Parallel Virtual File System, Version 2

PVFS2 Development Team
September, 2003

Contents

1

An introduction to PVFS2 3
1.1 Whyrewrite? e e e e e 3
1.2 What'sdifferent? e 3
1.3 Whenwillthis be available? 8
The basics of PVFS2 9
2.1 SEIVEIS . . o e e e e 9
2.2 Networks e e 10
2.3 Interfaces e e e 10
2.4 Client-serverinteractions e 10
2.5 Consistency from the client pointofview 11
2.6 Filesystemconsistency e e e 11
PVFS2 terminology 13
3.1 Filesystemcomponents e e e 13
3.2 PVFS2O0bjects e e e e 14
3.3 Handles e 14
3.4 Handleranges e e e 14
3.5 FilesystemIDs e e 15
PVFS2 internal I/O API terminology 16
4.1 Internal l/Ointerfaces e e 16
4.2 Jobinterface L e e 16
4.3 Postingandtesting e e 16
4.4 Testvariations e e e e e e e e e 17
45 Contexts e e e e 17
4.6 Userpointers e e e e e e 17
4.7 Timeoutsand maxidletime e e 17
PVFS2 User APIs and Semantics 19
5.1 UNIXI/OlInterface e e 19
5.2 MPI-IOInterface e e 21
The code tree 22
6.1 Thetoplevel e 22
6.2 ST C . . o e e 23
6.3 SIC/iO. . o e e 24
L S 3 24
6.5 Statemachinesasd ateconp. e 25
6.6 Buildsystem e e e e 25
6.7 Out-oftreebuilds e e e 25

1 An introduction to PVFS2

Since the mid-1990s we have been in the business of par@eOur first parallel file system, the Parallel
Virtual File System (PVFS), has been the most successfallpbfile system on Linux clusters to date. This
code base has been used both in production mode at largdifecieomputing centers and as a launching
point for many research endeavors.

However, the PVFS (or PVFS1) code base is a terrible messthedast few years we have been pushing
it well beyond the environment for which it was originally signed. The core of PVFSL1 is no longer
appropriate for the environment in which we now see paréillekystems being deployed.

While we have been keeping PVFS1 relevant, we have also b&snagting with application groups, other
parallel I/O researchers, and implementors of system soétwuch as message passing libraries. As a result
have learned a great deal about how applications use thesygilems and how we might better leverage
the underlying hardware.

Eventually we reached a point where it was obvious to us thadva design was in order. The PVFS2
design embodies the principles that we believe are key taceessful, robust, high-performance parallel
file system. It is being implemented primarily by a distréditteam at Argonne National Laboratory and
Clemson University. Early collaborations have alreadyumegith Ohio Supercomputer Center and Ohio
State University, and we look forward to additional papation by interested and motivated parties.

In this section we discuss the motivation behind and the keyracteristics of our parallel file system,
PVFS2.

1.1 Why rewrite?

There are lots of reasons why we’ve chosen to rewrite the.cVde were bored with the old code. We
were tired of trying to work around inherent problems in tlesign. But mostly we felt hamstrung by the
design. It was too socket-centric, too obviously singledided, wouldn’t support heterogeneous systems
with different endian-ness, and relied too thoroughly ontDffering and file system characteristics.

The new code base is much bigger and more flexible. Definthelsets the opportunity for us to suffer from
second system syndrome here! But we're willing to risk thigider to position ourselves to use the new
code base for many years to come.

1.2 What's different?

The new design has a number of important features, including

e modular networking and storage subsystems,
e powerful request format for structured non-contiguouseases,

o flexible and extensible data distribution modules,

3

¢ distributed metadata,

e stateless servers and clients (no locking subsystem),
e explicit concurrency support,

e tunable semantics,

¢ flexible mapping from file references to servers,

e tight MPI-IO integration, and

e support for data and metadata redundancy.

1.2.1 Modular networking and storage

One shortcoming of the PVFS1 system is its reliance on th&esawetworking interface and local file
systems for data and metadata storage.

If we look at most cluster computers today we see a varietyebivorking technologies in place. IP, IB,
Myrinet, and Quadrics are some of the more popular ones éntiesof writing, but surely more will appear
and disappeaiin the near future. As groups attempt to remotely accessatdtggh data rates across the
wide area, approaches such as reliable UDP protocols méeginne an important component of a parallel
file system as well. Supporting multiple networking teclugi¢s, and supporting theefficientlyis key.

Likewise many different storage technologies are now a8l We're still getting our feet wet in this
area, but it is clear that some flexibility on this front withy off in terms of our ability to leverage new
technologies as they appear. In the mean time we are cgrtgoilg to leverage database technologies for
metadata storage — that just makes good sense.

In PVFS2 the Buffered Messaging Interface (BMI) and the €rstorage interface provide APIs to network
and storage technologies respectively.

1.2.2 Structured non-contiguous data access

Scientific applications are complicated entities cons&rdi¢rom numerous libraries and operating on highly
structured data. This data is often stored using high-lg@llibraries that manage access to traditional
byte-stream files.

These libraries allow applications to describe complidadecess patterns that extract subsets of large
datasets. These subsets often do not sit in contiguousnsegiothe underlying file; however, they are
often very structured (e.g. a block out of a multidimensiaraay).

