
Scheduling for Modern Disk Drives and Non-Random Workloads

by

Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt

CSE-TR-194-94

Computer Science and Engineering Division

Room 3402 EECS Building

UNIVERSITY OF MICHIGAN

Department of Electrical Engineering and Computer Science

Ann Arbor, Michigan 48109-2122

USA



Scheduling for Modern Disk Drives and Non-Random Workloads

Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt

Department of Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor 48109-2122

March 1, 1994

Abstract

Disk subsystem performance can be dramatically improved by dynamically ordering, or scheduling, pending

requests. Modern disk drives have several features, such as complex logical-to-physicalmappings and large prefetching

caches, that can in
uence scheduling e�ectiveness. Via strongly validated simulation, we examine the impact of these

features on various scheduling algorithms. Using both synthetic workloads and traces captured from six di�erent user

environments, we arrive at three main conclusions: (1) Incorporating complex mapping information into the scheduler

provides only a marginal (less than 2%) decrease in response times for seek-reducing algorithms. (2) Algorithms

which e�ectively utilize a prefetching disk cache provide signi�cant performance improvements for workloads with

read sequentiality. The cyclical scan algorithm (C-LOOK), which always schedules requests in ascending logical order,

achieves the highest performance among seek-reducing algorithms for such workloads (�ve of the six examined). (3)

Algorithms that reduce overall positioning delays produce the highest performance provided that they recognize and

exploit a prefetching cache.
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1 Introduction

Disk subsystems must be carefully managed to compensate for the growing performance disparity between pro-

cessing and storage components. Disk workloads are often characterized by intense bursts of activity, creating long

queues of pending requests [McNu86, Ruem93]. When such queues develop, the disk scheduler is responsible for dy-

namically ordering the pending requests to decrease service times. A signi�cant portion of request service time may

consist of mechanical positioning delays, which are highly dependent on the relative positions of the various request

blocks and the current disk arm position. By taking into account the various delays associated with disk accesses,

a scheduler can produce a request stream that minimizes the total positioning overhead but provides reasonable

response times for individual requests.

Over the past 25 years, a variety of scheduling algorithms have been proposed and implemented in both academia

and industry. Their relative merit is dependent on the exact workload of disk requests, the scheduler's computational

resources, and the available knowledge of disk drive con�guration and current status. Most previous studies of

scheduling algorithms use simplistic disk models, lacking several important features present in modern disk drives.

On-board logic has expanded, enabling a high-level interface to hide the the mapping of logical data blocks to physical

media, and consequently make this information unavailable to any external scheduling entity. Small speed-matching

bu�ers have been replaced with large prefetching caches. In this report, we investigate how these features a�ect the

performance of various disk scheduling algorithms.

Previously published work has been limited to synthetic workloads. Most of these studies assume that request

starting locations are uniformly distributed over the entire disk. While much can be learned using such random

workloads, the validity of the results remains in question until veri�ed using more \realistic" workloads. We use

random workloads to allow for comparison with previous work, but most of our experiments use extensive traces taken

from various real-world systems. The traces and synthetic workloads are used to drive a very detailed, well-validated

disk simulator.

For random workloads, our results correlate well with previous studies. Algorithms that attempt to reduce seek

delays improve performance for all but the lightest workloads. Algorithms that target both seek and rotational

latency reduction provide even higher levels of performance. In addition, we show that little bene�t is obtained by

incorporating full logical-to-physical mappings into seek-reducing scheduling algorithms. Scheduling based purely on

logical block numbers falls less than 2% behind full-map scheduling for all seek-reducing algorithms examined.

With the real-world traces, we show that full logical-to-physicalmapping information does not provide a signi�cant

performance advantage for seek-reducing algorithms (matching the results for random workloads). However, the

relative merit of the various algorithms is quite di�erent from that observed for random workloads. The signi�cant

sequentiality and locality that characterize most of the traces cause the on-board, prefetching disk cache to play a

major role. Scheduling algorithms that utilize the cache e�ectively achieve higher performance. The cyclical scan

algorithm (C-LOOK), which always schedules requests in logically ascending order, generally outperforms other seek-

reducing algorithms. Algorithms that reduce both seek and rotational latency delays attain even higher performance,

provided they explicitly recognize and exploit the prefetching cache.

Section 2 describes some of the features of modern disk drives and how they can a�ect scheduling accuracy.

Section 3 discusses previous scheduling algorithm research. Section 4 describes our methodology, including our
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validation e�orts and the origins of the six traces. Sections 5 and 6 present our results using random workloads and

traces, respectively. Section 7 summarizes this report and suggests some avenues for future research.

2 Modern Disk Drives

A disk drive contains a set of rapidly rotating platters (on a common axis) coated on both sides with magnetic

media (see �gure 1). Data blocks are written in circular tracks on each surface. The minimumunit of data storage

is usually a sector, which typically holds 512 bytes of data plus some header/trailer information (e.g., error correction

data). A cylinder is a set of tracks (one from each surface) equidistant from the center of the disk. For example,

the innermost cylinder contains the innermost track of each surface. Therefore, a physical location is de�ned by its

cylinder, surface, and sector. The disk arm holds a set of read/write heads that can be positioned to access any

cylinder. The heads are ganged together such that a given disk arm position corresponds to a speci�c cylinder of

data. In most drives only one read/write head is active at any given time.

Figure 1: Disk Drive Internals

Requests serviced by the disk drive may su�er one or more mechanical delays. First, the disk arm must move

(seek) to the target cylinder. Second, rotational latency is incurred while waiting for the target sectors to rotate

into position under the read/write head. After these delays, the data transfer begins. Additional mechanical delays

result if multiple tracks or cylinders must be accessed.

Current disk drive implementations have several features that can directly a�ect the accuracy of scheduling

algorithms. Some features are the result of e�orts to make disks self-contained or self-managed. Clever methods

of increasing a disk drive's capacity and e�ective lifetime also have a major impact. One goal of our work is to

determine exactly how these features should factor into scheduling algorithms.
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2.1 Host Interface

Most disks possess su�cient on-board logic and processing power to present a relatively clean interface to the

host system. Such protocols as the Small Computer System Interface (SCSI) and the Intelligent Peripheral Interface

(IPI) are used by a wide variety of disk drive, adapter, and host system manufacturers. The host or intermediate

controller presents a request to the disk drive in terms of the starting logical block number (LBN) and total

request size. The details of the subsequent media access are typically hidden from the host. This approach o�oads

most of the management overhead associated with the actual data storage from the host or controller to the disk

drive electronics. On the other hand, scheduling entities outside of the drive itself often have little or no knowledge

of the data layout on the media, the status of any on-board disk cache, and the various overhead delays associated

with each request.

2.2 Data Layout

Many systems use simple LBN-based approximations of seek-reducing algorithms. LBN-based scheduling relies on

highly sequential logical block to physical block (LBN-to-PBN) mappings. More aggressive algorithms may require

accurate knowledge of the data layout. As mentioned above, such mappings may be unavailable or very di�cult to

obtain. The complexity of LBN-to-PBN mappings is increased by zoned recording, track and cylinder skew, and

defect management schemes.

