
A Quick Start Guide to PVFS2

PVFS2 Development Team

March 30, 2008

Contents

1 How to use this document 2
1.1 Versions 2

2 Downloading and compiling PVFS2 2
2.1 Dependencies 2
2.2 Untarring the packages 3
2.3 Building and installing the packages 3

3 Configuring PVFS2 for a single host 3
3.1 Server configuration 4
3.2 Starting the server 5

3.2.1 Automatic server startup and shutdown 5
3.3 Client configuration 6
3.4 Testing your installation 7

4 Installing PVFS2 on a cluster 8
4.1 Server configuration 8
4.2 Starting the servers 10
4.3 Client configuration 11
4.4 Testing your Installation 11

5 The PVFS2 Linux Kernel Interface 11
5.1 Finding an Appropriate Kernel Version 11
5.2 Preparing Linux Kernel 2.6.x configurations 11
5.3 Preparing Linux Kernel 2.4.x configurations 12
5.4 Testing the Kernel Interface 12

5.4.1 Loading the kernel module 13
5.4.2 Special Note for 2.4 kernels 14

5.5 Unmounting and stopping PVFS2 on a client 14

A Notes on running PVFS2 without root access 14

B Debugging your PVFS2 configuration 15

C ROMIO Support 15

1

1 How to use this document

The quick start guide is intended to be a reference on how to quickly install and configure a PVFS2 file
system. It is broken down into three parts. The first describes how to download and compile the PVFS2
software. The next section walks through the steps of configuring PVFS2 to store and access files on a single
host, which may be useful for simple testing and evaluation.The final section of this document describes
how to install and configure PVFS2 in a true cluster environment with multiple servers and/or clients.

1.1 Versions

This document only applies to the most recent snapshot of PVFS2.

2 Downloading and compiling PVFS2

Follow the information at http://www.pvfs.org/pvfs2/download.html . Once the source code is downloaded,
compiling the PVFS2 source code is a matter of running ’./configure’, followed by ’make’ from the top level
source directory. More detailed instruction for building and installing are provided below.

2.1 Dependencies

The following software packages are currently required by PVFS2:

• Berkely DB (version 3 or 4)

• aio support (provided by glibc and librt)

• pthreads

• gcc 2.96 or newer (DO NOT USE gcc 2.95! gcc 3.x recommended)

• GNU Make

The following software packages are currently recommendedfor use with PVFS2:

• GNU Libc (glibc) 2.3.2 [or later]

• Linux kernel version 2.6.0 (or later) or 2.4.19 (or later) (NOTE: not necessary for running PVFS2
servers, only the client kernel module).

• A GNU/Linux environment (heterogenous configuration are supported)

ROMIO supports PVFS2. It is not provided with pvfs2, but can be found as part of the following MPI
implementations:

• MPICH2-0.96p2 or newer, though we suggest using the most recent MPICH2 release

• OpenMPI-1.0 or newer, though it may not have some of the bug fixes or features of the MPICH2
version

2.2 Untarring the packages

All source code is contained in one tarball: pvfs2-x.x.x.tar.gz. The following example assumes that you will
be building in the /usr/src directory, although that is not required:

[root@testhost /root]# cp pvfs2-x.x.x.tar.gz /usr/src
[root@testhost /root]# cd /usr/src
[root@testhost /usr/src]# tar -xzf pvfs2-x.x.x.tar.gz
[root@testhost /usr/src]# ln -s pvfs2-x.x.x pvfs2
[root@testhost /usr/src]# ls -lF
total 476
lrwxrwxrwx 1 root root 15 Aug 14 17:42 pvfs2 -> pvfs2-x.x.x/
drwxr-xr-x 12 root root 512 Aug 14 10:11 pvfs2-x.x.x/
-rw-r--r-- 1 root root 371535 Aug 14 17:41 pvfs2-x.x.x.tar. gz

2.3 Building and installing the packages

The default steps for building and installing PVFS2 are as follows:

[root@testhost /usr/src]# cd pvfs2
[root@testhost /usr/src/pvfs2-XXX]# ./configure
[root@testhost /usr/src/pvfs2-XXX]# make
[root@testhost /usr/src/pvfs2-XXX]# make install

Here are some optional configure arguments which may be of interest:

• –prefix=<path>: installs all files in the specified directory (/usr/local/ is the default if –prefix is not
specified)

• –with-kernel=<path to 2.6.x kernel source>: this enables compilation of the PVFS2 Linux kernel
driver [Requires Linux Kernel 2.6.0 or later]

• –with-kernel24=<path to 2.4.x kernel source>: this enables compilation of the PVFS2 Linux kernel
driver [Requires Linux Kernel 2.4.19 or later]

• –with-mpi=<path to mpi installation>: this enables compilation of MPI based test programs

• –with-efence: automatically links in Electric Fence for debugging assistance

Also note that the pvfs2 2.6.x kernel source supports out of tree builds if you prefer to use that technique.