It is imperative that a parallel file system natively suppgtrtictured data access in an efficient manner. In
PVFS2 we perform this with the same types of constructs usktPil datatypes, allowing for the description
of structured data regions with strides, common block siaed so on. This capability can then be leveraged
by higher-level libraries such as the MPI-IO implementatio

4

1.2.3 Flexible data distribution

The tradition of striping data across I/O servers in rouolgift fashion has been in place for quite some time,
and it seems as good a default as any given no more informaliont how a file is going to be accessed.
However, in many cases va® know more about how a file is going to be accessed. Applicati@ve many
opportunities to give the file system information about asgeatterns through various high-level interfaces.
Armed with this information we can make informed decisiomshow to better distribute data to match
expected access patterns. More complicated systems aalitdribute data to better match patterns that are
seen in practice.

PVFS2 includes a modular system for adding new data disiitsl to the system and using these for new
files. We're starting with the same old round-robin schena¢ ¢éweryone is accustomed to, but we expect to
see this mechanism used to better access multidimensiatadals. It might play a role in data redundancy
as well.

1.2.4 Distributed metadata

One of the biggest complaints about PVFS1 is the single mtagkrver. There are actually two bases on
which this complaint is typically launched. The firstis th@s is a single point of failure —we’ll address that
in a bit when we talk about data and metadata redundancy. éldond is that it is a potential performance
bottleneck.

In PVFS1 the metadata server steps aside for I/O operatiaking it rarely a bottleneck in practice for
large parallel applications, because they are busy writatg and not creating a billion files or some such
thing. However, as systems continue to scale it becomesmsues likely that any such single point of
contact might become a bottleneck for even well-behavetcapions.

PVFS2 allows for configurations where metadata is disteithub some subset of I/O servers (which might
or might not also serve data). This allows for metadata fiiedint files to be placed on different servers,
so that applications accessing different files tend to impach other less.

Distributed metadata is a relatively tricky problem, butrergoing to provide it in early releases anyway.

1.2.5 Stateless servers and clients

Parallel file systems (and more generally distributed filteys) are potentially complicated systems. As
the number of entities participating in the system growsjaes the opportunity for failures. Anything that
can be done to minimize the impact of such failures shouldobsidered.

NFS, for all its faults, does provide a concrete example efativantage of removing shared state from the
system. Clients can disappear, and an NFS server just kapp#iyhserving files to the remaining clients.

In stark contrast to this are a number of example distribfitedsystems in place today. In order to meet
certain design constraints they provide coherent cachediems enforced via locking subsystems. As a

result a client failure is a significant event requiring a pdéem sequence of events to recover locks and
ensure that the system is in the appropriate state beforatapes can continue.

We have decided to build PVFS2 as a stateless system and des@dbcks as part of the client-server
interaction. This vastly simplifies the process of recawgifrom failures and facilitates the use of off-the-
shelf high-availability solutions for providing serveriléver. This does impact the semantics of the file
system, but we believe that the resulting semantics areamyopriate for parallel 1/0.

1.2.6 Explicit support for concurrency

Clearly concurrent processing is key in this type of systéhre PVFS2 server and client designs are based
around an explicit state machine system that is tightly tmipiith a component for monitoring completion
of operations across all devices. Threads are used wheessay to provide non-blocking access to all
device types. This combination of threads, state macharescompletion notification allows us to quickly
identify opportunities to make progress on particular afiens and avoids serialization of independent
operations within the client or server.

This design has a further side-effect of giving us nativepsupfor asynchronous operations on the client
side. Native support for asynchronous operations makeslocking operations under MPI-10 both easy to
implement and advantageous to use.

1.2.7 Tunable semantics

Most distributed file systems in use for cluster systemsigeOSIX (or very close to POSIX) semantics.
These semantics are very strict, arguably more strict teaessary for a usable parallel /O system.

NFS does not provide POSIX semantics because it does nargearthat client caches are coherent. This
actually results in a system that is often unusable for [@i&D, but is very useful for home directories and
such.

Storage systems being applied in the Grid environment, aathose being used in conjunction with some
physics experiments, have still different semantics. €tesd to assume that files are added atomically and
are never subsequently modified.

All these very different approaches have their merits amliegtions, but also have their disadvantages.
PVFS2 will not support POSIX semantics (although one is amle to build such a system on top of
PVFS2). However, we do intend to give users a great degreexbility in terms of the coherency of
the view of file data and of the file system hierarchy. Userstigtaly coupled parallel machine will opt for
more strict semantics that allow for MPI-10 to be implemeht®ther groups might go for looser semantics
allowing for access across the wide area. The key here isialijofor the possibility of different semantics
to match different needs.

1.2.8 Flexible mapping from file references to servers

Administrators appreciate the ability to reconfigure systd¢o adapt to changes in policy or available re-
sources. In parallel file systems, the mapping from a fileresfee to its location on devices can help or
hinder reconfiguration of the file system.

In PVFS2 file data is split intdatafiles Each datafile has its own reference, and clients identdystrver
that owns a datafile by checking a table loaded at configurditioe. A server can be added to the system
by allocating a new range of references to that server andrtieg clients with an update table. Likewise,
servers can be removed by first stopping clients, next madatgfiles off the server, then restarting with a
new table. It is not difficult to imagine providing this fuimality while the system is running, and we will
be investigating this possibility once basic functional stable.

1.2.9 Tight MPI-10 coupling

The UNIX interface is a poor building block for an MPI-10 ingphentation. It does not provide the rich
API necessary to communicate structured I/O accesses tmttelying file system. It has a lot of internal
state stored as part of the file descriptor. It implies POSiXantics, but does not provide them for some
file systems (e.g. NFS, many local file systems when writingel@ata regions).

Rather than building MPI-10 support for PVFS2 through a UNik€ interface, we have started with some-

thing that exposes more of the capabilities of the file systEnis interface does not maintain file descriptors
or internal state regarding such things as file positiond,iamoing so allows us to better leverage the ca-
pabilities of MPI-10 to perform efficient access.