2.2.1 Zoned Recording

To increase disk drive capacity per unit volume, most modern drives partition their set of cylinders into multiple

zones. The number of sectors per track increases with the radius of the tracks in the zone. For example, the

outermost zone may have twice as many sectors per track as the innermost zone. Within each zone, a subset of

cylinders (or tracks or sectors) may be reserved for management purposes (see section 2.2.3). Without knowledge of

the zone speci�cations and the locations of any reserved regions within each zone, a scheduler cannot determine the

physical location of a given logical block.

2.2.2 Track and Cylinder Skew

Given that a positioning delay is incurred when switching heads or seeking between adjacent cylinders, the �rst

logical block of each track or cylinder is generally o�set (skewed) from the �rst logical block of the previous track

or cylinder. Thus a request that crosses a track or cylinder boundary does not su�er unnecessary rotational delay

due to \just missing" the next logical block and waiting almost a full rotation for it to come around again. Track

and cylinder skews are often speci�ed as an integral number of sectors and may therefore di�er from zone to zone.

2.2.3 Defect Management

Disk drives are designed to survive the loss of hundreds of sectors or tracks to media corruption. In fact, new

drives usually contain a list of defects identi�ed at the factory. Defects grown during the course of the disk's lifetime
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are added to this list. LBN-to-PBN mappings are adjusted so that defective areas are not used for data storage.

Such adjustments fall under the categories of slipping and reallocation.

Sector or track slipping takes place when a disk is formatted. In the case of sector slipping, the formatting process

skips each defective sector when initializing the LBN-to-PBN mapping. If a defective sector is in the \middle" of

a track, the mapping is adjusted so that the sectors immediately adjacent to the defective sector will be logically

sequential. Track slipping follows the same routine, except that entire tracks are skipped if they contain any defective

media. Each slipped region changes the mapping of subsequent logical blocks, reducing the accuracy of a scheduler

that relies on static knowledge of the cylinder and/or the rotational position of each block. Extra space is reserved at

the end of certain tracks, cylinders, or zones to contain the spillover from the slipping process. If these spare regions

are organized as a set of cylinders at the end of each zone, the seek delay will increase whenever a zone boundary

must be crossed.

Reallocation occurs when defective sectors (or tracks) are discovered during normal disk usage. The a�ected

LBN's are dynamically remapped to spare regions. Any subsequent accesses are redirected to the appropriate spare

sectors. The disks we examined contained very few defects, producing no noticeable e�ects on disk performance.

2.3 On-Board Cache

The use of memory within embedded disk drive control logic has progressed from small, speed-matching bu�ers

to dynamically-controlled caches containing megabytes of storage. On-board disk logic can automatically prefetch

data into the cache to more quickly satisfy sequential read requests. For example, a disk might take 20 ms to service

a read request that requires media access. A subsequent sequential read might take only 2 ms if the requested data

blocks have been prefetched into the on-board disk cache.

Some disks also support the ability to signal request completion as soon as all write data has been transferred to

the cache (but not necessarily to the disk media). The on-board logic takes care of moving the data from the cache

onto the media at some later point. Note that there are reliability issues that must be considered when performing

such fast writes.

By utilizing a simple memorymanagement algorithm in the cache control logic, disks with so-called zero-latency

read or write capability can reduce their average response times by transferring data to or from the media in other

than FIFO order. For example, if an entire track of data is to be read from the disk, a disk capable of zero-latency

reads begins transferring data from the media as soon as any seek or head switch delays are complete.

Segmented disk caches contain multiple \cache lines," to use the common processor terminology. In addition,

some disks employ algorithms that use the history of recent requests to dynamically modify the number of segments

(and the segment size) in an attempt to improve cache performance.

The existence of an on-board cache a�ects scheduling activities in several ways. First, if the disk is con�gured

to prefetch aggressively, the current position of the read/write head cannot necessarily be determined by knowledge

of the location and length of the most recent request. The disk will continue reading beyond the end of a previous

read request, possibly switching read/write heads or seeking to the next cylinder. Second, cached data can be

accessed far more quickly than data obtained from the disk media. Requests that can be satis�ed by the cache could

therefore be given higher priority in order to reduce the average response time. Scheduling issues related to fast

writes, zero-latency access, and cache segmentation are left for future work.
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2.4 Overhead and Positioning Delays

There are several control and communication delays associated with servicing a disk request. Aggressive algo-

rithms must plan for such delays or the resulting schedules may actually be worse than those produced by simpler

algorithms. For example, if the initiation overhead is 1 millisecond and the rotational speed of the disk is 5400 RPM

(11.1 ms per rotation), a media access that would begin in 0.5 milliseconds without any overhead (given the current

rotational position) will actually begin in 11.6 milliseconds. If the initiation overhead were taken into account, a

request with a shorter delay might be chosen.

The seek pro�le for a disk drive is a complex function, usually containing an initial sawtoothed region for very

short seeks, a middle region approximated by a square root function and a large linear region for long seeks (see

appendix A). To accurately predict and compare the positioning times of individual pending requests, a scheduler

must have a relatively accurate approximation of this complex function or suboptimal schedules will result.

Lastly, the rotational speed of individual disk drives will vary slightly from factory speci�cations, and may even

vary from moment to moment. Most current drives can pass and receive rotational synchronization signals. By

monitoring these signals, a scheduler external to the disk can keep track of the exact rotational position of each disk

and make accurate rotational latency predictions.

3 Disk Scheduling Algorithms

Numerous studies have shown that a simple First Come First Served (FCFS) disk scheduling policy often results

in suboptimal performance. Many scheduling algorithms have been proposed that achieve higher performance by

taking into account information about individual requests and the current state of the disk subsystem.

3.1 Seek Delay Reduction

Over 25 years ago, [Denn67] analyzed the advantages of a Shortest Seek Time First (SSTF) policy. This algorithm

chooses the next request to service by selecting the pending request that will incur the smallest seek delay given

the current disk arm position. It is usually infeasible to predict the exact seek times between cylinders, but SSTF

may be closely approximated by using seek distances. SSTF reduces the average response time over a wide range of

workloads. However, the potential for starvation of individual requests increases with disk utilization, resulting in

excessive response time variance. Given a heavy workload, the disk arm tends to hover over a subset of the cylinders

in an attempt to exhaust all requests to that region, thereby starving any requests outside of that space.

