Flow Design Document

PVFS Development Team

July 2002

1 TODO

e point to some other document for explanation of conceptseomto all pvfs2 1/O interfaces (con-
texts, max idle time, test semantics, etc.)

2 Concepts and Motivation

Flows are a high level model for how PVFS2 system componeiitgarform 1/O. It is designed to
abstractly but efficiently move data from source to desimatwhere source and destination may be
defined as storage devices, network devices, or memorymggio

Features include:

e Combining I/O mechanismBhe flow interface combines network 1/0 and disk I/O into agten
framework with a scheduler that takes both into account.

e Multiple protocolsActual I/O is carried out underneath the flow interfacefloyv protocols We
may implement several different protocols (using diffédé@ or buffering techniques, for example)
which can be switched at runtime.

e Simple interfac@ he application interface to this system will be as high lew& simple as possible.
Device selection, scheduling, buffer management, andestguattern processing will be transparent
to the flow user.

e Datatyped-lows allow the user to specify both memory and file datatypiesilar to those used in
MPI) , and will handle breaking down these datatypes intarmé&t that can be used by lower level
I/O interfaces.

3 Flows

3.1 Overview

A flow describes a movement of data. The data always movesdrsingle source to a single destina-
tion. There may be (and almost always will be) multiple flowgrogress at the same time for different
locations- in particular for clients that are talking sitameously to several servers, or servers that are
handling simultaneous I/O requests.

At the highest level abstraction, it is important that a flaescribes a movement of data in terms of “what
to do” rather than “how to do it”. For example, when a user gpta flow, it may indicate that the first 100
bytes of a file on a local disk should be sent to a particulat boghe network. It will not specify what
protocols to use, how to buffer the data, or how to sched@d/@. All of this will be handled underneath
the flow interface. The user just requests that a high le@ltésk be performed and then checks for
completion until it is done.

Note that the “user” in the above example is most likely aesysinterface or server implementer in pvfs2.
End users will be unaware of this API.

A single flow created on a server will match exactly one flow aient. For example, if a single client

performs a PVFS2 read, the server will create a storage twonletflow, and the client will create a

network to memory flow. If a client communicates with N sesv&r complete an 1/0O operation, then it
will issue N flows simultaneously.

Flows will not be used for exchanging request protocol mgssdetween the client and server (requests
or acknowledgements). They will only be used for data trangf is assumed that request messages will
be used for handshaking before or after the flow as needed.

3.2 Architecture

There are two major parts of the flow architecture, as seergurdil. The first is thélow interface
Applications (ie PVFS components) interact with this ifdee. It provides a consistent API regardless of
what protocols are in use, what scheduling is being perfdrret.

The second major component of the architecture idltve protocol There may be many flow protocols
active within one flow interface. Each flow protocol implertenommunication between a different
pair of data endpoint types. For example, one flow protocol imk TCP/IP to asynchronous unix /O,
while another may link VIA to memory regions. For two sepetabsts to communicate, they must share
compatible flow protocols (as indicated by the dotted linghatbottom of figure 1).

Flow protocols all adhere to a strict interface and must pi®¥he same expected functionality (which
will be described later). Flow protocols take care of dstsilch as buffering and flow control if necessary.

2

Figure 1: Basic flow architecture

PVFS2 Component

(In this case a server) (In this case a client)

Flow Interface Flow Interface
Scheduling Scheduling

PVES2 Component

Flow Protocol
3

Flow Protocol
1 2

7 X 7

/ S Phd \

/ N - \
-

! ~ - \

! = -
~ B \

Storage Device T T-=---" Local Memory

Flow Protocol
1

Flow Protocol 000

3

Flow Protocol
2

Flow Protocol 000

Network Communication

3.3 Describing flows

Individual flows are represented using structures cdltaa descriptors The source and destination of a

given flow are represented by structures caladpoints A flow descriptor may serve many roles. First

of all, when created by a flow interface user, it describegd@ndsk that needs to be performed. Once it
is submitted to the flow interface, it may keep up with statprogress information. When the descriptor
is finally completed and returned to the user, it will indee#the status of the completed flow, whether
successful or in error.

Flow endpoints describe the memory, storage, or networdtimes for the movement of data. All flow
descriptors must have both a source and a destination entdpoi

3.4 Usage assumptions

It is assumed that all flows in PVFS2 will recededby a PVFS2 request protocol exchange between
the client and server. In afile system read case, the clidigevid a read request, and the server will send
an acknowledgement (which among other things indicatesrhaeh data is available to be read). In a
file system write case, the client will send a write request, #e server will send an acknowledgement
that indicates when it is safe to begin the flow to send dathdcerver. Once the flow is completed, a

trailing acknowledgment alerts the client that the senaesr ¢dompleted the write operation.