We've already discussed rich 1/O requests. “Opening” a dil@iother good exampl®Pl _Fi | e_open()

is a collective operation that gathers information on a fierat MPI processes may later access it. If we
were to build this on top of a UNIX-like API, we would have egmocess that would potentially access
the file callopen() . In PVFS2 we instead resolve the filename into a handle ussigge file system
operation, then broadcast the resulting handle to the refaaf the processes. Operations that determine
file size, truncate files, and remove files may all be performetis same)(1) manner, scaling as well as
the MPI broadcast call.

1.2.10 Data and metadata redundancy

Another common (and valid) complaint regarding PVFS1 isaitk& of support for redundancy at the server
level. RAID approaches are usable to provide tolerances¥f fdiilures, but if a server disappears, all files
with data on that server are inaccessible until the servexisvered.

Traditional high-availability solutions may be applieddoth metadata and data servers in PVFS2 (they're
actually the same server). This option requires shareédgtobetween the two machines on which file
system data is stored, so this may be prohibitively experfsivsome users.

A second option that is being investigated is what we arencglazy redundancy The lazy redundancy

approach is our response to the failure of RAID-like apphescto scale well for large parallel /O systems
when applied across servers. The failure of this approathisscale is primarily due to the significant
change in environment (latency and number of devices agvbssh data is striped). Providing the atomic
read/modify/write capability necessary to implement RAilk2 protocols in a distributed file system re-
quires a great deal of performance-hampering infrastractu

With lazy redundancy we expose the creation of redundarat astan explicit operation. This places the
burden of enforcing consistent access on the user. Howieatsp opens up the opportunity for a number
of optimizations, such as creating redundant data in ghrdturther, because this can be applied at a more
coarse grain, more compute-intensive algorithms may be imsplace of simple parity, providing higher
reliability than simple parity schemes.

Lazy redundancy is still at the conceptual stage. We'retsfihg to determine how to best fit this into the
system as a whole. However, traditional failover solutioray be put in place for the existing system.

1.2.11 And more...

There are so many things that we feel we could have done lie®&fFS1 that it is really a little embarrass-
ing. Better heterogeneous system support, a better bustdrsy a solid infrastructure for testing concurrent
access to the file system, an inherently concurrent apprmesérvicing operations on both the client and
server, better management tools, even symlinks; we'vd toeaddress most if not all the major concerns
that our PVFS1 users have had over the years.

It's a big undertaking for us. Which leads to the obvious rygstion.

1.3 When will this be available?

Believe it or not, right now. At SC2004 we released PVFS2 We.would be foolish to claim PVFS2 has
no bugs and will work for everyone 100% of the time, but we #8¥FS2 is in pretty good shape. Early
testing has found a lot of bugs, and we feel PVFS is ready fdemuse.

Note that we're committed to supporting PVFS1 for some tifer #VFS2 is available and stable. We feel
like PVFS1 is a good solution for many groups already, and weldvprefer for people to use PVFS1 for a
little while longer rather than them have a sour first expergewith PVFS2.

We announce updates frequently on the PVFS2 mailing lists.eWourage users to subscribe — it's the
best way to keep abreast of PVFS2 developments. All coddrg lastributed under the LGPL license to
facilitate use under arbitrarily licensed high-level &hes.

2 The basics of PVFS2

PVFS2 is a parallel file system. This means that it is desidoegarallel applications sharing data across
many clients in a coordinated manner. To do this with higligearance, many servers are used to provide
multiple paths to data. Parallel file systems are a subseistflaited file systems, which are more gen-
erally file systems that provide shared access to distdbd#ga, but don’t necessarily have this focus on
performance or parallel access.

There are lots of things that PVFS2ist designed for. In some cases it will coincidentally perforelivior
some arbitrary task that we weren't targeting. In other gatswill perform very poorly. If faced with the
option of making the system better for some other task (execwging off the file system, shared mmapping
of files, storing mail in mbox format) at the expense of patdflO performance, we will always ruthlessly
ignore performance for these other tasks.

PVFS2 uses amtelligent serverarchitecture. By this we mean that servers do more than giprplide
clients with blocks of data from disks, instead talking iglner-level abstractions such as files and direc-
tories. An alternative architecture shared storagewhere storage devices (usually accessed at a block
granularity) are directly addressed by clients. The iigelit server approach allows for clever algorithms
that could not be applied were block-level accesses the mgghanism clients had to interact with the
system because more appropriate remote operations caoegut that serve as building blocks for these
algorithms.

In this section we discuss the components of the system, hemt<and servers interact with each other,
consistency semantics, and how the file system state is kegistent without the use of locks. In many
cases we will compare the new system with the original PVBSihose who are may already be familiar
with that architecture.

2.1 Servers

In PVFS1 there were two types of server proceseggsthat served metadata aratls that served data.
For any given PVFS1 file system there was exactly one activesenying metadata and potentially many
iods serving data for that file system. Since mgrs and iods areJbddK processes, some users found it
convenient to run both a mgr and an iod on the same node torverisardware resources.

In PVFS2 there is exactly one type of server processpitig2-server This is also a UNIX process, so one
could run more than one of these on the same node if desirddiigh we will not discuss this here). A
configuration file tells each pvfs2-server what its role Wil as part of the parallel file system. There are
two possible roles, metadata server and data server, anghay pvfs2-server can fill one or both of these
roles.

PVFS2 servers store data for the parallel file system lacdllye current implementation of this storage
relies on UNIX files to hold file data and a Berkeley DB dataltad®old things like metadata. The specifics
of this storage are hidden under an API that we call Trove.