3 Configuring PVFS2 for a single host

This section documents the steps required to configure PVFS2on a system in which a single machine acts
as both the client and server for all PVFS2 operations. It assumes that you have completed the above
sections on building and installation already. The hostname of the example machine is “testhost” and will
be referenced as such in the following examples.

IMPORTANT: if you intend to use the provided rc scripts to handle startup and shutdown of the PVFS2
server, then you must specify a valid hostname as reported bythehostname command line tool in the con-
figuration. For this reason, we recommend that younot use “localhost” as the hostname of your server, even
if you intend to only test one machine. We will store all PVFS2data in /pvfs2-storage-space. /mnt/pvfs2
will serve as the mount point for the file system. For more details about the purpose of these directories
please see the PVFS2 users guide.

3.1 Server configuration

Since this is a single host configuration, we only have to configure one server daemon. In the original PVFS,
the metadata and I/O servers were separated into two separate programs (mgr and iod). PVFS2, however,
has only a single daemon called pvfs2-server which serves both roles.

The most important part of server configuration is simply generating the configuration files. These can
be created using the pvfs2-genconfig script. This is an interactive script which will ask several questions to
determine your desired configuration. Please pay particular attention to the listing of the metadata servers
and I/O servers. In this example we will use “testhost” for both.

The pvfs2-genconfig tool will generate two configuration files. One is a file system configuration file
that will be identical for all servers (if we had more than one). The second is a server specific configuration
file that will be different for each server. The server specific files have the hostname of the server that
they belong to appended to the file name. This script should beexcuted as root, so that we can place the
configuration files in their default /etc/ locations.

In this simple configuration, we can accept the default options for every field. We will use the hostname
“testhost” rather than “localhost” however.

root@testhost:˜# /usr/bin/pvfs2-genconfig \
/etc/pvfs2-fs.conf /etc/pvfs2-server.conf

*** *******************
Welcome to the PVFS2 Configuration Generator:

This interactive script will generate configuration files suitable
for use with a new PVFS2 file system. Please see the PVFS2 quic kstart
guide for details.

*** *******************

You must first select the network protocol that your file sys tem will use.
The only currently supported options are "tcp", "gm", and "i b".

* Enter protocol type [Default is tcp]:

Choose a TCP/IP port for the servers to listen on. Note that th is
script assumes that all servers will use the same port number .

* Enter port number [Default is 3334]:

Next you must list the hostnames of the machines that will act as
I/O servers. Acceptable syntax is "node1, node2, ..." or "no de{#-#,#,#}".

* Enter hostnames [Default is localhost]: testhost

Now list the hostnames of the machines that will act as Metada ta
servers. This list may or may not overlap with the I/O server l ist.

* Enter hostnames [Default is localhost]: testhost

Configured a total of 1 servers:
1 of them are I/O servers.
1 of them are Metadata servers.

* Would you like to verify server list (y/n) [Default is n]?

Choose a file for each server to write log messages to.

* Enter log file location [Default is /tmp/pvfs2-server.log]:

Choose a directory for each server to store data in.

* Enter directory name: [Default is /pvfs2-storage-space]:

Writing fs config file... Done.
Writing 1 server config file(s)... Done.

Configuration complete!

The generated config files will have conservative default values. The PVFS2 Users Guide has more
information about the settings and the consequences of setting more aggressive, high performance values.

3.2 Starting the server

Before you run pvfs2-server for the first time, you must run itwith a special argument that tells it to create
a new storage space if it does not already exist. In this example, we must run the server as root in order to
create a storage space in /pvfs2-storage-space as specifiedin the configuration files.

bash-2.05b# /usr/sbin/pvfs2-server /etc/pvfs2-fs.conf \
/etc/pvfs2-server.conf-testhost -f

Once the above step is done, you can start the server in normalmode as follows:

bash-2.05b# /usr/sbin/pvfs2-server /etc/pvfs2-fs.conf \
/etc/pvfs2-server.conf-testhost

