PVFS2 MPI Based Requests
Design Notes

PVES Development Team

march 2002

1 PVFSRequests

PVFS user programs can construct a data structure thatsesyisea specifc set of non-contiguous data
that is to be read from or written to a PVFS file. The PVFS lipiacludes a set of routines for creating
these structures in a controlled manner. These routinekipeoan opaque type the PVIR&quest which

is actually a pointer to an internal structure, the PIR&quest.

t ypedef struct PINT_Request *PVFS Request; /* user type for requests */

I nt PVFS_Request _contiguous(int count, PVFS Request ol dreq,
PVFS Request *newreq);

i nt PVFS_Request _vector(int count, int blocklength, int stride,
PVFS Request ol dreq, PVFS_Request *new eq);

I nt PVFS_Request _hvector(int count, int blocklength, int64_t stride,
PVFS Request ol dreq, PVFS _Request *new eq);

i nt PVFS_Request i ndexed(int count, int =blocklengths,
i nt »di spl acenents, PVFS Request ol dreq, PVFS Request *new eq);

I nt PVFS_Request _hi ndexed(int count, int *blocklengths, int64_t =*displacenents
PVFS_Request ol dreq, PVFS_Request *new eq);

I nt PVFS_Request _struct(int count, int *blocklengths, int64_t =*displacenents,
PVFS Request ol dreqgs, PVFS Request *newr eq);

i nt PVFS_Address(voidx |ocation, int64_t =*address);

i nt PVFS_Request extent (PVFS _Request request, int64 t xextent);

i nt PVFS_Request _si ze(PVFS_Request request, int =size);

i nt PVFS _Request | b(PVFS Request request, int64 _t* displacenent);

i nt PVFS_Request ub(PVFS_Request request, int64 _t displacenent);

These routines are based directly on the MPI datatype aatstrroutines of similar name and have the
same semantics.

2 Request Data Structures

The PINT_.Request is designed to represent any data layout that caebiéied using MPI's MPIDatatype
constructors. The PIN'/Requesistate is a structure that indicates how much of a requeschaally been
processed. Using these structures it is possible to prgpeessf a PVFS request, stop, and then resume
processing at a later time when resources become availlie document outlines these structures and
the algorithms for using them.

The PINT _Request

t ypedef struct PINT_Request {

PVFS offset offset; /|~ offset fromstart of |ast set of elenents x/
int32_t numereqs; /* nunber of ereqgs in a block */

PVFS_si ze stride; [+ stride between blocks in bytes */

int32_ t num bl ocks; /* nunber of bl ocks */

PVFS of fset ub; [+ upper bound of the type in bytes */

PVFS offset |b; /* 1 ower bound of the type in bytes */

PVFS si ze aggregate_size; /* anmount of aggregate data in bytes =*/
int32_t depth; /* nunber of l|evels of nesting x/

int32_t numcontig _chunks; /* nunber of contiguous data chunks =/
struct PINT_Request xereq; /* elenment type */
struct PINT_Request *sreq; /* sequence type x/

} PINT_Request;

A single PINT_.Request structure represents nbhacks blocks of nunereqs elements separated by stride
bytes, beginning offest bytes from the logical start of the, fand followed by an arbitrary data layout

2

described by the sequence type. The elements are of anagylimta layout described by the element
type. The ub, Ib, aggregatsze, depth, and nuroontig chunks fields are statistics of the entire data area
beginning with the current PIN'Request struct and including the element and sequence. tyegsth
records the maximum depth of the element type chain. CaNdRb Type contiguous, MPIType_vector,

and MPLType.hvector can be constructed with a single PIR€quest struct and the PINRequest struct
passed in as the element type. Calls to Migpe.indexed, MPIType hindexed, and MPType struct
generally utilize the sequence type chain.

Example Requests

The following are a few examples of how request patterns vbalrepresented using the PVR&quest
structure.

OFFSET

.