2.2 Networks

PVFS2 has the capability to support an arbitrary number fééreint network types through an abstraction
known as the Buffered Messaging Interface (BMI). At thisdiBMI implementations exist for TCP/IP,
Myricom’s GM, and InfiniBand (both Mellanox VAPI and OpenlBPAs).

2.3 Interfaces

At this time there are exactly two low-level I/O interfacést clients commonly use to access parallel file
systems. The first of these is the UNIX API as presented byltbetoperating system. The second is the
MPI-10 interface.

In PVFS1 we provide access through the operating system dwidimg a loadable module that exports
VFS operations out into user space, where a client-side UnMb¢ess, th@vfsd handles interactions with
servers. A more efficient in-kernel version callga/fsdwas later provided as well.

PVFS2 uses a similar approach to the original PVFS1 approacitcess through the OS. A loadable kernel
module exports functions out to user-space where a UNIXgaaahgvfs2-client handles interactions with
servers. We have returned to this model (from the in-kerpgfdd model) because it is not clear that we
will have ready access to all networking APIs from within Keznel.

The second APl is the MPI-10 interface. We leverage the ROMIEI-IO implementation for PVFS2 MPI-
10 support, just as we did for PVFS1. ROMIO links directly tdosv-level PVFS2 API for access, so it
avoids moving data through the OS and does not communic#tewiis2-client.

2.4 Client-server interactions

At start-up clients contact any one of the pvfs2-serversabidin configuration information about the file
system. Once this data has been obtained, the client is teanherate on PVFS2 files.

The process of initiating access to a file on PVFS2 is simdahe process that occurs for NFS; the file
name is resolved into an opaque referencéhasrdle through a lookup operation. Given a handle to some
file, any client can attempt to then access any region of tleafdermission checks could fail). If a handle
becomes invalid, the server will reply at the time of attemajpiccess that the handle is no longer valid.

Handles are nothing particularly special. We can look uprallgaon one process, pass it to another via an
MPI message, and use it at the new process to reference tleefiganT his gives us the ability to make the
MPI _Fi | e_open call happen with a single lookup the the file system and a lwastd

There’s no state held on the servers about “open” files. T$rot even a concept of an open file in PVFS2.
So this lookup is all that happens at open time. This has a suoflother benefits. For one thing, there’s
no shared state to be lost if a client or server disappeasn, #iere’s nothing to do when a file is “closed”
either, except perhaps ask the servers to push data to disk MPI program this can be done by a single
process as well.

10

Of course if you are accessing PVFS2 through the @f#n andcl ose still exist and work the way you
would expect, as dodsseek, although obviously PVFS2 servers don't keep up with fileimss either.
All this information is kept locally by the client.

There are a few disadvantages to this. One that we will ungdljphear about more than once is that the
UNIX behavior of unlinked open files. Usually with local filgstems if the file was previously opened,

then it can still be accessed. Certain programs rely on gl&\ior for correct operation. In PVFS2 we

don't know if someone has the file open, so if a file is unlinked gone gone gone. Perhaps we will come
up with a clever way to support this or adapt the NFS approaata(ning the file to an odd name), but this
is a very low priority.

2.5 Consistency from the client point of view

We've discussed in a number of venues the opportunitiesiteahade available when true POSIX semantics
are given up. Truthfully very few file systems actually suptO SIX; ext3 file systems don’t enforce atomic
writes across block boundaries without special flags, an8 NE systems don't even come close. Never
the less, many people claim POSIX semantics, and many gaslkpgor them without knowing the costs
associated.

PVFS2 does not provide POSIX semantics.

PVFS2 does provide guarantees of atomicity of writes to werlapping regions, even noncontiguous
nonoverlapping regions. This is to say that if your paradpplication doesn’t write to the same bytes,
then you will get what you expect on subsequent reads.

This is enough to provide all the non-atomic mode semanbichP1-10. The atomic mode of MPI-10 will
need support at a higher level. This will probably be doné&withancements to ROMIO rather than forcing
more complicated infrastructure into the file system. Theeegood reasons to do this at the MPI-10 layer
rather than in the file system, but that is outside the comtktttis document.

Caching of the directory hierarchy is permitted in PVFS2daonfigurable duration. This allows for some
optimizations at the cost of windows of time during which fie system view might look different from
one node than from another. The cache time value may be setdd@avoid this behavior; however, we
believe that users will not find this necessary.

2.6 File system consistency

One of the more complicated issues in building a distribfitecystem of any kind is maintaining consistent
file system state in the presence of concurrent operatispscally ones that modify the directory hierarchy.

Traditionally distributed file systems provide a lockingrastructure that is used to guarantee that clients can
perform certain operations atomically, such as creatingoving files. Unfortunately these locking sys-
tems tend to add additional latency to the system and are eftieemelycomplicated due to optimizations
and the need to cleanly handle faults.

11

We have seen no evidence either from the parallel I/O commanithe distributed shared memory com-

munity that these locking systems will work well at the seadé clusters that we are seeing deployed now,
and we are not in the business of pushing the envelope omipekgorithms and implementations, so we're

not using a locking subsystem.

Instead we force all operations that modify the file systeendiichy to be performed in a manner that results
in an atomic change to the file system view. Clients perforqueaces of steps (callexkrver requesjs
that result in what we tend to think of as atomic operationthafile system level. An example might help
clarify this. Here are the steps necessary to create a neinw FgFS2:

e create a directory entry for the new file

create a metadata object for the new file

point the directory entry to the metadata object

create a set of data objects to hold data for the new file

point the metadata at the data objects

Performing those steps in that particular order resultdarsfistem states where a directory entry exists for
a file that is not really ready to be accessed. If we carefuliepthe operations:

1. create the data objects to hold data for the new file
2. create a metadata object for the new file
3. point the metadata at the data objects

4. create a directory entry for the new file pointing to theadata object

we create a sequence of states that always leave the filersgigstctory hierarchy in a consistent state. The
file is either there (and ready to be accessed) or it isn'tPMFS2 operations are performed in this manner.