The request protocol will transmit information such as fillesand distribution parameters that may be
needed to coordinate remote flows.

4 Data structures

4.1 Flow descriptor

Flow descriptors are created by the flow interface user. i8tiime, the caller may edit these fields directly.
Once the flow has been posted for service, however, the aabgronly interact with the descriptor
through functions defined in the flow interface. It is not dafdirectly edit a flow descriptor while it is in
progress.

Once a flow is complete, it is again safe to examine fields wite descriptor (for example, to determine
the status of the completed flow).

Note that there is an endpoint specific to each type suppbstatie flow interface (currently memory,
BMI (network), and Trove (storage)).

The following fields may be set by the caller prior to posting:

e src: source endpoint (BMI, memory, or Trove addressingrmttdion)
e dest: destination endpoint (BMI, memory, or Trove addreggiformation)
e tag: tag used to match up flows with particular operation seges

e userptr: void* pointer reserved for use by the caller (may assieca flow with some higher level
state structure, for example)

o type: specifies what kind of flow protocol to use for this flow

o file_req: file datatype (similar to MPI datatype)

o file_regoffset: offset into the file datatype

e memreq: memory datatype (similar to MPI datatype) (optional)

e aggregatssize: total amount of data the flow should transfer (optipnal

e file_data: struct containing state information about the filedoeas, used by the distribution sub-
system

Special notes: Both the mereqg and the aggregateze fields are optional. However, at least one of them
mustbe set. Otherwise the flow has no way to calculate how muchrdasi be transferred.

The following fields may be read by the caller after completida flow:

o state: final state of flow (see enumerated values in flow.h)
e error.code: error code (nonzero if state indicates an error)

¢ totaltransfered: amount of data moved by the flow

The following fields are reserved for use within the flow code:

contextid: specifies which flow level context the descriptor belotwgs

flowprota.id: internal identifier for the flowprotocol used

priority: priority level of flow (unused as of yet)

schedqueuelink: for use by internal scheduler

flow_protocoldata: void* reserved for flow protocol use

file_req state: current state of file datatype processing

memreg.state: current state of memory datatype processing

result: result of each datatype processing iteration

5 Flow interface

The flow interface is the set of functions that the flow usedlmaged to interact with. These functions
allow you to do such things as create flows, post them for seyand check for completion.

PINT flow.initialize(): performs initial setup of flow interface - must be called erefore any
other flow interface functions

PINT_flow_finalize(} shuts down the flow interface

PINT_flow_alloc(): creates a new flow descriptor

PINT_flow_free() frees up a flow descriptor that is no longer needed

PINT_flow_reset() resets a previously used flow descriptor to its initialestatd values.

5

e PINT flow_setpriority(): sets the priority of a particular flow descriptor. May beledleven when
a flow is in service.

e PINT _flow_get priority(): reads the priority of a particular flow descriptor. May béexheven when
a flow is in service.

e PINT flow_post(} submits a flow descriptor for service
o PINT flow_setinfo() used to set optional interface parameters.

e PINT_flow_getinfo(} used to read optional interface parameters.
Three functions are provided to test for completion of po$kawvs:

e PINT flow_test(} tests for completion of a single flow
e PINT_flow_testsome()tests for completion of any flows from a specified set of flows

e PINT_flow_testcontext()tests for completion of any flows that are in service in theriace

6 Flow protocol interface

The flow protocols are modular components capable of mowatgloetween particular types of endpoints.
(See section 3.2 for an overview). Any flow protocol impletagion must conform to a predefined flow
protocol interface in order to interoperate with the flowteys.

¢ flowprotainitialize(): Initializes the flow protocol (called exactly once beforspng any flows)

flowprotafinalize(} shuts down the flow protocol (forceful terminating any pegdiows)

flowprota post() posts a flow descriptor

flowprotafind_serviceable() returns an array of active flows from the flow protocol tha either
completed or in need of service

flowprota service() performs work on a single flow descriptor that is ready fovee (as indicated
by a flowprotafind_serviceable() function)

¢ flowprotagetinfo() reads optional parameters from the protocol

¢ flowprotasetinfo() sets optional protocol parameters

The following section describing the interaction betwdsmnftow component and the flow protocols may
be helpful in clarifying how the above functions will be used

6

7 Interaction between flow component and flow protocols

The flow code that resides above the flow protocols serves tinmapy functions: multiplexing between
the various flow protocols, and scheduling work.