All log messages will be directed to /tmp/pvfs2-server.log, unless you specified a different location while
running pvfs2-genconfig. If you would prefer to run pvfs2-server in the foreground and direct all messages
to stderr, then you may run the server as follows:

bash-2.05b# /usr/sbin/pvfs2-server /etc/pvfs2-fs.conf \
/etc/pvfs2-server.conf-testhost -d

3.2.1 Automatic server startup and shutdown

Like most other system services, PVFS2 may be started up automatically at boot up time through the use of
rc scripts. We have provided one such script that is suitablefor use on RedHat (or similar) rc systems. The
following example demonstrates how to set this up:

bash-2.05b# cp /usr/src/pvfs2/examples/pvfs2-server.r c \
/etc/rc.d/init.d/pvfs2-server

bash-2.05b# chmod a+x /etc/rc.d/init.d/pvfs2-server
bash-2.05b# chkconfig pvfs2-server on
bash-2.05b# ls -al /etc/rc.d/rc3.d/S35pvfs2-server
lrwxrwxrwx 1 root root 22 Sep 21 13:11 /etc/rc.d/rc3.d/S35p vfs2-server \

-> ../init.d/pvfs2-server

This script will now automatically launch on startup and shutdown to ensure that the pvfs2-server is
started and stopped gracefully. To manually start the server, you can run the following command:

bash-2.05b# /etc/rc.d/init.d/pvfs2-server start
Starting PVFS2 server: [OK]

To manually stop the server:

bash-2.05b# /etc/rc.d/init.d/pvfs2-server stop
Stopping PVFS2 server: [OK]

3.3 Client configuration

There are two primary methods for accessing a PVFS2 file system. The first is using the kernel module to
provide standard Linux file system compatibility. This interface allows the user to run existing binaries and
system utilities on PVFS2 without recompiling. The second is through the MPI-IO interface, which is built
on top of thelibpvfs2 library and allows for higher performance for parallel applications.

Both of these methods require the same bit of information on the client to tell the client where to find the
PVFS2 file system (or systems). The information is presentedin the same way as anfstab (5) entry:

tcp://testhost:3334/pvfs2-fs /mnt/pvfs2 pvfs2 default, noauto 0 0

The entry lists a PVFS2 server (tcp://testhost:3334/pvfs2-fs)and a mount point (/mnt/pvfs2)
on the client. See thefstab (5) man page for more information on the format of these lines.

We must create a mount point for the file system as well as an/etc/pvfs2tab entry that will be used
by the PVFS2 libraries to locate the file system. Thepvfs2tab file is analogous to the/etc/fstab file
that most linux systems use to keep up with file system mount points.

[root@testhost /root]# mkdir /mnt/pvfs2
[root@testhost /root]# touch /etc/pvfs2tab
[root@testhost /root]# chmod a+r /etc/pvfs2tab

Now edit this file so that it contains the following, except that you should substitute your host name in
place of “testhost”:

tcp://testhost:3334/pvfs2-fs /mnt/pvfs2 pvfs2 default, noauto 0 0

There are a few alternatives to using an /etc/pvfs2tab whichmay be useful in production environments:

• One could put this entry in/etc/fstab file instead of/etc/pvfs2tab .

• One could avoid static tab file entries entirely and let the pvfs2 tools detect file systems that have been
mounted using the Linux kernel driver. This approach only works if you use the 2.6 Linux kernel or
install the mount.pvfs2 utility on 2.4 Linux kernel systems.

3.4 Testing your installation

PVFS2 currently includes (among others) the following tools for manipulating the file system using the
native PVFS2 library: pvfs2-ping, pvfs2-cp, and pvfs2-ls.These tools check the health of the file system,
copy files to and from a PVFS2 file system, and list the contentsof directories, respectively. Their usage can
best be summarized with the following examples:

bash-2.05b# ./pvfs2-ping -m /mnt/pvfs2

(1) Searching for /mnt/pvfs2 in /etc/pvfs2tab...

Initial server: tcp://testhost:3334
Storage name: pvfs2-fs
Local mount point: /mnt/pvfs2

(2) Initializing system interface and retrieving configur ation from server...

meta servers (duplicates are normal):
tcp://testhost:3334

data servers (duplicates are normal):
tcp://testhost:3334

(3) Verifying that all servers are responding...

meta servers (duplicates are normal):
tcp://testhost:3334 Ok

data servers (duplicates are normal):
tcp://testhost:3334 Ok

(4) Verifying that fsid 9 is acceptable to all servers...

Ok; all servers understand fs_id 9

(5) Verifying that root handle is owned by one server...