This approach brings with it a certain degree of complexitysoown; if that process were to fail somewhere
in the middle, or if the directory entry turned out to alreamkyst when we got to the final step, there would
be a great deal of cleanup that must occur. This is a problafrcdn be surmounted, however, and because
none of those objects are referenced by anyone else we @mntblem up without concern for what other
processes might be up to — they never made it into the dinebierarchy.

12

3 PVFS2 terminology

PVFS2 is based on a somewhat unconventional design in ardehteve high performance, scalability, and
modularity. As a result, we have introduced some new coscapd terminology to aid in describing and
administering the system. This section describes the mystntant of these concepts from a high level.

3.1 File system components

We will start by defining the major system components from dmiaistrator or user’'s perspective. A
PVFS2 file system may consist of the following pieces (soneeoational): the pvfs2-server, system inter-
face, management interface, Linux kernel driver, pvfs@at| and ROMIO PVFS2 device.

Thepvf s2- server is the server daemon component of the file system. It runs letetypin user space.
There may be many instances of pvfs2-server running on mdf@resht machines. Each instance may
act as either a metadata server, an 1/O server, or both at di@eervers store the actual data associated
with each file, typically striped across multiple serversdand-robin fashion. Metadata servers store meta
information about files, such as permissions, time stampd,déstribution parameters. Metadata servers
also store the directory hierarchy.

Initial PVFS2 releases will only support one metadata gepez file system, but this restriction will be
released in the future.

Thesyst em i nt er f aceis the lowest level user space API that provides access PRS2 file system.

It is not really intended to be an end user API; applicatiovetlgpers are instead encouraged to use MPI-IO
as their first choice, or standard Unix calls for legacy aggtions. We will document the system interface
here, however, because it is the building block for all othient interfaces and is thus referred to quite often.
It is implemented as a single library, called libpvfs2. Tlystem interface APl does not map directly to
POSIX functions. In particular, it is a stateless API thag ha concept of open(), close(), or file descriptors.
This API does, however, abstract the task of communicatiitigg rvany servers concurrently.

Themanagenent i nterface is similar in implementation to the system interface. It sugplemental
API that adds functionality that is normally not exposed ty dile system users. This functionality is
intended for use by administrators, and for applicationshsas fsck or performance monitoring which
require low level file system information.

TheLi nux kernel driver isamodule that can be loaded into an unmodified Linux kemetder to
provide VFS support for PVFS2. Currently this is only impksmted for the 2.6 series of kernels. This is the
component that allows standard Unix applications (incigditilities likel s andcp) to work on PVFS2.
The kernel driver also requires the use of a user-spacerreghpéication callegpvf s2-cl i ent.

pvfs2-client is a user-space daemon that handles communication betw&eg2Pservers and the
kernel driver. Its primary role is to convert VFS operationto syst em i nt er f ace operations. One
pvfs2-client must be run on each client that wishes to adteshle system through the VFS interface.

The ROM O PVFS2 devi ce is a component of the ROMIO MPI-IO implementation (disttdul sep-
arately) that provides MPI-IO support for PVFS2. ROMIO islided by default with the MPICH MPI

13

implementation and includes drivers for several file systeiSee http://www.mcs.anl.gov/romio/ for de-
tails.

3.2 PVFS2 Objects

PVFS2 has four different object types that are visible tasise

e directory
e metafile
o datafile

e symbolic link

3.3 Handles

Handl es are unique, opaque, integer-like identifiers for every obggored on a PVFS2 file system. Every
file, directory, and symbolic link has a handle. In additisayeral underlying objects that cannot be directly
manipulated by users are represented with handles. Thiglpa concise, non path dependent mechanism
for specifying what object to operate on when clients andessrcommunicate. Servers automatically
generate new handles when file system objects are createdisén does not typically manipulate them
directly.

The allowable range of values that handles may assume isrkaswhenandl e space.

3.4 Handle ranges

Handles are essentially very large integers. This meamnsvilv@an conveniently partition the handle space
into subsets by simply specifying ranges of handle valudandl e r anges are just that; groups of
handles that are described by the range of values that thegynciade.

In order to partition the handle space among N servers, wealitie handle space up into N handle ranges,
and delegate control of each range to a different serverfilehgystem configuration files provide a mech-
anism for mapping handle ranges to particular server h@slients only interact with handle ranges; the
mapping of ranges to servers is hidden beneath an abstrdayier. This allows for greater flexibility and
future features like transparent migration.

14

3.5 File system IDs

Every PVFS2 file system hosted by a particular server hascuandentifier known ashi | e system

I Dorfs id. The file system ID must be set at file system creation time Iloyimidtrative tools so that
they are synchronized across all servers for a given filesysFile systems also have symbolic names that
can be resolved into an fs id by servers in order to produce meadable configuration files.

File system IDs are also occasionally referred to as catledDs.

15

4 PVFS2 internal I/O API terminology

PVFS2 contains several low level interfaces for performiagous types of 1/0. None of these are meant
to be accessed by end users. However, they are pervasivgtemothe design that it is helpful to describe
some of their common characteristics in a single piece ofich@ntation.