[Denn67] also examined the SCAN or \elevator" algorithm, which provides a lower response time variance than

SSTF with only a marginal increase in the average response time (for the random workloads studied). This algorithm

is named for the way the disk arm shuttles back and forth across the entire range of cylinders, servicing all requests

in its path. It only changes direction at the innermost and outermost cylinder of the disk. Because the disk arm

passes over the center region of the disk at more regular intervals than the edges, requests to cylinders in the middle

of the disk receive better service. However, every cylinder is reached during both phases of the scan. As a result,

SCAN resists starvation more e�ectively (i.e., has lower response time variance) than SSTF.
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Several variations of the SCAN algorithm have been proposed. The Cyclical SCAN algorithm (C-SCAN) replaces

the bi-directional scan with a single direction of arm travel [Seam66]. When the arm reaches the last cylinder, a full-

stroke seek returns it to the �rst cylinder of the disk without servicing any requests along the way. C-SCAN treats

each cylinder equally, rather than favoring the center cylinders as SCAN does. The LOOK algorithm, another SCAN

variation, changes the scanning direction if no pending requests exist in the current direction of travel [Mert70].

C-SCAN and LOOK can be combined, resulting in the C-LOOK algorithm.

VSCAN(R), proposed in [Geis87], creates a continuum of algorithms between SSTF and LOOK. The R parameter

denotes how strongly biased the scheduler is towards maintaining the current direction of travel. VSCAN(0.0) is

equivalent to SSTF, and VSCAN(1.0) reduces to LOOK. [Geis87] suggests that VSCAN(0.2) provides a good balance

between the average response time of SSTF and the starvation resistance of LOOK. The CVSCAN(N,R) variation

described in [Geis87a] augments VSCAN by examining more than just the \closest" request in either direction from

the current disk arm position. Instead, the average seek distances to the \closest" N requests in each direction are

used for making scheduling decisions (i.e., CVSCAN(1,R) = VSCAN(R)).

3.2 Positioning Delay Reduction

Reducing the average seek delay requires only knowledge about the relative seek distances between requested

data. In order to also account for rotational latency, more complete information about the actual mapping of data

blocks onto the media is necessary. In addition, the current physical location of the active read/write head must

be known. Given this information, the scheduler can choose the request with the minimum positioning delay (i.e.,

combined seek and rotational latency). This policy was denoted as Shortest Time First (STF) in [Selt90] and Shortest

Access Time First (SATF) in [Jaco91], but we use the term Shortest Positioning Time First (SPTF) to clarify the

exact focus of the algorithm.

3.3 Batch and Aging Algorithms

Several modi�cations to the above algorithms have been proposed to reduce response time variance. The resulting

algorithms can be generally classi�ed as either batch or aging algorithms. Batch algorithms service a subset of requests

satisfying certain criteria before moving on to other requests. Possible criteria include the position of the request in

the queue and/or the speci�c cylinder corresponding to the request [Teor72, Jaco91, Selt90]. Aging algorithms give

priority to requests that have been in the pending queue for excessive periods of time. If too much weight is given

to the queue time (age) component, such algorithms degenerate into FCFS. The priority may slowly increase as the

request ages, or a time limit may be set after which requests are given a higher priority [Selt90, Jaco91].

4 Methodology and Validation

4.1 Disk simulator

We have developed a detailed, strongly validated disk simulator to compare disk scheduling algorithms. The

simulator accurately models zoned recording, spare regions, defect slipping and reallocation, disk bu�ers and caches,
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HP C2247 Disk Drive

Formatted Capacity 1.05 GB

RPM 5400

Data Surfaces 13

Cylinders 2051

Sectors 2054864

Zones 8

Sectors/Track 56-96

Interface SCSI-2

256 KB Cache, 1-4 Segments

Track Sparing/Reallocation

Table 1: HP C2247 Disk Drive Basic Parameters

various prefetch algorithms, fast write, bus delays, and control and communication overheads. For this report, the

simulator was con�gured to model the HP C2240 series of disk drives [HP92]. Some of the basic speci�cations for

the HP C2247 drive [HP91] are provided in table 1.

In order to accurately model this drive, an extensive set of parameters was obtained from published documentation

and by monitoring the SCSI activity generated by an HP C2247 disk. The experimental system used was an NCR

3550 multiprocessor using the NCR 53C700 SCSI I/O Processor. System activity was tightly controlled during the

monitoring process to reduce extraneous host delays. We extracted a seek curve, control and communication overhead

values, bus transfer rates, and cache management strategies. We also determined the exact LBN-to-PBN mappings

for several of these disks, which provided information about zoning, sparing, and existing defects. Appendix A

provides a complete description of the various parameters.

The simulator was validated by exercising an actual HP C2247 and capturing traces of all SCSI activity. After

extracting appropriate information, each traced request stream was run through the simulator, using the observed

request interarrival delays. This process was repeated for several synthetic workloads with varying read/write ratios,

arrival rates, request sizes, and degrees of sequentiality and locality. The average response times of the actual disk

and the simulator match to within 0.8% in all cases. Unpredictable (from the disk's view) host delays partially

account for the di�erence. Greater insight can be achieved by comparing the response time distributions [Ruem94].

Figure 2 shows distributions of measured and simulated response times for a sample validation workload of 10,000

requests. As with most of our validation results, one can barely see that two curves are present. [Ruem94] de�nes

the root mean square horizontal distance between the two distribution curves as a demerit �gure for disk model

calibration. The demerit �gure for the validation run shown in �gure 2 is 0.07 ms, or less than 0.5% of the average

response time. The worst-case demerit �gure observed over all validation runs was only 1.9% of the corresponding

average response time.
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Figure 2: Response Time Distributions for a Validation Workload (50% reads, 30% sequential, 30% local [normal with

10000 sector variance], 8KB mean request size [exponential], 0-22 ms interarrival [uniform])

4.2 Workloads

We use synthetically generated random workloads and extensive traces captured from actual systems. We will

describe the traces only brie
y as they have been described elsewhere in more detail [Rama92, Ruem93]. The traced

workloads span a broad range of environments, and each trace is at least a full workshift (8 hours) in length.

Two of the traces come from Hewlett-Packard systems running HP-UXTM , a version of the UNIXTM operating

system [Ruem93]. Cello comes from a server at HP Labs used for program development, simulation, mail, and news.

Snake is from a �le server at the University of California, Berkeley used primarily for compilation and editing. While

these traces are actually two months in length, we report data for a single week-long snapshot (5/30/92 to 6/6/92).

The other four traces are from commercial VAXTM systems running the VMSTM operating system [Rama92].

Air-Rsv is from a transaction processing environment in which approximately 500 travel agents made airline and hotel

reservations. Sci-TS is from a scienti�c time-sharing environment in which analytic modeling software and graphical

and statistical packages were used. Order and Report are from a machine parts distribution company. Order was

collected during daytime hours, representing an order entry and processing workload. Report was collected at night,

capturing a batch environment in which reports of the day's activities were generated.

4.3 Disks

We chose to simulate members of the HP C2240 series of drives for three reasons. First, our simulator correctly

models the behavior of this line of drives. Second, these drives have most of the advanced features described in
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section 2. Third, we do not have detailed speci�cations for the disks used on the traced systems, nor access to such

disks in order to obtain this information �rst-hand.