Root handle: 0x00100000
Ok; root handle is owned by exactly one server.

=== ==========

The PVFS2 filesystem at /mnt/pvfs2 appears to be correctly c onfigured.

bash-2.05b# ./pvfs2-ls /mnt/pvfs2/

bash-2.05b# ./pvfs2-cp -t /usr/lib/libc.a /mnt/pvfs2/te stfile
Wrote 2310808 bytes in 0.264689 seconds. 8.325842 MB/secon ds

bash-2.05b# ./pvfs2-ls /mnt/pvfs2/
testfile

bash-2.05b# ./pvfs2-ls -alh /mnt/pvfs2/
drwxrwxrwx 1 pcarns users 0 2003-08-14 22:45 .
drwxrwxrwx 1 pcarns users 0 2003-08-14 22:45 .. (faked)
-rw------- 1 root root 2M 2003-08-14 22:47 testfile

bash-2.05b# ./pvfs2-cp -t /mnt/pvfs2/testfile /tmp/test file-out
Wrote 2310808 bytes in 0.180621 seconds. 12.201016 MB/seco nds

bash-2.05b# diff /tmp/testfile-out /usr/lib/libc.a

4 Installing PVFS2 on a cluster

It is important to have in mind the roles that machines (a.k.a. nodes) will play in the PVFS2 system. There
are three potential roles that a machine might play: metadata server, I/O server, or client.

A metadata server is a node that keeps up with metadata (such as permissions and time stamps) for the
file system. An I/O server is a node that actually stores a portion of the PVFS2 file data. A client is a node
that can read and write PVFS2 files. Your applications will typically be run on PVFS2 clients so that they
can access the file system.

A machine can fill one, two, or all of these roles simultaneously. Unlike PVFS-1, each role requires just
the pvfs2-server binary. It will consult the cluster-wide config file and the node-specific config file when it
starts up to know what role pvfs2-server should perform on this machine.

There can be many metadata servers, I/O servers, and clients. In this section we will discuss the compo-
nents and configuration files needed to fulfill each role.

We will configure our example system so that the node “cluster1” provides metadata information, eight
nodes (named “cluster1” through “cluster8”) provide I/O services, and all nodes act as clients.

4.1 Server configuration

We will assume that at this point you have either performed a make install on every node, or else have
provided the pvfs2 executables, headers, and libraries to each machine by some other means.

Installing PVFS2 on a cluster is quite similar to installingit on a single machine, so familiarize yourself
with Section 3. We are going to generate one master config file and 8 smaller node-specific config files.
Again, remember that it is critical to list correct hostnames for each machine, and to make sure that these
hostnames match the output of thehostname command on each machine that will act as a server.

root@cluster1:˜# /usr/local/pvfs2/bin/pvfs2-genconfi g \
/etc/pvfs2-fs.conf /etc/pvfs2-server.conf

*** *******************
Welcome to the PVFS2 Configuration Generator:

This interactive script will generate configuration files suitable
for use with a new PVFS2 file system. Please see the PVFS2 quic kstart
guide for details.

*** *******************

You must first select the network protocol that your file sys tem will use.
The only currently supported options are "tcp" and "gm".

* Enter protocol type [Default is tcp]:

Choose a TCP/IP port for the servers to listen on. Note that th is
script assumes that all servers will use the same port number .

* Enter port number [Default is 3334]:

Next you must list the hostnames of the machines that will act as
I/O servers. Acceptable syntax is "node1, node2, ..." or "no de{#-#,#,#}".

* Enter hostnames [Default is localhost]: cluster{1-8}

Now list the hostnames of the machines that will act as Metada ta
servers. This list may or may not overlap with the I/O server l ist.

* Enter hostnames [Default is localhost]: cluster1

Configured a total of 8 servers:
8 of them are I/O servers.
1 of them are Metadata servers.

* Would you like to verify server list (y/n) [Default is n]? y

****** I/O servers:
tcp://cluster1:3334
tcp://cluster2:3334
tcp://cluster3:3334
tcp://cluster4:3334
tcp://cluster5:3334
tcp://cluster6:3334
tcp://cluster7:3334
tcp://cluster8:3334

****** Metadata servers:
tcp://cluster1:3334

* Does this look ok (y/n) [Default is y]? y

Choose a file for each server to write log messages to.

* Enter log file location [Default is /tmp/pvfs2-server.log]:

Choose a directory for each server to store data in.

* Enter directory name: [Default is /pvfs2-storage-space]:

Writing fs config file... Done.
Writing 8 server config file(s)... Done.