4.1 Internal I/O interfaces

The following is a list of the lowest level APIs that share i@dweristics that we will discuss here.

e BMI (Buffered Message Interface): message based netwarkmmications
e Trove: local file and database access

e Flow: high level I/O API that ties together lower level conmemts (such as BMI and Trove) in a
single transfer; handles buffering and datatype procgssin

e Dev: user level interaction with kernel device driver

e NCAC (Network Centric Adaptive Cache): user level buffectoa that works on top of Trove(r-
rently unusedl

e Request scheduler: handles concurrency and schedulihg &ilet system request level

4.2 Job interface

The Job interface is a single API that binds together all efabhove components. This provides a single
point for testing for completion of any nonblocking opeoat that have been submitted to a lower level
API. It also handles most of the thread management wherécapia.

4.3 Posting and testing

All of the APIs listed in this document are nonblocking. Thedwl used in all cases is to firpbst a
desired operation, thenest until the operation has completed, and finally check theltiaguerror code

to determine if the operation was successful. Eyargt results in the creation of a unique ID that is used
as an input to théest call. This is the mechanism by which particular posts arechet with the correct
test.

Itis also possible for certain operations to complete imiatety at post time, therefore eliminating the need
to test later if it is not required. This condition is indiedtby the return code of the post call. A return code
of 0 indicates that the post was successful, but that thercgtilould test for completion. A return code of 1

indicates that the call was immediately successful, andrihaest is needed. Errors are indicated by either
a negative return code, or else indicated by an output amguthat is specific to that API.

16

4.4 Test variations

In a parallel file system, it is not uncommon for a client owsetto be carrying out many operations at once.
We can improve efficiency in this case by providing mechanifontesting for completion of more than one
operation in a single function call. Each API will suppore tlollowing variants of the test function (where
PREFIX depends on the API):

e PREFIXtest(): This is the most simple version of the test functitirchecks for completion of an
individual operation based on the ID given by the caller.

e PREFIXtestsome(): This is an expansion of the above call. Therdifige is that it takes an array of
IDs and a count as input, and provides an array of status valoe a count as output. It checks for
completion of any non-zero ID in the array. The output coudidates how many of the operations
in question completed, which may range from 0 to the inpuntou

e PREFIXtestcontext(): This function is similar to testsome(). Hwer, it does not take an array of
IDs as input. Instead, it tests for completion afy operations that have previously been posted,
regardless of the ID. A count argument limits how many resoifly be returned to the caller. A
context (discussed in the following subsection) can be usdinit the scope of IDs that may be
accessed through this function.

4.5 Contexts

Before posting any operations to a particular interface,déiler must first open aont ext for that in-
terface. This is a mechanism by which an interface can eiffigate between two different callers (ie, if
operations are being posted by more than one thread or mameotte higher level component). This con-
text is then used as an input argument to every subsequenamibsest call. In particular, it is very useful
for the testcontext() functions, to insure that it does stim information about operations that were posted
by a different caller.

4.6 User pointers

User poi nt er s are void* values that are passed into an interface at postdima returned to the caller
at completion time through one of the test functions. Thesiaters are never stored or transmitted over
the network; they are intended for local use by the interfadker. They may be used for any purpose. For
example, it may be set to point at a data structure that trdekstate of the system. When the pointer
is returned at completion time, the caller can then map badkits data structure immediately without
searching because it has a direct pointer.

4.7 Time outs and max idle time

The job interface allows the caller to specify a time out vathtest functions. This determines how long
the test function is allowed to block before returning if mmecations of interest have completed.

17

The lower level APIs follow different semantics. Ratherrttetime out, they allow the caller to specify a
max i dle time. The maxidle time governs how long the API is allowed to slééiis idle when the
test call is made. It is under no obligation to actually cansuhe full idle time. It is more like a hint to
control whether the function is a busy poll, or if it shouldegh when there is no work to do.

18

5 PVFS2 User APIs and Semantics

Because PVFS2 is designed specifically for performance stesys where concurrent access from many
processes is commonplace, there are some differencesdretive PVFS2 interfaces and traditional file
system interfaces. In this section we will discuss the twerfaces provided for applications to use when
accessing PVFS2 file systems. We will start with the trad#&ldJNIX 1/O interface, which nearly all file
systems implement. We will then cover the MPI-10 interface.

5.1 UNIX /O Interface

We provide an implementation of the UNIX I/O interface foiedits running Linux versions 2.4 (2.4.19 and
later) and 2.6. This interface implements the traditiaaén, r ead, wri t e, andcl ose interface as well
as providing the directory operations necessary for agjitins such aks to work.

It is important to note that there is a difference betweenemgnting the UNIX I/O API and implementing
the POSIX semantics for this API. File systems exported k& Nversions 2 and 3) do not exhibit many
of the POSIX semantics, and even local file systems may noagtee atomicity of writes that cross disk
block boundaries. We also do not implement the full POSIXaatins. Here we will document aspects of
the POSIX semantics that we do not implement.

5.1.1 Permission Checking

To understand why PVFS2 permission checking behaves diffigrfrom the POSIX standard, it is useful
to discuss how PVFS2 performs permission checking. PVF®2 dot really implement thepen etc.
interface, but instead uses a stateless approach that oglithe client td ookup a file name to convert it
into ahandlethat can be used for subsequent read and write accessedharnkile may be used for many
read and write accesses and may be cached under certaitirgegdd his lookup operation is performed at
file open time.

Permission checking is performed in two places. First, tR&\¥hecks permissions on the client and will
prevent users from performing invalid operations. Secdhd,server performs rudimentary checks for
specific operations; however, it (currently) relies on tient to provide accurate user and group information
to be used for this purpose. No recursive directory permisshecking is performed by the servers, for
example.

5.1.2 Permissions and File Access

POSIX semantics dictate that once a file has been opened tomtéiypue to be accessed by the process until
closed, regardless of changes to permissions.