This disk substitution leads to two signi�cant di�culties. First, our base disk (the HP C2247) has a di�erent

storage capacity than the disks used by the traced systems. To better match the size of the simulated disks to those

in the traced systems, we modify the number of platters (5 for Sci-TS, Order, and Report; and 9 for Cello, Snake,

and Air-Rsv) to create disks large enough to contain the active data without excessive unused media. We feel that

this is a reasonable approach, as a production line of disks often di�ers only in the number of physical platters.

The second and more important di�culty is that HP C2240 disks service requests at a di�erent rate than the

disks used in the traced systems. An ideal model would incorporate appropriate feedback e�ects between request

completions and subsequent arrivals. Unfortunately, information about the dependencies between individual request

arrivals and previous request completions is not present in the traces. Developing a methodology for realistically

modeling such feedback e�ects is an area for future research. The approach used here was to scale the traced

interarrival times and thereby produce simulation results for a range of average arrival rates. When the scale factor

is one, the simulated interarrival times match those traced. When the scale factor is two, the traced interarrival times

are halved (doubling the average arrival rate). However, even with an identity scaling factor the workload would

undoubtedly have been di�erent if the system traced were using HP C2240 disk drives. This is a common problem

with this type of trace-driven simulation (which behaves as an open system), but we believe that the qualitative

results and analysis are valid.

4.4 Metrics

The average response time (across all disks) is the primary metric used for comparing the various scheduling

algorithms. The squared coe�cient of variation (�2=�2) is also used, as in [Teor72]. Given a constant average response

time, a decrease in the coe�cient of variation implies reduced response time variance (i.e., improved starvation

resistance).

5 Synthetic Workloads

Synthetically generated random workloads were used in order to replicate previous work and obtain a starting

point for further experiments. The request stream consisted of 8 KB accesses (a typical �le system block size)

uniformly distributed across the available logical space. The request interarrival times were exponentially distributed,

with the mean varied to generate lighter or heavier workloads. The ratio of reads to writes was set to 2:1. Unless

otherwise noted, the disk model was con�gured with 38 slipped tracks (matching the largest defect list found in our

experimental HP C2247 disk drives). Each data point is the average of at least three separate runs of 250,000 disk

requests, corresponding to simulated workloads of 50 to 400 hours of activity.

The results are partitioned into three groups based on the level of information available to the scheduling al-

gorithms: scheduling based on LBN, scheduling given an accurate LBN-to-PBN mapping, and scheduling with full

knowledge (including current read/write head position, all overhead delay values, cache contents, etc.).
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5.1 Scheduling by Logical Block Number

Even if the scheduler has little or no knowledge of the LBN-to-PBN mapping for a given disk, it can approximate

seek delays via the \distance" between logical block numbers for individual requests. For example, if a request to

logical block 100 has just completed, an LBN-based C-LOOK scheduler will select a pending request for logical block

150 over one for logical block 200. The accuracy of this approximation is determined by the choice of scheduling

algorithm, the variance in sectors per track between zones, the defect slipping/reallocation schemes, and any cache

prefetching activity.

Figure 3a graphs the average response times for FCFS, LOOK, C-LOOK, SSTF and VSCAN(0.2) for a range of

average arrival rates. As expected, FCFS quickly saturates as the workload increases. Since C-LOOK is designed

to reduce the variance of response times (as well as the mean), its average response times runs 5-10% higher than

those of LOOK, SSTF and VSCAN(0.2) for medium and heavy workloads. For the sub-saturation workloads, SSTF

provides a slightly lower mean response time (up to 1% lower than VSCAN(0.2) and 2% lower than LOOK). For

workloads at the edge of saturation, SSTF loses to VSCAN(0.2) and LOOK by similar margins.

The 95% con�dence intervals shown in �gure 3b lend support to the above observations about FCFS and C-LOOK.

However, the intervals for LOOK (which are typical for SSTF and VSCAN(0.2) as well) prevent us from predicting

the relative positions of LOOK, SSTF and VSCAN(0.2) for a given arrival rate.

Figure 3c shows the squared coe�cients of variance (�2=�2) for the same set of experiments. FCFS has the

lowest coe�cient for lighter workloads, as would be expected. As FCFS begins to saturate and its response time

variance expands, C-LOOK emerges as the algorithm with the best starvation resistance. SSTF, while providing the

best average response time in most cases, is highly susceptible to starvation (as is evident by its larger coe�cient of

variation).

Similar results are reported in Teorey and Pinkerton's comparison of FCFS, LOOK, C-LOOK, and SSTF [Teor72].

They determined that SSTF and LOOK (SCAN) provide the best average response times, while C-LOOK has superior

starvation resistance for the heavier workloads. The simulation study in [Geis87] shows that the mean response times

of SSTF, SCAN, and VSCAN(R) match to within a few percent when requests are distributed across the disk in

either a uniform, unimodal, or bimodal manner. The observed starvation resistance of these algorithms also compares

well with our results. In [Selt90], SSTF (referred to as SSF) and C-SCAN are shown to provide roughly equivalent

disk utilization, but SSTF again provides inferior starvation resistance.

5.2 Scheduling with a Known Mapping

If the scheduler has knowledge of LBN-to-PBN mappings, it can more accurately predict seek delays and thereby

produce better schedules. However, a heuristic for choosing among requests within a cylinder must be designed. We

use a C-LOOK scheme in order to take advantage of the HP C2247's prefetching cache (see section 6). Thus each

scheduling algorithm uses C-LOOK as long as there are requests within the current cylinder to satisfy, and then one

of the various experimental algorithms to select the next cylinder to service.

The LBN-based and full-map versions of each algorithm produce almost identical performance, as measured by

both average response times and coe�cients of variation. As random workloads contain few sequential requests,

prefetching provides little or no performance improvement. The cylinder heuristic also has little e�ect, as individual

10




 
  FCFS
� �  C-LOOK
� �  LOOK
� �  VSCAN(0.2)

 
  SSTF

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|0

|50

|100

|150

|200

|250

 Mean Arrival Rate (Hz)

 A
vg

 R
es

po
ns

e T
im

e (
m

s)


















�
�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�





















(a) Average Response Time

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|0
|50

|100

|150

|200

|250

 Mean Arrival Rate (Hz)

 A
vg

 R
es

po
ns

e T
im

e (
m

s) FCFS C-LOOK LOOK

(b) 95% Con�dence Intervals (Average Response Time)


 
  FCFS
� �  C-LOOK
� �  LOOK
� �  VSCAN(0.2)

 
  SSTF

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

 Mean Arrival Rate (Hz)

 S
qu

ar
ed

 C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n



















�

�

�

�

� �
�

�

�

�

�

�

� �

�

�

�

�

�

� �





















(c) Squared Coe�cient of Variation

Figure 3: LBN-Based Algorithm Performance using a Synthetic (Random) Workload
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cylinders rarely contain multiple pending requests. Figures 4a and 4b display the average response times and

squared coe�cients of variation for both the LBN-based algorithms and the algorithms utilizing the full LBN-to-

PBN mapping. The only visible deviation is a slight increase in SSTF's coe�cient of variance for the full-map

algorithm. This is reasonable, as SSTF utilizes mapping knowledge strictly to reduce response times, often at the

expense of increased request starvation.