Configuration complete!

The generated config files will have conservative default values. The PVFS2 Users Guide has more
information about the settings and the consequences of setting more aggressive, high performance values.

We have now made all the config files for an 8-node storage cluster:

root@cluster1:˜# ls /etc/pvfs2/foo/
pvfs2-fs.conf pvfs2-server.conf-cluster5
pvfs2-server.conf-cluster1 pvfs2-server.conf-cluster 6
pvfs2-server.conf-cluster2 pvfs2-server.conf-cluster 7
pvfs2-server.conf-cluster3 pvfs2-server.conf-cluster 8
pvfs2-server.conf-cluster4

Now the config files must be copied out to all of the server nodes. If you use the provided (Redhat style)
rc scripts, then you can simply copy all config files to every node; each server will pick the correct config
files based on its own hostname at startup time. The followingexample assumes that you will use scp to
copy files to cluster nodes. Other possibilities include rcp, bpcp, or simply storing the configuration files on
an NFS volume. Please note, however, that the rc script should be modified if you intend to store config files
in any location other than the default /etc/.

At this time, we also will copy out the example rc script an enable it on each machine.

root@cluster1:˜# for i in ‘seq 1 8‘; do
> scp /etc/pvfs2-server.conf-cluster\${i} cluster\${i} :/etc/
> scp /etc/pvfs2-fs.conf cluster\${i}:/etc/
> scp /usr/src/pvfs2/examples/pvfs2-server.rc \

cluster\${i}:/etc/rc.d/init.d/pvfs2-server
> ssh cluster\${i} /sbin/chkconfig pvfs2-server on
> done

4.2 Starting the servers

As with the single-machine case, you must run pvfs2-server with a special argument to create the storage
space on all the nodes if it does not already exist. Run the following command on every metadata or IO
node in the cluster:

root@cluster1# /usr/sbin/pvfs2-server /etc/pvfs2-fs.c onf \
/etc/pvfs2-server.conf -f

Then once the storage space is created, start the server for real with a command like this on every
metadata or IO node in the cluster:

root@cluster1# /usr/sbin/pvfs2-server /etc/pvfs2-fs.c onf \
/etc/pvfs2-server.conf

If you want to run the server in the foreground (e.g. for debugging), use the -d option.
If you wish to automate server startup and shutdown with rc scripts, refer to the corresponding section

3.2.1 from the single server example.

4.3 Client configuration

Setting up a client for multiple servers is the same as setting up a client for a single server. Refer to section
3.3.

The/etc/pvfs2tab file (or an/etc/fstab entry) needs to exist on each client so that each client
can find the file system. The server listed for each client can be different; any server in the PVFS2 file
system will do. For large clusters, using different server names will eliminate one potential bottleneck in the
system by balancing the load of clients reading initial configuration information.

4.4 Testing your Installation

Testing a multiple-server pvfs2 installation is the same astesting a single-server pvfs2 installation. Refer to
section 3.4

5 The PVFS2 Linux Kernel Interface

5.1 Finding an Appropriate Kernel Version

Now that you’ve mastered the download and installation steps of managing the userspace PVFS2 source
code, configuring the PVFS2 Linux Kernel Interface is relatively straight forward. We assume at this point
that you are familiar with running the server and that a PVFS2storage space has already been created on the
node that you would like to configure for use with the VFS.

A Linux 2.6.0 kernel or later is recommended for the kernel interface, although 2.4.x kernel support has
been added for systems that require it. If you’re using a 2.4.x kernel, you must be running 2.4.19 or later, as
previous versions are NOT (and will not be) supported.

The following examples assume that you’ve already downloaded, compiled, and are now running the
Linux kernel located in the /usr/src/linux-2.x.x directory on your system.

Before compiling the kernel module against your running kernel, check to make sure that you are running
an appropriate kernel version. You can do this in the following manner:

lain linux # cat /proc/version
Linux version 2.6.6 (root@lain.mcs.anl.gov) (gcc version 3.3.3
20040412 (Gentoo Linux 3.3.3-r5, ssp-3.3-7, pie-8.7.5.3)) #3 SMP Wed
May 26 16:22:11 CDT 2004

By issuing that command, we are able to inspect the output to ensure that we’re running an appropriate
kernel version. If your kernel is older than 2.6.0 (for 2.6.xkernels) or 2.4.19 (for 2.4.x kernels), please
download and install a later kernel version (or submit a request to your site’s System Administrator).