In PVFS2, the effect of permission changes on a file may or nedype immediately apparent to a client
holding an open file descriptor. Because of the manner inwRAMFS2 performs permission checking and

19

file lookup, it is possible that a client may lose the abilityaiccess a file that it has previously opened due
to permission change, if for example the cached handle istuba lookup is performed again.

5.1.3 Access to Removed Files

POSIX semantics dictate that a file opened by a process mdygero be accessed until the subsequent
close, even if the file permissions are changed or the fileletetk This requires that the file system or
clients somehow keep up with a list of files that are open, Wwhitds unacceptable state to a distributed file
system. In NFS, for example, this is implemented via thdytghame” approach, in which clients rename
a deleted but open file to hide it in the directory tree, theletdethe renamed file when the file is finally
closed.

In PVFS2 a file that is deleted is removed immediately regadlof open file descriptors. Subsequent
attempts to access the file will find that the file no longertexis

Neill: Is this completely true, or do clients delay removapvfs2-client if someone is still accessing?

5.1.4 Overlapping I/O Operations

POSIX semantics dictate sequential consistency for queirtg /O operations. This means that 1/O oper-
ations must be atomic with respect to each other — if one properforms a read spanning a collection of
servers while another performs a write in the same regi@rahd must see either all or none of the changes.
In a parallel file system this involves communication to ciioate access in this manner, and because of the
number of clients we wish to support, we are unwilling to ierpknt this functionality (at least as part of
the core file system).

In PVFS2 we instead implement a semantic wegaticonflicting writesemantic. This semantic states that
all I/0 operations that do not access the same bytes (in otbets, are nonconflicting) will be sequentially
consistent. Write operations that conflict will result immeundefined combination of the bytes being writ-
ten to storage, while read operations that conflict withewoperations will see some undefined combination
of original data and write data.

5.1.5 Locks

BSD provides thé | ock mechanism for locking file regions as a way to perform atomaclifications to
files. POSIX provides this functionality through optiond tont | . Both of these are advisory locks, which
means that processes not using the locks can access thgiflese

PVFS2 does not implement a locking infrastructure as patefile system. At this time there is no add-on
advisory locking component either. Thus neither theock function nor thef cnt | advisory locks are
supported by PVFS2.

20

5.2 MPI-10 Interface

We provide an implementation of the MPI-IO interface via mapiementation of the ROMIO ADIO inter-
face. This implementation is included as part of MPICH1 andi®H2 as well as being available as an
independent package. The MPI-IO interface is part of the-RIBfandard and defines an API for file access
from within MPI programs.

Our PVFS2 implementation does not include all the functignaf the MPI-10 specification. In this section
we discuss the missing components of MPI-10 for PVFS2.

5.2.1 MPI-I0O Atomic Mode

Atomic mode is enabled by callingPl _Fi | e_set _at omi ci t y and setting the atomicity to true. Atomic
mode guarantees that data written on one process is imralgdiddible to another process (as in the POSIX
default semantics).

ROMIO currently uses file locking to implement the MPI-10 miic mode functionality. Because we do not
support locks in PVFS2, atomic mode is not currently suggabrt

5.2.2 MPI-IO Shared Pointer Mode

Shared pointers are used in ttshar ed and_or der ed families of functions.

The ROMIO implementation relies on the use of locking supfrom the file system to implement both of
these families of functions, so these are not currently supg. We are researching alternative implemen-
tations.

21

6 The code tree

In this section we describe how the code tree is set up for R\&F@ discuss a little about how the build
system works.

6.1 The top level
At the top level we see:

e doc

e exanpl es
e i ncl ude
elib

e Nui Nt

e Src

e test

Thedoc directory rather obviously holds documentation, mostijtten in LaTeX. There are a few subdi-
rectories undedoc. Thecodi ng subdirectory has a document describing guidelines foingritode for
the project. Thalesi gn subdirectory has a number of documents describing varioogonents of the
system and APIs and more importantly currently houses thiek(Rtart.

Much of the documentation is out of date.
exanpl es currently holds two example server configuration files arad ihit.

i ncl ude holds include files that are both used all over the system emev@ntually installed on the system
during anmake i nstal | . Any prototypes or defines that are needed by clients usm@B1 should be in
one of the include files in this directory.

I'i bisempty. It holdd i bpvf s2. awhen itis built, prior to installation, if you are building-tree. More
on out-of-tree builds later.

mai nt holds a collection of scripts. Some of these are used in tild ptocess, while others are used
to check for the presence of inappropriately named symiootha resulting library or reformat code that
doesn’'t conform to the coding standard.

sr ¢ holds the source code to the majority of PVFS2, includingsérwer, client library, Linux 2.6.x kernel
module, and management tools. We’'ll talk more about thisio@esubsequent subsection.

t est holds the source code to many many tests that have been taiittime to validate the PVFS2
implementation. We will discuss this more in a subsequebsection as well.

22

6.2 src

Thesr ¢ directory contains the majority of the PVFS2 distribution.

Unlike PVFS1, where the PVFS kernel code was in a separat@gadrom the “core,” in PVFS2 both the
servers, client API, and kernel-specific code are packaagether.

sr ¢/ conmon holds a number of components shared between clients anetsemhis includes:

e dotconf — a configuration file parser

e gen-locks —an implementation of local locks used to prowitenic access to shared structures in the
presence of threads

¢ id-generator — a simple system for generating unique nete(ids) to data structures

e llist — a linked-list implementation

e Qossip — our logging component

e quicklist — another linked-list implementation

e quickhash — a hash table implementation

e statecomp — the parser for our state machine descriptiquéaye (discussed subsequently)

e misc — leftovers, including some state machine code, coldgrfanipulation code, some string ma-
nipulation utilities, etc.

sr ¢/ apps holds applications associated with PVFS2. Bhne/ apps/ admi n subdirectory holds a col-
lection of tools for setting up, monitoring, and manipuligtfiles on a PVFS2 file systemvf s2- genconfi g

is used to create configuration filepvf s2- cp may be used to move files on and off PVFS2 file sys-
tems. pvf s2- pi ng andpvf s2- st at f s may be used to check on the status of a PVFS2 file system.
pvfs2-1sisanl s implementation for PVFS2 file systems that does not reqhiat the file system be
mounted.