SIZE

OFFSET

OFFSET
COUNT

C) \
ELEMENTS

——

ESIZE
-

STRIDE

Single Contiguous Region Requests

A single contiguous region is represented by a single straciThe region can be specified as SIZE bytes
at location OFFSET as in figure A:

PTYPE:
of fset = OFFSET
num ereqs = S| ZE
stride =1
num bl ocks = 1
ub = SI ZE
Ib =0
aggregate_size = SIZE
depth = 1
num conti g chunks = 1
etype = PVFS Request byte
stype = NULL

Or can be specified as an array of COUNT integers as in figure B:

PTYPE:
of fset = OFFSET
num ereqs = COUNT
stride =1
num bl ocks = 1
ub = COUNT * 4

Ib =0
aggregate_size = COUNT * 4
depth =1

num conti g chunks =1

etype = PVFS Request _int

stype = NULL
PVFS_Request _int:

offset = 0

numereqs = 4

stride =1

num bl ocks =1

ub = 4

Ib =0

aggregate_size = 4

depth = 0

num conti g _chunks =1
et ype NULL

stype NUL L

Note that default PVF&Request exist for standard data types including: PWReguesibyte, PVFSRequesichar,
PVFS Requestshort, PVFSRequesint, PVFS Requestiong, PVFSRequesfifloat, PVFSRequesidouble.
Each of these standard types is defined with an etype of NULtwihdicates that the region is contigu-

ous regardless of the other parameters.

Strided Region Requests

A data area made up of regular strided groups of contigu@usezits can also be represented with a single
PINT_Request structure. A region consisting of GROUPS groupd &NEENTS items of type ETYPE
with a size of ESIZE each with a stride between the first eldrakaach group of STRIDE bytes would
be as in figure C:

PTYPE:
of fset = OFFSET
num ereqs = ELEMENTS
stride = STRI DE
num bl ocks = GROUPS
ub = ((GROUPS - 1) » STRIDE) + (ELEMENTS * ESI ZE)

Ib =0
aggregate_size = GROUPS » ELEMENTS * ESI ZE
depth =1

num conti g_chunks = GROUPS
etype = ETYPE
stype NUL L

Once again this assumes that ETYPE is a contiguous type.

OFFSET

D) \ OFFSET+40 OFFSET+760

' '
RN nin

D PVFS_Request_float * 6

OFFSET

y

. IWNE IWE FWREE §WEE |

~—

INNER-PTYPE

Sequential Requests

A data area may consist of a region that conforms to one tyglewed by a region that conforms to
another. Example might include a strided region where ongsua begin and/or end in the middle of a
group, rather than have a integral number of whole groupsiayrbe two unrelated segments of data. For
this, a sequence of PINRequest structures is specified using the stype field tordeterthe sequence.
The offset is specified relative to the beginning of the dataa

In this example we have a strided region shown in D. We warteit 8 bytes into the first group (yellow),
then have 15 whole groups (blue), and finally end 4 bytes imtddst group (green). Each group is 6
elements, and each element is a float (4 bytes). The strigebatgroups is 48 bytes (12 floats).

FI RST- PTYPE
of fset = OFFSET
numereqs = 4
stride =1
num bl ocks = 1
ub = 764
Ib =0
aggregate_size = 380
depth =1
num conti g_chunks = 17
etype = PVFS Request fl oat
stype = NEXT- PTYPE

NEXT- PTYPE
of fset = OFFSET + 40
numereqs = 6
stride = 48
num bl ocks = 15
ub = 764
b = 40
aggregate_size = 364
depth =1
num conti g _chunks = 16
etype = PVFS Request fl oat
stype = LAST- PTYPE

LAST- PTYPE:
of fset = OFFSET + 760
numereqs = 1
stride =1
num bl ocks = 1
ub 764
I b 760
aggregate_size = 4
depth = 1
num conti g _chunks =1
etype = PVFS Request fl oat
stype = NULL

Note that ub, Ib, aggregat@ze, depth, and numontig chunks always refers to the region represented
down stream of the current PINRequest record, and not the whole region, however ub ancelistalr
expressed in terms of the entire data area.