To determine the in
uence of excessive defects on the scheduler's accuracy, we modi�ed the simulator to model

an HP C2247 with half of its spare tracks (450 out of 900) �lled due to randomly grown defects. To maximize the

perturbation in the LBN-to-PBN mapping, all of the defects were dynamically reallocated. Even with over 2% of the

disk's tracks remapped, full mapping information provides little improvement in performance. SSTF, the algorithm

most sensitive to the LBN-to-PBN mapping, improves by less than 1%.

We conclude that maintaining a full LBN-to-PBN mapping is not justi�ed for seek-reducing algorithms when

scheduling random workloads.

5.3 Scheduling with Full Knowledge

Given su�cient computational resources, a full LBN-to-PBN mapping, accurate values for various control and

communication overheads, and some indication of the drive's current rotational position, the scheduler can select

the pending request which will incur the smallest total positioning delay (seek and rotational latency). As with

SSTF, SPTF is highly susceptible to request starvation. For this reason, we also examined an aging algorithm

based on SPTF. Denoted as Aged Shortest Positioning Time First, this algorithm is equivalent to the ASATF

algorithm proposed in [Jaco91]. 1 ASPTF adjusts each positioning delay prediction (Tpos) by subtracting a weighted

value corresponding to the amount of time the request has been waiting for service (Twait). The resulting e�ective

positioning delay (Teff ) is used in selecting the next request to issue:

Teff = Tpos � (W � Twait)

The weight suggested in [Jaco91] translates approximately to ASPTF(6.3). Figures 5a and 5b present the per-

formance metrics for values of W ranging from 0 (SPTF) to 30. As W increases, the average response time slowly

grows, but the response time variance drops signi�cantly. In all cases, the algorithms that schedule based on predicted

positioning times have lower average response times than those based on predicted seek times. For higher values of

W, ASPTF su�ers a sharp increase in average response time when the disk begins to saturate. For a su�ciently

large W, ASPTF degenerates into FCFS.

An appropriate aging factor may result in an algorithmwith the average response time of SPTF and the starvation

resistance of C-LOOK. For example, ASPTF(6) and ASPTF(12) match the performance of SPTF for all but the

heaviest workloads, yet have much better starvation resistance. In fact, ASPTF(12) has lower response time variance

than C-LOOK, even though its coe�cient of variation is slightly higher.

Selecting the request with the smallest positioning delay entails signi�cant computational e�ort (especially for

large queues), cf. [Jaco91].

1We chose this algorithm over the WSTF algorithm suggested in [Selt90] because WSTF is somewhat insensitive to di�erences in

predicted positioning times when comparing requests whose waiting times are near the aging limit.
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Figure 4: Full-Map and LBN-Based Algorithm Performance using a Synthetic (Random) Workload
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Figure 5: Full-Knowledge Algorithm Performance using a Synthetic (Random) Workload
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Trace Length Number of Number of Average Total Read Seq. Read

Name (hours) Disks Requests Size (KB) Percentage Percentage

Cello 168 8 3,262,824 6.3 46.0% 2.5%

Snake 168 3 1,133,663 6.7 52.4% 18.6%

Air-Rsv 9 16 2,106,704 5.1 79.3% 7.8%

Sci-TS 19.6 43 5,187,693 2.4 81.5% 13.8%

Order 12 22 12,236,433 3.1 86.2% 7.5%

Report 8 22 8,679,057 3.9 88.6% 3.8%

Table 2: Basic Characteristics of the Traces

6 Traced Workloads

To gain an understanding of how various scheduling algorithms perform under actual user workloads, we used

traces of disk activity collected from systems in use at various industrial and research installations. The environments

in which the traces were captured are described brie
y in section 4. Some basic characteristics of the traces are given in

table 2. The traces vary widely in read/write ratios, access sizes, arrival rates, degrees of sequentiality, and burstiness.

The environments and characteristics of these traces are described more thoroughly in [Rama92, Ruem93].

The performance graphs in this section use a range of trace scaling factors. Note that the scaling factor (the

X-axis) is shown in log2 scale. The workloads with an identity scaling factor correspond to the traced request streams.

6.1 Scheduling by Logical Block Number

Figures 6-11 show the average response times and the corresponding squared coe�cients of variation for LBN-

based scheduling of the six traces. As above, FCFS scheduling performs poorly for all but the lightest workloads.

The relative performance of the other algorithms, however, di�ers from that observed for the random workloads.

The results indicate that the HP C2247's prefetching cache plays a large role in determining algorithm e�ectiveness.

Read requests for cached data can be serviced much faster than those which must access the disk media. If read

requests arrive at the disk in logically ascending order, some portion (or all) of the data for each sequential request

may already be in the prefetching cache when the request arrives. Therefore, algorithms that preserve any existing

read sequentiality achieve higher performance for workloads containing a signi�cant fraction of sequential or highly

local read requests.
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(b) Squared Coe�cient of Variation

Figure 6: LBN-Based Algorithm Performance using the Cello Trace
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(b) Squared Coe�cient of Variation

Figure 7: LBN-Based Algorithm Performance using the Snake Trace
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(b) Squared Coe�cient of Variation

Figure 8: LBN-Based Algorithm Performance using the Air-Rsv Trace
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(b) Squared Coe�cient of Variation

Figure 9: LBN-Based Algorithm Performance using the Sci-TS Trace
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(b) Squared Coe�cient of Variation

Figure 10: LBN-Based Algorithm Performance using the Order Trace
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(a) Average Response Time
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(b) Squared Coe�cient of Variation

Figure 11: LBN-Based Algorithm Performance using the Report Trace
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Trace Scale Factor C-LOOK LOOK VSCAN(0.2) SSTF

Cello 1.5 134 129 129 128

Snake 1.25 71.5 73.7 73.7 73.6

Air-Rsv 2.5 44.2 51.2 51.2 53.9

Sci-TS 2.5 31.0 54.7 55.7 57.5

Order 1.0 29.6 51.7 51.1 51.3

Report 1.0 59.4 63.2 64.8 80.2

(a) Average Response Times (ms) using a Prefetching On-Board Disk Cache

Trace Scale Factor C-LOOK LOOK VSCAN(0.2) SSTF

Cello 1.25 145 134 134 133

Snake 0.34 65.5 65.5 65.4 65.2

Air-Rsv 2.0 44.8 43.1 42.9 43.1

Sci-TS 1.69 92.6 64.4 63.6 61.8

Order 0.67 57.1 52.8 52.2 51.4

Report 0.71 60.2 55.3 55.5 54.6

(b) Average Response Times (ms) using a Speed-Matching On-Board Disk Bu�er

Table 3: Sample Average Response Times for LBN-Based Algorithms (taken from the \knees" of the Average Response

