is a small component of the I/O access time,
and requests benefit little from the decrease in transfer
time. In addition, all interleaved disks must perform seeks
and incur rotational latencies to process an 1/0 request, re-
sulting in high disk utilizations and increasing the queuning
time. Of course, when 1/O requests involve large trans-
fers, so the disk transfer time is a large component of the
I/O access time, the reduction in access time provided by
interleaved disks may compensate for the reduction in the
number of logical devices and actually reduce the quening
delay.

If data is interleaved at the block level across a set of
disks, I/O requests for data larger than a block will also re-
quire more than one disk drive to service them. Each disk
will incur seek and latency overheads. The total overhead
incurred for such I/O requests will be greater than what
would be incurred by a single disk in a system consist-




ing of independent disk drives. This is one of the reasons
Gray et al. [Gray90] proposes that data not be interleaved
for systems requiring high throughput. If data is not inter-
leaved, then only one disk drive is needed to service an I/O
request, and only one disk drive incurs seek time and ro-
tational latency. The total disk transfer time spent by the
disk subsystem to service the request remains the same.
Now, however, the other disk drives are free to service
other I/0 requests. In essence the interleaving or striping
unit is infinitely large. Parity data is maintained for relia-
bility. This parity data is interleaved across the disks for
performance reasons (see Section 8 for further discussion).
One caveat is that complexity is added to the software,
which must appropriately place data on the disks to take
advantage of this organization.

A similar tradeofl exists when using mirrored disks to
reduce the rotational latency, as discussed in Section 5.4.
Mirrored disks used in this way reduce the number of log-
ical devices since both disks seek to the same target cylin-
der yet only one of them will actually service the I/O re-
quest. By reducing the number of logical devices, the sys-
tem throughput may be reduced, especially under heavy
workloads.

A different tradeoff occurs when spindle synchronization
is considered [Kim91). Assuming data is interleaved at the
byte level across a set of disks and the disk arms on the sep-
arate disks move together to the same cylinder, rotational
latency for the interleaved disks is the maximum of the la-
tencies of all the disks. Ng [Ng89) determined that without
spindle synchronization, the rotational latency for a disk
array quickly grows with each additional disk and even-
tually becomes a full rotation. For small data transfers,
rotational latency is often the dominant delay component,
and therefore the effect of increased rotational latency is
substantial, For large data transfers, where the rotational
latency is not a dominant delay component, the effect is
not as important and may even be insignificant.

7 Eliminating disk accesses

Perhaps the best way to improve the performance of
disk accesses is to avoid them. A cache can effectively use
the principles of temporal and spatial locality to provide
fast access to disk blocks. Disk blocks can be cached at
several places within the disk subsystem. Many operat-
ing systems, including UNIX, maintain a cache of recently
used disk blocks in main memory. Ousterhout [Oust85]
and Smith [Smit85] suggest that a large percentage of 1/O
requests can be serviced without going to disk. This reduc-
tion in the number of physical disk requests is determined
by a number of factors, including cache size and write pol-
icy. For reliability, file data should always be written to
disk immediately (a write-through policy). For maximal
reduction of physical disk requests, file writes should be
postponed for as long as possible (a delayed-write policy).
UNIX compromises by periodically flushing dirty blocks to
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disk. Ousterhout [Oust85) found that by using a delayed-
write policy, the number of I/O writes was reduced because
file data is often overwritten or deleted shortly after being
written. Alternately, systems that have I/O processors can
keep a separate cache of disk blocks with the I/O proces-
sor [Miya86]. An advantage of this scheme is that main
memory resources can be used for other purposes,

Disk blocks can also be cached on a storage controller
such as the IBM 3880 [Gros85). Drawbacks of this scheme
are the software overhead to access the storage controller
and path time between main memory and the storage con-
troller. This overhead is incurred even for cache hits. An-
other potential drawback is that several paths can exist
between main memory and the disk drives, such as in
fault-tolerant systems. Since each path can pass through
a different storage controller and have a different cache
associated with it, cache consistency must be maintained
[Smit85).

Another place to cache data is at the disk drive {Mits85,
Smit85]. Many disk drives now contain this capability,
including Maxtor [Maxt89), Seagate [Seag91], and Fujitsu
[Fuji90}. In these cases, disk caches are small (4 - 8 tracks).
They play a dual role of avoiding physical disk accesses
as a cache and improving disk access performance as a
buffer (as described in Section 5.2). These caches can be
used to read the entire track containing the block to be
read and to prefetch the next track. As with caching at
the storage controller, cache hits incur software overhead
and path time. Unlike storage controller caching, cache
consistency is not a problem when data is cached at the
disk drive,

There are some tradeoffs in deciding if disk blocks should
be cached. Time required to search a cache and move disk
blocks into the cache are two potential sources of overhead.
Caching disk blocks is only beneficial when the reduction
in physical disk accesses compensates for the overhead. If
the hit ratio is poor, caching disk blocks can degrade over-
all performance [Smit85]. When the data being accessed
exhibits poor locality, it may be appropriate to disable
caching. It may also be appropriate to only cache data
which exhibits the greatest amount of locality. Another
tradeoft to consider is prefetching disk blocks, which can
reduce performance. Requests for other disk blocks can-
not be serviced during prefetching. Therefore, prefetching
is only beneficial when there are enough requests for se-
quential disk blocks.

