BMI Document

PVFES Development Team

July 2002

1 TODO

e maybe change method nomenclature to module
e no longer do size mathing

e test/wait nomenclature and semantics

Stuff from discussions with Pete;

e give a strict definition for “completion”. we do local comfiten in MPI sense (completion means safe
to reuse buffer). User can build barrier to get non local detign.

e encourage preposting and discuss why

e discuss a little bit how flows fit in, what real purpose of bmi is

2 Introduction

This document describes the design and use of the Bufferextdde Interface (BMI). BMI is a network
abstraction layer that will form the basis for communicatimtween components of the Parallel Virtual File
System Version 2. It is a simple message oriented commuonsatibrary that includes features that are
particularly useful for low level parallel I/O operations.

All request protocol messages exchanged between cliedtsemers in PVFS2 will be transferred using
BMI.

Actual file data transferred in PVFS2 will be sent using thevfloterface (see related documents). The
default flow implementation will also use BMI as an undertyimansport, but advanced implementations
may elect to bypass it.



3 Related Documents
e pvfs2-design-storageint: outlines the Trove interfackictvis a low storage device interface used by
PVFS2.

e pvfs2-design-flow: outlines the flow interface. Flows aredito represent transfers that involve both
network and storage. It also brings together schedulingsipal distribution, and 1/0 request process-
ing for this environment. The default flow implementatioresi8MI and Trove as underlying access
mechanisms.

e pvfs2-design-job: covers the high level glue layer thaigpthe flow, BMI, trove, and scheduling
interfaces together into a coherent framework.

e pvfs2-design-concepts: general definitions and overvielMFS2.

4 High level design

4.1 Features and Goals

e simple API

e modularity

o efficiency

e support for multiple simultaneous networks

e client/server model

e supports discontiguous memory regions

¢ hooks for obtaining information for scheduling
e message based, reliable, ordered delivery

e misc. features tailored to parallel I/O

4.2 Implementation

BMI has been implemented as a user level library with modtdesupport various network protocols. Al-
though designed for use with PVFS2, BMI is an independenatjbwhich may be useful in other environ-
ments as well.

BMI provides reliability, message ordering, and flow cohtrlf a particular underlying protocol does not
provide one of these features, then BMlI is responsible f@lementing it.

Currently all modules are added to BMI statically at comfiilee. These could be implemented as runtime
loadable modules if needed, however.



4.3 Communications model

All communications operations in BMI are nonblocking. Irer to send a message, the user must st

the message to the interface, thest it for completion. The same holds for receiving messagese@esting
indicates that a message has completed, the user must tieestatus of the message in order to determine
if it completed successfully or not. Partial completion @& allowed.

Most functions defined as part of the BMI interface are nockileg. Each function may perform work before

completing, but this work is guaranteed to complete withianded amount of time. This restriction implies
that it may be necessary to test for completion of a messageaddimes before it actually completes. There
is no mechanism that allows the interface to “wait” indeéhjtfor completion of a particular operation. This

design decision was made because blocking network capecesly in large parallel systems) are prone to
problems with robustness and scalability. They may causspplication to hang in the event of network or
programming errors. This is not acceptable within low lesyedtem services.

When posting receive operations, the user must specifydteeas of the sending host and the size of the
message to accept. The user cannot post receives that matchrds addresses. The only exceptions to this
rule are unexpected messages, as defined in section 5.2.

BMI is a connectionless interface; the user does not havetabksh or maintain any link between hosts
before sending messages. The BMI implementation may niaintanections internally if needed for a
particular network device, but such details are not exptséide user.

4.4 Architecture

The overall architecture of BMI is shown in Figure 1. Supgdortindividual network protocols is provided
by BMI methods. There may be any number of methods active at a given times ddiiection of methods
is managed by theethod control layer. The method control layer is also responsible for presgritie top
level BMI interface to the application.

4.4.1 Method control

From a high level, the method control layer is responsible@fohestrating network operations and managing
the network methods. This includes several responséslitincluding address resolution, method multiplex-
ing, and providing a stable BMI user interface. It also pded a library of support functions that may be
useful to method implementors.