The multiplexing is handled by simply tracking all activeviiprotocols and directing flow descriptors to
the appropriate one.

The scheduling functionality is the more complicated of tilve responsibilities of the flow code. This
responsibility leads to the design of the flow protocol ifdee and the states of the flow descriptors. In
order to understand these states, it is important to uratetghat flow protocols typically operate with
a certain granularity that is defined by the flow protocol iempéntation. For example, a flow protocol
may transfer data 128 KB of data at a time. A simple implemntenaf a memory to network flow may
post a network send of 128 KB, wait for it to complete, thentpgbe next send of 128 KB, and so on.
Each of these iterations is driven by the top level flow congmin In other words, the flow protocol is
not autonomous. Rather than work continuously once it vesea flow descriptor, it only performs one
iteration of work at a time, and then waits for the flow computrte tell it to continue. This provides the
flow interface with an opportunity to schedule flows and cleoebkich ones to service at each iteration.

When a flow descriptor is waiting for the flow component towllib to continue, then it is “ready for
service”. The flow component may then call the flowpretwvice() function to allow it to continue. In
the above example, this would cause the flow protocol to pusther network send.

In order to discover which flow descriptors are “ready forvgss” (and therefore must be scheduled),
it calls flowprotafind_serviceable() for each active flow protocol. Thus, the servoop of the flow
component looks something like this:

1. call flowprotafind_serviceable() for each active flow protocol to generatetafiiows to service
2. run scheduling algorithm to build list of scheduled flows

3. call flowprotaservice() for each scheduled flow (in order)

4. if a flow descriptor reaches the completed or error statar{g time), then move it to a list of

completed flow descriptors to be returned to the caller

The scheduling filter (at the time of this writing) does nathbut service all flows in order. More advanced
schedulers will be added later.

7.1 Example flow protocol (implementation)

The default flow protocol is called "flowprotbmi_trove” and is capable of handling the following end-
point combinations:

BMI to memory

memory to BMI

BMI to Trove

Trove to BMI

The following summarizes what the principle flow protocdkirface functions do in this protocol:

o flowprota post(): allocates any intermediate buffers that may beedabgins datatype processing
¢ flowprotaservice(): posts the next necessary BMI and Trove opemtion

¢ flowprotafind_serviceable(): tests for completion of pending BMI and &r@perations, drives the
state of any flow descriptors affected by completion, andrnestflow descriptors ready for service
to caller

The flow protocol performs double buffering to keep both th@/€ and BMI interfaces as busy as possible
when transferring between the two.

The flow protocol does not have an internal thread. HoweVélr,detects that the job interface is us-
ing threads (through thePVFS2JOB THREADED.__ define), then it will use the job interface’s thread
manager to push on BMI and Trove operations. The fiadsiceable() function then just checks for com-
pletion notifications from the thread callback functiorether than testing the BMI or Trove interfaces
directly.

Trove support is compiled out if thePVFS2 TROVE_SUPPORT. define is not detected. This is mainly
done in client libraries which do not need to use Trove in ptdeeduce library dependencies.

8 Implementation note: avoiding flows

The flow interface will introduce overhead for small opeyas that would not otherwise be present. It
may therefore be helpful to eventually introduce an optation to avoid the use of flows for small read
or write operations.

text of an emmil discussion on this topic (> part by Phil, non >
part by Rob):

> Yeah, we need to get these ideas docunented sonmewhere. There may actually

8

> be a couple of eager nobdes. By default, BM only all ows unexpected

> messages < 16K or so. That places a cap on the eager wite size,

> unl ess we had a second eager node that consists of a) send wite request
> b) send wite data c) receive ack..

Yes. These two nodes are usually differentiated by the ternms "short" and
"eager", where the "short" one puts the data actually into the sane
packet/ nessage (dependi ng on the network |ayer at which we are working).

O course all of this would need to be tunable so that we can see what
works well. Maybe rules like:

contig wites < 15K : sinple eager wite
15K < contig wites < 64K : two part eager wite
wites > 64K &% noncontig wites : flow

contig reads < 64K : eager read
contig reads > 64K && noncontig reads : flow

VVVVYVVYVYVYV

Yeah, sonething |ike that.