Another method for reducing the number of disk ac-
cesses is to combine 1/O requests. This improves perfor-
mance because seek time and rotational latency do not
scale with request size. I/O requests that access sequen-
tial disk blocks can be combined as they are queued wait-
ing for disk drives or for a path component in any part
of the I/O subsystem. In fact, the file system can be de-
signed to merge I/O requests. An example of this is the
log-structured file system being developed at UC Berke-
ley [Oust89]. The log-structured file system treats the file
space on disk as an append-only log. Conceptually, write




performance is greatly improved, because large numbers
of writes are merged into a single disk access, and read
performance is unaffected. This file system does have its
own set of problems, however, such as garbage collection
and the inability to use file placement strategies.

8 Reliability

Many techniques for improving the access time ofan I/O
request, such as those described in Section 8.5, involve the
utilization of several disk drives. Reliability for an array
of disk drives, however, is inversely proportional to the
number of disks in the array [Patt88]. If a disk is damaged
and needs to be replaced, a new disk must be loaded from
tape. If data is interleaved at the byte level, no data blocks
can be retrieved from the disk array until the damaged disk
is replaced. If data is interleaved at a block level, data on
the remaining disks may still be retrieved.

Several techniques have been suggested over the years
for improving the reliability of disk drives. Recently
these techniques have been labeled as RAID levels [Patt88,
Katz89], where RAID stands for Redundant Arrays of In-
dependent Disks. To provide disk arrays with high reliabil-
ity using minimum redundancy, Ouchi [Ouch78] and Kim
[Kim85] add a check-sum disk (not dissimilar to RAID level
3, which uses a parity disk). The check-sum disk is used
to reconstruct the data on a damaged disk. RAID level 5
interleaves parity and data at the block level across disks
to provide bath high reliability and high performance. In-
terleaving data at the block level allows large requests to
be serviced by all disk drives and potentially allows small
1/0 read requests to be simultaneously serviced by indi-
vidual disk drives. Interleaving parity and data potentially
allows multiple small 1/O write requests to be simultane-
ously serviced. Lee et al. [Lee91] analyzed performance
consequences due to parity placement.

If a parity disk is used to provide reliability for an inter-
leaved disk array, and one of the disk drives is damaged,
2ll disks must be accessed to reconstruct the data on the
damaged disk and only one disk request can be serviced at
a time, For applications, such as transaction processing,
however, data must be reliably stored and quickly recov-
erable. Disk shadowing provides a highly reliable solution
[Bate8s] [Bitt88] since it keeps a copy of the data on more
than one disk drive (RAID level 1). Thus any disk can sat-
isfy an I/O read request while each disk must be updated
for an I/O write request. If one disk becomes damaged, the
other disks can immediately service future I/O requests. A
new disk can be incorporated into a shadow set by copying
ore of the working disks.

The reliability of other components in a disk subsystem
can also be improved through the use of redundancy. Pairs
of controllers and duplicate paths connected to dual-ported
disk drives provide a common configuration for achieving
highly reliable disk subsystems [Bitt88]. Schulze [Schu8]
shows that by organizing a disk array subsystem in a ma-
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trix with SCSI strings forming the columns, the reliability
of a disk array can be further increased if the relationship
between SCSI strings and parity is considered. For exam-
ple, if parity is calculated using only one disk drive from
each SCSI string, then the disk subsystem can recover if a
SCSI string fails.

9 Conclusions

We have attempted to take a first step toward removing
the bottlenecks in the I/O subsystems of modern comput-
ing systems. Our methodology is to provide a framework
wherein the I/O subsystem can be treated in a system-
atic, coherent manner, and then to address each mecha-
nism within that framework.

To do this, we first separate the I/O space into three
components that we feel have characteristics that are in-
herently sufficiently dissimilar that treating them together
would cloud our ability to understand the basic properties
of the bottlenecks. They are storage I/O, network I/0, and
non-storage 1/O. Issues such as speed/bandwidth, latency
and contention are of course important, but, we feel, only
within the context of the larger classes described above,

Next, we begin the process of focusing on the issues per-
taining to improving the performance of the various basic
mechanisms in the I/O subsystem. Most of this paper is
spent treating magnetic disks and disk arrays. We discuss
both the basic mechanical characteristics of magnetic disk
media and the architectural strategies that govern their
use.

In companion papers, we will continue this process; ie.,
we will address issues associated with other basic mecha-
nisms within each of the three classes of I/0, We will also
explore how the basic mechanisms cooperate on operations
that transcend the I/O class boundaries.
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