One of the most important tasks of the method control lay&réanultiplexing of network methods. When
an operation is posted by the user, it is up to the method @otttrdecide which method will service the
operation. Likewise, when the user tests for completiomptiethod control must test the appropriate methods
for the operations of interest.

The method control layer provides the BMI user interfacesThthe API used by applications that commu-



BMI Interface

Method Control
Network Address Reference List

ooooo
Method Interface Method Interface
Method One Method Twa eoo
Operation Queues Operation Queues
aog aog
oo oo
o 0O o 0O
O O
O O

Figure 1: BMI Architecture

nicate using BMI. The BMI interface functions are converigtt the appropriate low level method requests
that are needed to complete operations.

Address resolution is the final major responsibility of thethod control. The method control manages
the BMI level addresses and makes sure that the name spagesistent to the user, regardless of which
methods are in use. It does so by maintaining an inteefelence list for addresses. Each network address
has a unique reference that provides mappings between BMIlesel addresses, the string representation
of addresses, and the method specific representation afssdd. The BMI user level addresses are handles
for network hosts that the application uses when calling Biwtictions. The string representation is the
ASCII host name of the hosts before they are resolved by BBlréad from a “hosts” file, for example).
Finally, the method address is the representation thatniedihods use for identifying hosts, which may
contain information specific to that particular protocolotsl that method addresses are never, under any
circumstances, exposed to the application. They are reddov internal BMI use only.

4.4.2 Methods

Each method is implemented as a statically compiled moduies module must provide (and strictly adhere
to) a predefinednethod interface. It supports reliable, ordered delivery and flow control floe protocol
that it controls. Aside from meeting these semantics anérullpto the method interface, there are no other
restrictions on how the method should be implemented. Sufipcaries are provided for certain features
that are common to many methods, but their use is optional.

Each method is responsible for maintaining the collectiboperations that it is working on, usually through
operation queues. These collections of operations aratprie each method.



4.4.3 Thread safety

The top level BMI user interface is thread safe. This meaasitlis legal for more than one thread to make
concurrent BMI calls, as long as those calls do not manipula¢ same data structures or operations. For
example, one thread may handle BMI messages to carry ouwhi@® another thread handles BMI messages
to exchange requests and acknowledgements.

The BMI methods do not need to be thread safe. The methodotdenger will serialize any calls to a single
method so that it is protected. This should ease the prod¢ésgplementing new methods.

5 Concepts

5.1 Memory buffers

The user must specify a memory buffer to use when posting @erateive operations. This buffer may be a
normal memory region, or it may be a buffer that was allocaisidg BMI memory management functions.
If the user elects to allocate the memory using the BMI faegi then BMI has the opportunity to optimize
the buffer for the type of network being used. This mode ofrafien is preferred for achieving optimal
performance. However, normal memory buffers are also &itbim order to better support certain scenarios
common to file system operations. Some file system operatiohsipon existing memory regions (for
example, the client side Unix read() system call). In theéseaions, we would like to avoid imposing a
buffer copy, and instead give the BMI layer the flexibilityltandle the buffer at a lower level if possible.

If a memory buffer is allocated using BMI function calls, thié must also be deallocated using BMI. These
buffers are not guaranteed to be manageable by standaratiogesystem libraries.

5.2 Unexpected messages

BMI’s default mode of operation requires that each sendadjmer be matched with a certain receive operation
at the remote host in order to complete. This send and reopigetion must match in terms of expected
message size (more on this in section 5.3), host addresgjemtgcation tag. Otherwise the communication
will not complete. There is no mechanism for receiving frotiwddcard” address.

However, in order to loosen this restriction, BMI providesgecial class of messages callawxpected
messages. This type of message is sent without the receiving hosti@iplrequesting the communication.
In other words, the receiving host does not post a matchiogive for this type of message. Instead, it
must periodically check to see if any unexpected messagesanaved in order to receive them successfully.
This is the equivalent of “listening” for new requests in armtraditional networking system. Unexpected
messages may come from any host on the network. Commumidagtwveen two hosts is typically initiated
by one of the hosts sending an unexpected message to the other

Unexpected messages may be of any size less than a limit didfinthe interface. When an unexpected



message arrives, BMI will provide a buffer for it. This buffie passed to the receiving process when it
checks to see if unexpected messages have arrived. It isgpernsibility of the caller to eventually free this
buffer using the normal system free() function.