Time curves for the six traces)

Table 3a lists a sample point from the knee of each average response time graph. The LBN-based C-LOOK

algorithm, which always schedules requests in logically ascending order, provides higher performance than LOOK,

VSCAN(0.2) and SSTF for all traces except Cello. LOOK and VSCAN(0.2) generally outperform SSTF, as they

schedule sequential requests in logically ascending order during the \ascending" half of the scan cycle. However,

LOOK, VSCAN(0.2), and SSTF all exhibit similar performance when the last of a sequence of requests is scheduled

before the �rst. When this occurs, the requests are scheduled to the disk in logically descending order, negating

the performance advantage of the prefetching cache.
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Trace Scale Factor C-LOOK LOOK VSCAN(0.2) SSTF

Cello 1.0 11.5% 11.5% 11.5% 11.5%

Snake 1.25 21.8% 21.6% 21.6% 21.7%

Air-Rsv 2.5 15.0% 13.8% 13.7% 13.7%

Sci-TS 2.5 26.9% 25.7% 25.5% 25.3%

Order 1.0 17.6% 14.8% 14.8% 14.8%

Report 1.0 14.5% 14.2% 14.1% 13.7%

Table 4: On-board Disk Cache Hit Rates for LBN-Based Algorithms

For Cello, C-LOOK produces a higher average response time than the other seek-reducing algorithms. The Cello

environment is dominated by large bursts of write requests to a single disk [Ruem93]. Almost half of the requests are

serviced by this disk, with maximum queue lengths approaching 1000 at the identity scaling factor. In addition, this

trace contains the smallest fraction of sequential read requests, thus bene�ting the least from the prefetching cache.

Table 4 lists the disk cache hit rates for each of the sample points given in table 3a. For all workloads except Cello,

the C-LOOK algorithm exhibits a higher hit rate in the on-board disk cache. Note that even a small improvement

in cache hit rate can signi�cantly a�ect performance, due to the long mechanical delays incurred when accessing the

media (versus accessing the cache). A decrease in service time for even a single request can result in decreased queue

times for numerous pending requests.

Additional evidence of the bene�ts of optimizing for a prefetching cache can be found by comparing tables 3a

and 3b. The latter table lists sample points from a set of experiments where the disk \cache" is used only as a

speed-matching bu�er. Under this restriction, the performance of C-LOOK drops dramatically in relation to the

other seek-reducing algorithms. This is best seen in the Sci-TS trace: C-LOOK decreases the average response time

by better than 40% over LOOK, VSCAN(0.2), and SSTF when the cache is enabled, but it increases the response

time by over 40% when the on-board memory is used as a simple bu�er.

For some traces, such as Report, the performance improvement of C-LOOK over LOOK and SSTF is greater

than would be expected from the improvement in cache hit rate. The ascending order of scheduling maintained

by C-LOOK matches the prefetching nature of the disk. That is, the disk continues reading data beyond the end

of a read request, often moving the read/write head forward one or more surfaces (or even to the next cylinder).

So, requests which are logically forward of an immediately previous read will su�er shorter seek delays. This may

account for some of the additional performance achieved by C-LOOK scheduling.

For all traces, C-LOOK provides starvation resistance equivalent or superior to the other seek-reducing algorithms

(as evidenced by its squared coe�cient of variation). This is not surprising, as C-LOOK was invented for this purpose.

Predictably, LOOK has the next highest coe�cient for most workloads, followed by VSCAN(0.2) and SSTF.

6.2 Scheduling with a Known Mapping

Figures 12-17 display the average response times and squared coe�cients of variation for full-map scheduling of

the six traces. FCFS and the LBN-based C-LOOK algorithm are also shown for comparision purposes. Performance
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(a) Average Response Time
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(b) Squared Coe�cient of Variation

Figure 12: Full-Map and LBN-Based Algorithm Performance using the Cello Trace
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(a) Average Response Time
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(b) Squared Coe�cient of Variation

Figure 13: Full-Map and LBN-Based Algorithm Performance using the Snake Trace
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(a) Average Response Time
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(b) Squared Coe�cient of Variation

Figure 14: Full-Map and LBN-Based Algorithm Performance using the Air-Rsv Trace
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(a) Average Response Time
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(b) Squared Coe�cient of Variation

Figure 15: Full-Map and LBN-Based Algorithm Performance using the Sci-TS Trace
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(b) Squared Coe�cient of Variation

Figure 16: Full-Map and LBN-Based Algorithm Performance using the Order Trace
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(a) Average Response Time
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(b) Squared Coe�cient of Variation

Figure 17: Full-Map and LBN-Based Algorithm Performance using the Report Trace
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improvements are observed for LOOK, VSCAN(0.2), and SSTF under all workloads except Cello. This is not the

result of reduced seek times via better mapping information, but rather is caused by the heuristic we use to schedule

requests within a single cylinder. As described in section 5.2, the scheduler uses C-LOOK, LOOK, VSCAN(0.2),

or SSTF when moving between cylinders, but uses C-LOOK \within" a cylinder. Therefore, the cylinder-based

versions of LOOK, VSCAN(0.2) and SSTF use the prefetching cache much more e�ectively than their LBN-based

counterparts. Further research into heuristics for scheduling within a cylinder may be necessary.

To verify the relative importance of the C-LOOK heuristic compared to the full LBN-to-PBN mapping, we

modi�ed the scheduling algorithms to use a �xed number of sectors per cylinder (1024) rather than the actual

speci�cations (which are zone dependent). The resulting performance for all traces and algorithms is within 1% of

the performance obtained using the actual mappings. We conclude, as was the case for random workloads, that the

complexity of maintaining a full LBN-to-PBN mapping is not justi�ed for seek-reducing algorithms.

In general, the performance of full-map LOOK, VSCAN(0.2), and SSTF more closely match that of C-LOOK

than was the case for the LBN-based algorithms. For the �ve workloads where C-LOOK provides the best average

response times, this results in improved performance for LOOK, VSCAN(0.2), and SSTF. However, C-LOOK itself

obtains only a marginal reduction in average response time when the LBN-to-PBN mapping is known.

SSTF improves less than LOOK or VSCAN(0.2) when the mapping and cylinder heuristic are incorporated. In

the case of Report, the LBN-based SSTF scheduler is actually superior to the full-map version. This may be explained

by examining the way in which our SSTF full-map implementation di�ers from C-LOOK, LOOK, and VSCAN(0.2).

SSTF takes the \last known position" of the read/write head as being just beyond the last block of the immediately

previous request. C-LOOK, LOOK, and VSCAN(0.2) use the �rst block of the previous request instead. This is

required in order to keep multiple requests to the same location (or overlapping requests) from being unintentionally

starved by the three scanning algorithms. When the SSTF algorithm implementation is modi�ed to use the �rst

block, it achieves performance improvement equivalent to LOOK and VSCAN(0.2). This indicates that repeat or

overlapping requests exist in the experimental workloads. The fraction of such requests that are directly attributable

to our methodology (scaling of traced interarrival times) has not yet been determined.