Nested Types

Any request can be built on top of another request. When the quest is contiguous the result is as
above, but when the base request is not contiguous thingsaeecomplicated. Examples include nested
strided regions and vectors of records that are only ppraacessed.

The following is a nested strided region. There are 4 grofipg®’elements,” with a stride of 8 elements.

Each element consts of 2 groups of 6 integers (one elemewtsinagreen), with a stride of 48 bytes.

OUTER- PTYPE
of fset = OFFSET

num ereqs = 2

stride = 768
num bl ocks = 4

ub = 3264

Ib =0

aggregate_size = 384
depth = 2

num conti g _chunks = 16
etype = | NNER- PTYPE
stype = NULL

| NNER- PTYPE:
offset =0
numereqs = 6
stride = 48
num bl ocks = 2
ub = 96
Ib =0
aggregate_si ze = 48
depth =1
num conti g _chunks = 2
etype PVFS_Request _i nt
stype NULL

Note that the offset, ub, and Ib are in terms of the inner elgmand not of the entire buffer, thus the
offset is the offset from the beginning of that element toftrst bit of data in that element.

3 ThePINT_Request_state

When processing a request described with a PYReguest the following structures are used to keep track
of how much of the request has been processed.

t ypedef struct PINT_regstack {

int32_t el; [+ nunber of el enment being processed */

int32_t maxel; [+ total nunber of these elenments to process */

Pl NT_Request =*rq; /* pointer to request structure =*/

Pl NT_Request =*rqbase; /* pointer to first request is sequence chain =/

int32_t blk; /* nunber of bl ock being processed */

PVFS offset chunk offset; /* offset of beginning of current contiguous
} PINT_regstack;

typedef struct PINT_Request _state {
struct PINT_reqstack *cur; /* request elenent chain stack */
int32.t lvl; /* level in elenment chain */
PVFS si ze byt es; /* bytes in current contiguous chunk processed
PVFS offset buf_offset; /* byte offset in user buffer =*/
} PINT_Request _st at e;

The PINT_Requeststate utilizes a stack to keep up with each level in the elénype chain. For each
level, a stack element records which block and which eleméhtn the block is being processed as well
as which PVFSRequest record in the sequence chain is being processedhaxet and dtbase fields are
used to reset each level each time it is entered. The REquesistate records the level being processed
and a function used to process each contiguous block of @htabytes field is used to record the results
of a partial processing of bytes so the processing can beedausl resumed later.

4 PINT _Process request interface

Requests and distributions are processed using the icéeatésscribed here. The caller allocates an array of
SEGMAX offsets and an array of SEGMAX segment sizes. Thespassed to the PINProcessequest
function allong with an initialized PINJRequesistate, a PVFRequest, a PVFERequesffile_data struct
which includes distribution, distribution parameters tagata, and an EXTENIPLAG that indicates if

the routine should stop at the current end of file (if the vatueero) or should extend the local file to
the size needed to complete the request (if the value is aoy)-mn the even that the file ends before
the end of the request. A read will typically have a zero valnd a write will typically have a one
value. Other arguments to PINHrocessequest include the maximum number of segments to process
SEGMAX, a maximum number of bytes to transfer BYTEMAX, andarting offset STARTOFFSET,

and EOEFLAG argument returns whether the end of the request is adywrd the end of file.

typedef struct PINT_Request file data {
PVFS si ze fsize; /= actual size of |ocal storage object =*/
int32_t server_nr; /= ordinal nunber of THI S server for this file =/
int32 t server _ct; /* nunber of servers for this file */
PVFS Distribution *dist;
PVFS Di st_parm *dpar m
PVFS bool ean extend fl ag;

} PINT_Request _fil e_data;