5.3 Short messages

The BMI interface does not allow partial completion of megsa However, it does allow for a sender to
send less data than the receiver anticipated, resultincghat way be thought of as “short” messages from
the receiver’s point of view. Short messagiesnot indicate that another receive is needed to obtain the rest
of the message. Instead it means that the sender does ncadhavwech data to transmit as the receiver was
expecting it to. In practice, this tends to occur in file sgstevhen a read operation reaches EOF. It may also
be a common occurance in request protocol operations, vdugrests may be of variable size and we do not
wish to negotiate the correct size of messages before trimgm

When a short send is posted, the sender must indicate thahsiz¢he receiver was expecting. This is
necessary for the message to be matched properly betweder serd receiver. When the receive completes,
the caller is notified of how much data was actually presethiémmessage.

5.4 Immediate completion

The default model for each network operation is to first ppahd then test for completion. However, there
are often instances in which operations can complete imatedgli(during the post procedure) and thus do
not require the extra test step. Examples of this occur wieh Jockets buffers are large enough to allow a
message to be sent in one step without blocking. This mayo&lsar on the receive side of communications
if the required data has already been buffered by the BMatjowhen the receive operation is posted.

In these situations, it would be good to avoid the overheamtetilessly calling the test function. We therefore
allow immediate completion from any post function. Immediate completion is indicatemhf post functions
by a return value of one. BMI library users should always &hbés return value so that they are aware of
opportunities to skip the test phase of communication.

5.5 User pointers

BMl is intended to be used in an enviroment in which many dji@ma are in flight at once. Several operations
may be posted at different times for different tasks, wittmptetion following later in a test() or wait() call.
This sometimes makes it challenging to map the completi@maiperation back to the higher level operation
or state that the user was trying to carry out.

BMI includes the concept of “user pointers” to help with thimblem. A user pointer is a void* passed in
to message post functions, which is returned to the user Wieemessage completes. The caller may use
these pointer fields for any purpose. Typically it will be fus@s a mechanism to map back to a higher level
state without having to search through a queue of operati@misire currently in flight. If used properly, user



pointers eliminate the need for the caller to keep track efation id’s for any reason other than for calling
test() functions.

5.6 Listl/O

BMI provides seperate API functions for posting contiguansl noncontiguous buffers for communication.
Noncontiguous buffers are represented as arrays of bufietgrs and sizes, and are handled by functions
with the _list suffix.

List I/O is useful when a user wishes to send from or receite ithéo multiple memory regions using a single
network message. This is convenient for mapping networkad/@arallel 1/O access patterns.

Messages posted using the list interface are completelypatibhe with contiguous messages on the peer
side. Regions do not have to match between sender and recavelo they both have to be discontiguous.
The aggregate size of the message does need to match, howesdist functions support all of the features
of the “normal” API, including short messages.

The intention is for method level support of list messagdsetoptional; if a method does not implement this
functionality, then the method control layer of BMI will etatte it by packing and unpacking regions using
contiguous intermediate buffers. This is obviously a penfance penalty, but will ensure correct behavior
when a native method cannot easily handle discontiguousameragions.

6 User interface

6.1 Types and structures

e Message tagsMessage tags are numerical values that may be associatechessages to be sent or
received using BMI. The sending and receiving process masstmatching tags in order for a given
communication to complete. Unexpected messages are thexg#ption; in that case only the sender
must specify a tag.

Tags provide a mechanism for PVFS to differentiate betwegiows messages and associate them
with specific tasks.

e ID’s: ID’s are opaque handles that a caller may use to keep trackerftions that are currently in
progress. ID’s are assigned by BMI when an operation is paatel then used in subsequent tests to
determine if the operation has completed.

e unexpectedinfo: This is a struct used to describe incoming unexpected mgessit is filled in by the
testunexpected() and waitunexpected() calls (see below).