Thesr c/ apps/ kar ma subdirectory contains a gtk-based gui for monitoring a P¥fl& system in real
time. Thesrc/ apps/ kernel /| i nux-2. 6 subdirectory contains the user space component of the
PVFS2 kernel driver implementation, which matches theddattriver code found isr ¢/ ker nel / I i nux- 2. 6.
Thesr c/ apps/ vi s contains experimental code for performance visualization

src/ cl i ent holds code for the “system interface” library, the loweseldibrary used on the client side
for access. Thisis inther c/ cl i ent/ sysi nt subdirectory. Theini x-i o subdirectory is no longer
used. Note that there is other code used on the client sigeR@MIO components (included in MPICH
and MPICHZ2) and the kernel support code (locatedrie/ ker nel , discussed subsequently).

Note that the ROMIO support for PVFS2 is included in MPICHIRIEH2, and ROMIO distributions and
is not present anywhere in this tree.

23

sr ¢/ server holds code for the pvfs2-server. The request schedulerisadit into its own subdirectory
for no particular reason.

src/ pr ot o holds code for encoding and decoding our over-the-wireogat Currently the “encoding
scheme” used is theontigscheme, stored in its own subdirectory. This encoding seheswly just puts the
bytes into a contiguous region, so it is only good for homegers systems or systems with the same byte
orders where we have correctly padded all the structureslwte probably haven't).

sr ¢/ ker nel holds implementations of kernel support. Currently themnly onesr c/ kernel /| i nux- 2. 6.

src/ i o holds enough code that we'll just talk about it in its own sdign.

6.3 srcl/io

This directory holds all the code used to move data acrossitee to store and retrieve data from local
resources, to buffer data on servers, and to describe I/€sses and physical data distribution.

bm holds the Buffered Messaging Interface (BMI) implememtasi. The top-level directory holds code for
mapping to the various underlying implementations and deficommon data structures. Subdirectories
hold implementations for GMbm _gm), TCP/IP pni _t cp), and InfiniBand using either the VAPI or
OpeniIB API pni i b).

buf f er holds the implementation of our internal buffering and ¢gagltomponent. At the time of writing
this is not complete and is not enabled.

dev holds code that understands how to move data through a déeitleat is used by our Linux 2.6 kernel
module. This is stored in this directory because it is hoakeder thgob component.

j ob holds the job component. This component is responsiblerfmriging us with a common mechanism
for queueing and testing for completion of operations onreetyaof different resources, including all BMI,
Trove, and the device listed above.

descri pti on holds code used to describe 1/O accesses and physical dathudions.

t r ove holds implementations of the Trove storage interface. dpddvel directory holds code for map-
ping to the various underlying implementations and defiriogimon data structures. Currently there is
only a single implementation of Trove, called DBPF (for DRI®Files). This implementation builds on
Berkeley DB and local UNIX files for storing local data.

f I ow holds the Flow component implementations. These compsremet responsible for ferrying data
between different types @ndpoints Valid endpoints include BMI, Trove, memory, and the buffache.

6.4 test

This directory holds a great deal of test code, most of wisalseless to the average user.

24

test/client/sysint has a collection of tests we have used when implementinge{iompiementing)
various system interface functions.

t est/ correctness/ pt s holds the PVFS Test Suite (PTS), a suite designed for tedtegorrectness
of PVFS under various different conditions. There are dlstgaiite a few tests in here, and the vision is that
we will run these in an automated fashion relatively oftemt {lve aren’t there quite yet). This is probably
the second most useful code (after pvfs2-client) intteet directory.

6.5 State machines andt at econp

The PVFS2 source is heavily dependent on a state machinenmeptation that is included in the tree.
We've already noted that the parser, statecomp, is locatdgbsr ¢/ common/ st at econp subdirectory.
Additional code for processing state machines istic/ conmron/ mi sc.

State machine source is denoted withsansuffix. These are converted t@ files by statecomp. If you are
building out of tree, the c files will end up in the build tree; otherwise you’ll be in thendusing situation
of having both versions in the same subdirectory. If moddythese, be careful to only modify thesm
files — the correspondingc file can be overwritten on rebuilds.

6.6 Build system

The build system relies on the “single makefile” concept thas promoted by someone or another other
than us (we should have a reference). Overall we're relgthvappy with it.

We also adopted the Linux 2.6 kernel style of obfuscatingaitteal compile lines. This can be irritating
if you're trying to debug the build system. It can be turnefivath a “make V=1", which makes the build

verbose again. This is controlled via a variable ca@&il ET_COVPI LE in the makefile, if you are looking

for how this is done.

6.7 Out-of-tree builds

Some of the developers are really fond of out-of-tree buildsile others aren’t. Basically the idea is to
perform the build in a separate directory so that the outparhfthe build process doesn'’t clutter up the
source tree.

This can be done by executiegnf i gur e from a separate directory. For example:
tar xzf pvfs2-0.0.2.t9z
nkdir BU LD pvfs2

cd BUI LD pvfs2
../ pvfs2/configure

25