The relative starvation characteristics of the scheduling algorithms generally match the results found for the

LBN-based schemes. For the Sci-TS trace, however, the full-map C-LOOK algorithm has only a marginal advantage

in response time variance over the other algorithms. In fact, SSTF has a smaller coe�cient of variance than C-LOOK

for the heaviest workloads, but its response time variance is still greater (due to the di�erence in the algorithms'

average response times). By satisfying all requests within a cylinder before moving to another cylinder, all algorithms

become somewhat less resistant to starvation.

6.3 Scheduling with Full Knowledge

Figures 18-23 show results for experiments using SPTF-based algorithms, as described in section 5.3. Because

these algorithms do not acknowledge and exploit the cache directly, we also present data for modi�ed versions which

track the contents of the on-board cache and estimate a positioning time of zero for any request that can be satis�ed

(at least partially) from the cache. The resulting algorithms are denoted as Shortest Positioning (w/Cache) Time

First (SPCTF) and Aged Shortest Positioning (w/Cache) Time First (ASPCTF).
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Figure 18: Full-Knowledge Algorithm Performance using the Cello Trace
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Figure 19: Full-Knowledge Algorithm Performance using the Snake Trace
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Figure 20: Full-Knowledge Algorithm Performance using the Air-Rsv Trace
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Figure 21: Full-Knowledge Algorithm Performance using the Sci-TS Trace
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Figure 22: Full-Knowledge Algorithm Performance using the Order Trace
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Figure 23: Full-Knowledge Algorithm Performance using the Report Trace
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The SPTF-based algorithms have both a signi�cant advantage and disadvantage over C-LOOK. The advantage

is the obvious improvement in positioning delay prediction accuracy due to the inclusion of rotational latency in-

formation. A full rotation for an HP C2240 series disk takes approximately 11 ms, equivalent to a seek of over 550

cylinders or 27% of the maximum seek distance. For non-uniform workloads (with shorter average seek distances),

the rotational latency delay represents an even larger fraction of the total positioning delay. The disadvantage is

that these algorithms have no inherent bias towards servicing sequential reads in ascending order. Pending requests

are selected based on their predicted positioning delay, not their LBN or cylinder. Even when cache knowledge is

incorporated, only subsets of a sequential stream may be serviced \in order." As a result, the prefetching cache is

less e�ectively utilized by SPTF-based algorithms. Table 5 lists the cache hit percentages for some sample points.

Note that C-LOOK always exhibits a higher cache hit rate, as all sequential streams are processed in a logically

ascending manner.

Trace Scale C-LOOK SPCTF ASPCTF(6) SPTF ASPTF(6)

Factor (LBN)

Cello 1.0 11.5% 11.5% 11.5% 11.2% 11.2%

Snake 1.25 21.8% 21.2% 21.2% 17.4% 17.4%

Air-Rsv 2.5 15.0% 14.2% 14.1% 13.2% 13.1%

Sci-TS 2.5 26.9% 25.4% 25.3% 23.0% 22.5%

Order 1.0 17.6% 16.2% 16.0% 11.0% 10.9%

Report 1.0 14.5% 11.7% 11.6% 10.2% 9.6%

Table 5: On-board Disk Cache Hit Rates for SPTF-based Algorithms

This trade-o� a�ects overall performance to di�erent degrees for each of the six traces. For Cello, the SPTF-based

algorithms are clearly superior to the seek-reducing algorithms studied in this report. Cache knowledge (i.e., SPCTF

and ASPCTF(6)) increases performance an additional 5-15% under the largest scaling factors. In experiments using

the other �ve traces, the comparison is not as clean. For these traces, SPTF and ASPTF(6) saturate more quickly

than C-LOOK. However, they do provide superior performance for some sub-saturation workloads. For example,

�gure 23a shows that for Report, SPTF and ASPTF(6) are signi�cantly (up to 18%) better than C-LOOK in the

0.4-0.9 range of scaling factors. For SPCTF and ASPCTF(6), saturation does not occur as quickly. Incorporating

cache knowledge widens the window where SPTF-based algorithms are superior to C-LOOK. In the case of Sci-TS,

both algorithms provide increased performance for all scaling factors studied.

Although ASPCTF(6) always has better starvation resistance than SPCTF, the relative performance (as measured

by average response times) of these two algorithms is dependent on the individual workload. In some cases, the aging

factor can improve both starvation resistance and performance by maintaining the ordering of sequential requests,

provided they were issued \in order" over a relatively short period of time.

We believe that a modi�ed version of ASPCTF which speci�cally schedules sequential requests in ascending logical

order will increase performance beyond C-LOOK in all cases. This represents another item for future research.
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7 Conclusions and Future Work

Modern disk drives have several features which can a�ect the ability of disk scheduling algorithms to produce good

schedules. Using strongly-validated simulation, we have re-examined popular scheduling algorithms to determine the

importance of some of these features. Synthetic workloads were used to allow comparisons with previous work.

Extensive traces gathered from six di�erent environments were used to represent more \realistic" workloads.

Features such as zoned recording, track/cylinder skew, and defect reallocation serve to complicate the translation

of logical block numbers into physical media locations. Although full mapping knowledge is required for the most

complex scheduling algorithms (e.g., SPTF), our results indicate that it produces little or no performance improve-

ment (less than 2%) for seek-reducing algorithms. We have shown that an appropriate LBN-based algorithm can be

chosen for each of the six production workloads examined.

C-LOOK, an algorithm which always schedules requests in logically ascending order, best exploits the prefetching

cache for workloads with signi�cant read sequentiality. For random workloads, C-LOOK has been shown (both in

this work and in previous studies) to provide slightly inferior performance to other seek-reducing algorithms (e.g.,

SSTF and LOOK). For �ve of the six real-world traces, however, C-LOOK achieves the highest cache hit rates and

lowest average response times. In addition, the LBN-based C-LOOK algorithm is straightforward and relatively

simple to implement.

More powerful disk controllers can use variants of the Shortest Positioning Time First (SPTF) algorithm to achieve

even higher performance. The use of such algorithms requires thorough knowledge of the disk's current state as well

as the management schemes employed by the disk drive �rmware. The computational cost (as indicated indirectly

by our simulation times) can be very high. Also, our results indicate that it is critical for such an implementation to

recognize the existence of on-board disk caches and optimize for them.

We are currently pursuing several avenues of research in scheduling. First, we are validating our results for other

disk drives. Although we consider the HP C2247 to be an excellent example of its generation of disks, positioning

times continue to decrease, bit densities continue to increase, and on-board processing power and memory continue

to grow. There are also disk drive features which we have not yet explored. Most modern disks can maintain a

queue of outstanding requests within their embedded controllers. Scheduling algorithms for such on-board queues

may di�er in nature from those outside the disk drive package. In addition, most drives can signal completion as

soon as the on-board disk cache has received the write request data. The use of such fast-writes may require new

scheduling techniques in order to maintain reliability guarantees and e�ectively utilize the available cache storage.