6.2 Interface functions

The BMI interface can be separated into categories as fellomessage initiation, message testing, memory
management, list I/O, and utilities.

The message initiation functions are used by an applicaticequest the sending or receiving of network
buffers:

e BMI _post.send() Posts a send operation.

BMI _postrecv(): Posts a receive operation.

BMI _post_.sendunexpectedf)Posts a send operation that was not expected by the reggikdcess.

BMI _unpost(): Unposts a previously submitted operatidhisis a blocking call.

BMI _addr_lookup(): Converts the string representation of a BMI address (iflikel form) into an
opaque BMI addr type.

The message testing functions are used to check for completinetwork operations:

e BMI _test(): Tests for completion of a single operation.
e BMI _testsome() Tests for completion of any of a specified set of operations.
e BMI _testunexpected() Tests for arrival of any unexpected messages.

e BMI wait(): Tests for completion of a single operation; is allowed tochl briefly if no work is
available.

e BMI _waitsome() Tests for completion of any of a specified set of operatiogssallowed to block
briefly if no work is available.

e BMI _waitunexpected() Tests for completion of any of a specified set of operatiosgllowed to
block briefly if no work is available.

The BMI memory management functions are used to control mgimdfers that are optimized for use with
BMI:

e BMI _memalloc(} Creates a new buffer.

e BMI _memfree() Destroys a buffer previously created with Biviemalloc().



The list I/O functions are very similar to the message itidiafunctions. However, they allow the caller to
express buffers as arrays of discontiguous regions

Note that each of these functions requires the caller to paas array of pointers and sizes to use as I/O
targets. These arrays must not be freed or modified until tatiop of the requested operation (they are not
copied by the BMI interface).

e BMI _post.sendlist(): Same as BMlpostsend, except that it allows the caller to specify an array of
buffers and sizes to send from.

e BMI _postrecv_list(): Same as BMlpostrecv, except that it allows the caller to specify an array of
buffers and sizes to receive into.

e BMI _post.sendunexpectedist(): Same as BMlpostsendunexpected(), execept that it allows the
caller to specify an array of buffers and sizes to send from.

The final collection of functions perform various utilitystes that are not directly involved in network 1/O:

e BMI _initialize(): Starts the BMI interface; must be called prior to any othit Bunctions.
e BMI _finalize(): Shuts down the BMI interface.
e BMI _setinfo(): Sets optional BMI parameters.

e BMI _getinfo(): Reads optional BMI parameters.

6.2.1 Supported getinfo and setinfo options

e BMI_DROPADDR: This is a hint which may be passed to_g#b. It tells the interface that no further
communication will be requested of the specified addressitaat it should be discarde8lOTE: this
option will almost certainly be deprecated or replaced soon

e BMI_CHECKINIT: This is a query to getnfo which simply checks to see if the BMI interface has
been properly initialized or not.

6.3 Error handling

Errors may be reported from BMI in one of two ways:

e Return value of API function: If an API function returns a value less than zero, it indésathat the
function failed. This is an indication of a critical inteitreror that is not particular to any specific
operation.



e Operation error code: This is a value filled in upon completion of an operation. eiég than zero, it
indicates that the operation in question failed, but thaBMI interface as a whole is working properly.

Both types of error codes for the time being consist of -euadaes. This is not really expressive enough for
long term use, but at least gives a general idea of the typailafd for now.

7 Method implementation

The method interface is very similar to the BMI user inteefadt implements roughly the same functions.
However, it includes minor variations that take into acddhe fact that operations at this level are targeted
for a single specific method.