PINT_Procesgequest fills in up to SEGMAX array entries, updates SEGMAXnidicate the number
of segments processed, updates BYTEMAX to indicate the murob bytes processed, and updates

START_OFFSET and the PIN'Reqgeststate to indicate the last point in the request procssed fure
tion attempts to process BYTEMAX bytes, but cannot procesgerthan SEGMAX contiguous regions.
The code is expected to be optimized for the case where STBRRSET is equal to the value returned
the last time the function was called with the same PIRdquesistate.

i nt PINT_Process_request (Pl NT_Request_state *req,
PI NT_Request file data *rfdata, int32_t *segnax,
PVFS of fset +offset_array, PVFS size *size_array,
PVFS of fset *start _offset, PVFS size *bytenax,
PVFS bool ean *eof flag, int node);

The MODE tells the request processor whether to proces®theest in terms of the local file offsets on
a server or local buffer offsets on a client. Clients sho@tkis to PVFSCLIENT to indicate that the
data will be read into a contiguous buffer. Servers shoultbdeVFS SERVER to indicate that the offsets
computed by the distribution module should be used as tfa fibe offsets. A third mode PVEEKSIZE
indicates that the routine should count how many bytes uprioEBMAX are left in the request, but does
not alter the requset state or update the SAERAY or OFFSETARRAY.

Before calling PINTProcesgsequest for a given request for the first time, the caller sdedallocate

a PINT_Requesistate structure. This is done by calling PINlEw_request passing in a pointer to the
request. Theoretically multiple request states can eaistife same request, thought there is really no
need to do such a thing.

struct PINT_Request _state =PI NT_New request _state (Pl NT_Request *request);

The new request state is positioned at the beginning of theest. The caller must also allocate a
64-bit startoffset, as well as the offset and size arrays, fiaj, segmax, and bytemax. Each time
PINT_Processequest is called, the segmax, bytemax, andfiegf should be reset to the proper val-
ues, as the function returns results in these variables hasviaking inputs from them. The offset and
size arrays are overwritten each time PURTocessstate is called. The stadffset variable is normally
NOT reset between calls as the caller normally wishes tomoatranslating the request from the point
left off previously. After completing the processing of tieguest, the caller is also responsible for freeing
the request state structure with a call to PIRfieerequest.

voi d PINT_Free request _state (PINT_Request _state *req);

The following is a sample of code calling the request praogsoutines. It processes an entire request
using no more than SEGMAX contiguous sements at a time andore than BYTEMAX bytes at a
time.

10

#i ncl ude <pvfs-types. h>
#i ncl ude <pint_distribution.h>

#defi ne SEGVAX 32
#defi ne BYTEMAX 250

do_a request (Pl NT_Request =*req,
PVFS Distribution *dist,
PVFS Di st _parm *dparm
PVFS Met a net a)

int i;

/'l PVFS_Process_request arguments
Pl NT_Request _state =*reqs;

PI NT_Request file_data rfdata;
PVFS_of f set of fset _array[SEGVAX] ;
PVFS_si ze size_array[SEGVAX] ;
PVFS of fset offset;

PVFS_si ze byt enax;
int32_t segmax;

PVFS bool ean extend fl ag;
PVFS bool ean eof fl ag;

reqs = PINT_New request _state(req);
rfdata.server _nr = 0;
rfdata.server_ct =1
rfdata.fsize = 10000000;
rfdata.di st = dist
rf dat a. dparm = dparm
rfdata. extend flag = O;
eof flag = O;
of fset = O;
do {
segmax = SEGVAX
byt emax = BYTEMAX;
PI NT_Process_request(reqs, & fdata, &segnax, offset_array,
size_array, &offset, &bytemax, &eof flag, PINT_SERVER);
printf("processed %1d bytes in % segnents\n", bytemax, segmax);
for (i = 0; i < segmax; i++)
{
printf("segnent %l: offset=%1d size=%1d\n", i,
of fset _array[i], size_array[i]);

11

}

}
} while (offset !=

-1);

12