Finally, we believe that scheduling decisions should be based on both subsystem characteristics and system-

level requirements. By incorporating knowledge of the system performance consequences of di�erent disk requests,

scheduling algorithms can be optimized for overall system performance [Gang93]. For example, a request that

prevents a critical process from executing should be serviced before a low-priority background request. Such goals

must be tempered with e�ective utilization of the storage resources, resulting in a complicated set of trade-o�s which

we plan to explore.
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A Simulation Parameters

The following parameters were used to con�gure our simulator to model the HP C2247 disk drive. They were

obtained from the manufacturer's speci�cations and from direct measurements.

Table A.1 contains both �xed and variable parameters used in con�guring our C2247 disk model. Note that we

use an NCR 3550 multiprocessor as the host system, and some of the values given contain combinations of disk and

host delays. For example, the data transfer rates given in Table A.1 were limited by the host system rather than the

C2247.

Table A.2 speci�es the layout of the C2247's 8 zones. Most of this information is available in the disk drive

speci�cations. All skew values are given in sectors. The Send/Receive Diagnostic SCSI commands were used to

obtain full logical-to-physical mappings for each disk. This provided us with the the �rst logical sector in each zone

(given in the table) as well as verifying other speci�cations. Note that the �rst 17 tracks are reserved for internal use

by the disk, and all spare tracks are placed at the end of each zone. The C2247 uses track-based sparing for both

slipped and dynamically reallocated defects.

Table A.3 presents the head switch, seek, and settling delays observed for the C2247. The resulting seek curve

is given in �gure A.1. These values were obtained via extensive repetition of predetermined seek distances and

appropriate monitoring of SCSI activity using a logic analyzer. The seek values continue to be re�ned as additional

experiments are performed. Seek distances greater than 10 cylinders are approximated by a two-piece curve. We

cannot determine the exact overlap between command overhead and seek initiation, but separate command overhead

and seek values have been determined which together account for the observed behavior.

Table A.4 lists various control and communication overheads measured from a C2247. In most cases, these values

are sensitive to the activity of both the current request and the immediately previous request. Also, the cache

contents a�ect the observed delays. In the case of two non-sequential write requests, the second write incurs an

additional disconnect (immediately after receiving the command) and has di�erent overhead delays than a write

following a read request or a sequential write. Most of the \preparation" delays are caused by the host system rather

than the disk drive.

After obtaining the above parameter values for the C2247, our model still deviated by a small amount from the

observed behavior. By adding additional write overhead delays, we were able to signi�cantly reduce this deviation.

Although we cannot attribute these delays to any documented phenomena, the �nal model closely matches the

observed activity of the HP C2247 disk drive. Table A.5 lists the additional overhead delays added to our model. In

the last two table entries, the delay is dependent on the request size (B).

Figures A.2-A.5 compare the response time distributions for four typical validation runs using our model and

the actual experimental system. The workloads consisted of 95% random reads, 95% random writes, 95% sequential

reads and 95% sequential writes, respectively. The demerit �gures (de�ned by [Ruem94] as the root mean square

horizontal distance between the two distribution curves) are 0.43%, 0.52%, 1.58%, and 0.99% of the average response

times for each run, respectively. The largest of these four corresponds to a workload of mostly sequential reads,

which are usually satis�ed by the prefetching cache and thus have very low average response times. (The root mean

square di�erence between the two distributions was only 0.078 ms, the lowest of all four runs.) The demerit �gure

never exceeded 1.9% of the average response time for any validation run.
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Constants Value

Rotational Speed 5400 RPM

Cache Size 256 KB

Read Data Transfer 3.01 MB/s

Write Data Transfer 2.74 MB/s

Read Transfer Disconnect No

Variables Value

Cache Segments 2

Read Watermark 75 %

Write Watermark 75 %

Prefetch Minimum 0 KB

Prefetch Maximum 64 KB

Table A.1: Parameters for modeling the HP C2247 on the NCR 3550 system.

Zone First Last Sectors First Logical Track Cyl Reserved Spare

Cyl Cyl per Track Sector Skew Skew Tracks Tracks

1 0 558 96 0 14 32 17 325

2 559 760 92 14 13 30 0 130

3 761 901 88 73 13 29 0 65

4 902 1051 84 80 12 28 0 78

5 1052 1193 80 52 12 27 0 52

6 1194 1519 72 0 11 24 0 104

7 1520 1793 64 32 10 22 0 78

8 1794 2050 56 30 9 19 0 65

Table A.2: Zone speci�cations for the HP C2247.
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Seek Distance (cylinders) Delay (ms)

0 (Head Switch) 0.89

1 2.69

2 3.48

3 3.61

4 3.78

5 4.07

6 4.45

7 4.32

8 4.45

9 4.62

10 4.79

10 < D � 300 3:81 + 0:33
p
D

300 < D 7:75 + 0:0059D

Write Settling 0.65

Table A.3: Seek parameters for modeling the HP C2247.
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Figure A.1: HP C2247 Disk Drive Seek Curve
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Overhead Description Delay (ms)

Read Command (Hit) 0.953 ms

Read Command (Miss) 0.558 ms

Write Command (Seq or After Read) 0.824 ms

Write Command (Non-Seq Write) 0.642 ms

Read Disconnect Preparation (After Read) 0.023 ms

Read Disconnect Preparation (After Write) 0.046 ms

Write Disconnect Preparation (Seq or After Read) 0.166 ms

Write Disconnect Preparation (Non-Seq Write) 0.046 ms

Write Disconnect Duration (Non-Seq Write) 0.429 ms

Data Phase Preparation 0.025 ms

Read Completion 0.057 ms

Write Completion 0.050 ms

First Reselect 0.162 ms

Second Reselect (Non-Seq Writes Only) 0.129 ms

Table A.4: Overhead delays for modeling the HP C2247 on the NCR 3550 system.

Overhead Description Value

Reconnect Preparation After Media Write Complete 0.540 ms

Minimum Time Before Media Write (After Command) 0.600 ms

Minimum Blocks Received Before Media Write (B < 45) Min(10,B)

Minimum Blocks Received Before Media Write (B � 45) 15

Table A.5: Additional write overhead delays for modeling the HP C2247.
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Figure A.2: Validation Workload Response Time Distributions (95% non-sequential reads, 8KB mean request size [ex-

ponential], 0-22 ms interarrival [uniform])
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Figure A.3: Validation Workload Response Time Distributions (95% non-sequential writes, 8KB mean request size

[exponential], 0-22 ms interarrival [uniform])
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Figure A.4: Validation Workload Response Time Distributions (95% sequential reads, 8KB mean request size [exponen-

tial], 0-22 ms interarrival [uniform])
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Figure A.5: Validation Workload Response Time Distributions (95% sequential writes, 8KB mean request size [exponen-

tial], 0-22 ms interarrival [uniform])
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