7.1 Method interface

e BMI _method.initialize():

e BMI _method_finalize():

e BMI _method_post.send()

¢ BMI _method_post.sendunexpected()
e BMI _method_post.recv():

e BMI _method_unpost().

e BMI _method.addr_lookup():

e BMI _method_test():

e BMI _method.testsome()

e BMI _method_testunexpected()
e BMI _method.wait():

e BMI _method waitsome()

e BMI _method waitunexpected()
e BMI _method_-memalloc(}

e BMI _method-memfree()

e BMI _method_set.info():

e BMI _method_getinfo():

10



e BMI _method_post.sendlist():
e BMI _method_post. sendunexpectedist():

e BMI _method_post.recv_list():

7.2 Important structures

There are three major structures that are manipulated &NHaenethod level API:

e method.op: This structure is used to keep track of pending operatiahgicludes several generic
fields which should apply to almost any method, as well as\afsiarea which may be used internally
by methods for storage of parameters.

e method.addr: This structure is used to describe network addresses ahétieod level. Like the
methodop structure, it has both generic and private sections.

e method.unexpectedinfo: This structure describes incoming unexpected messagedilled in dur-
ing testunexpected(), and converted into information tgpassed to the BMI user by the method
control layer.

7.3 Support libraries

The BMI library provides several support functions whichynaid method programmers when implementing
support for new protocols. Each method can expect theséidusdo be visible to it once it has been linked
into the library. These functions are intended to be as gemaarpossible so that they may be used by a
variety of different methods.

7.3.1 Operation queues

Every prototype method implemented so far makes use of FligDe&p to keep track of pending operations.
Operations are described by generic operation structhegsiriclude common parameters (such as buffer
size and location). This structure also includes absttacage space for private method specific parameters
(such as flow control or device management information). dpferation queue mechanism in BMI is based
on the doubly linked list implementation found in the Linuerkel.

e op_queuenew(). Creates a new operation queue.

e op_queuecleanup() Destroys an existing operation queue as well as any opagsationtained within
it.

e Op_queueadd(): Adds a method operation onto the tail of a queue.

11



e op_queueremove(} Removes a specific operation from the queue in which it essid

e op_queuesearch() Searches for an operation that matches the charactersgigcified a given key.
All searches begin at the head of the target operation queue.

e op_queueempty(): Determines whether a queue is empty or not.

e op_queuecount(): Counts the number of entries within an operation queues Thiction requires
iteration through every element of the queue. It is theeefanly suitable for debugging purposes in
which performance is not critical.

e op_queuedump(): Prints out information about every operation in the queDaly used for debug-
ging and prototyping purposes.

Two related functions are also provided for managing thetwe of operation structures:

¢ alloc_method.op(): Allocates a new operation structure.

¢ deallocmethod.op(): Deallocates an existing method operation.

7.3.2 Method address support

Method address structures are used by methods to identifyorie hosts. Like operation structures, they
contain private storage for internal method use. Threetiomge are provided to aid in managing these
structures:

e alloc_method.addr(): Creates a new address structure.
e deallocmethod.addr(): Destroys an existing method address structure.

e bmi_method addr_reg_callback(): This is called by a method to inform the method control layer
that it should register a new method address structure. tihetibn is typically invoked when an
unexpected message arrives and the method must create dam@ssastructure to represent the source
host and register it with the upper API layers.

7.3.3 Logging and debugging

BMI uses thegossip library for reporting errors and logging messages. Thishraasm is used in several
other components besides BMI as well. A discussion of gassipbe found in thearl-devel oper-guidelines
document.

12



7.3.4 Operation id’'s

Each method is responsible for creating opaque id’s thabeaused to refer to operations that are currently
in progress. Typically these id’'s will be used to map useuests to specific operation structures. The
id_generator library is available to aid methods in performing this maggpoperation. It also insures that the
id space is consistent across all methods.

e id_genfastregister(): Registers a new structure with the interface and createsvadthat may be
used to reference it.

¢ id_genfast lookup(): Returns a pointer to the original data structure that wasaated with the given
id.

8 References

¢ source code The source code to BMI may be found in the “pvfs2” cvs treghimithe pvfs2/src/io/bmi
directory.

e example methods Two example methods have been created thus far. A methatdaGM proto-
col may be found in pvfs2/src/io/bmi/bogm. A method for the TCP/IP protocol may be found in
pvfs2/src/io/bmi/bmitcp.

e benchmarks Benchmarks that compare MPI and BMI can be found in pvfs@tgbmi/benchmark.
e example applications Example applications that use BMI directly may be foundufs@/src/io/bmi/examples.

e BMI technical paper: work in progress, available in cvs as the “bpaper” project.

13