For reference, you can download Linux kernels at:

2.6.x kernels: http://www.kernel.org/pub/linux/kernel /v2.6/
2.4.x kernels: http://www.kernel.org/pub/linux/kernel /v2.4/

Once you’re convinced the Linux kernel version is appropriate, it’s time to compile the PVFS2 kernel
module.

5.2 Preparing Linux Kernel 2.6.x configurations

To generate the Makefile, you need to make sure that you run ’./configure’ with the ’–with-kernel=path’
argument. An example is provided here for your convenience:

gil:/usr/src/pvfs2# ./configure --with-kernel=/usr/sr c/linux-2.6.0

Note that you can often find a kernel source tree (or a symlink to the right place) at /lib/modules/‘uname
-r‘/build2. For example, if you were running the default Fedora 3 kernel (linux-2.6.9-1.667) you would find
the kernel tree in/lib/modules/2.6.9-1.667/build .

After this configure command is issued, build the PVFS2 source tree if it has not yet been built.
Building the 2.6.x kernel module requires an extra step. Since current kernels require writing a few files

in the kernel source directory to build a module, you may haveto become root to compile the kernel module.
To build the module, type “make kmod”.

At this point, we have a valid PVFS2 2.6.x Kernel module. The module itself is the filepvfs2.ko
in subdirectorysrc/kernel/linux-2.6 in your build tree. You may install it to the standard system
location with “make kmodinstall”, again you will likely have to be root to do this. Or you may override the
install location by setting the variableKMODDIR variable when you install.

5.3 Preparing Linux Kernel 2.4.x configurations

To generate the Makefile, you need to make sure that you run ’./configure’ with the ’–with-kernel24=path’
argument. An example is provided here for your convenience:

gil:/usr/src/pvfs2# ./configure --with-kernel24=/usr/ src/linux-2.4.26

After this command is issued, build the PVFS2 source tree if it has not yet been built.
Building the 2.4.x kernel module requires an extra step. Since current kernels require writing a few files

in the kernel source directory to build a module, you may haveto become root to compile the kernel module.
To build the module, type “make kmod24”.

At this point, we have a valid PVFS2 2.4.x Kernel module. The module itself is the filepvfs2.o
in subdirectorysrc/kernel/linux-2.4 in your build tree. You may install it to the standard system
location with “make kmod24install”, again you will likely have to be root to do this. Or you may override
the install location by setting the variableKMODDIR variable when you install.

5.4 Testing the Kernel Interface

Now that you’ve built a valid PVFS2 kernel module, there are several steps to perform to properly use the
file system.

The basic steps are as follows:

• Create a mount point on the local filesystem

• Load the Kernel Module into the running kernel

• Start the PVFS2 Server application

• Start the PVFS2 Client application

• Mount your existing PVFS2 volume on the local filesystem

• Issue VFS commands

First, choose where you’d like to mount your existing PVFS2 volume. Create this directory on the local
file system if it does not already exist. Our mount point in this example is /mnt/pvfs2.

gil:˜# mkdir /mnt/pvfs2

Now load the kernel module into your running kernel. You can do this by using the ’insmod’ program, or
modprobe if you’ve copied your module into the appropriate /lib/modules directory for your running kernel.

5.4.1 Loading the kernel module

For 2.6.x kernels ONLY:

gil:˜# insmod /usr/src/pvfs2/src/kernel/linux-2.6/pvf s2.ko

For 2.4.x kernels ONLY:

gil:˜# insmod /usr/src/pvfs2/src/kernel/linux-2.4/pvf s2.o

You should verify that the module was loaded properly using the command “lsmod”. Also, you can use
the “rmmod” to remove the PVFS2 module after it’s been loaded. Only remove the module when you have
safely unmounted all mounted file systems (if any) and stopped the pvfs2-client software.

At this point, we need to start the PVFS2 server and the PVFS2 client applications before trying to
mount a PVFS2 volume. See previous sections on how to properly start the PVFS2 server if you’re unsure.
Starting the PVFS2 client is covered below.

The PVFS2 client application consists of two programs. “pvfs2-client-core” and “pvfs2-client”. DO
NOT run “pvfs2-client-core” by itself. “pvfs2-client” is the PVFS2 client application. This application
cannot be started unless the PVFS2 server is already running. Here is an example of how to start the PVFS2
client:

gil:/usr/src/pvfs2# cd src/apps/kernel/linux-2.6/
gil:/usr/src/pvfs2/src/apps/kernel/linux-2.6# ./pvfs 2-client -f -p ./pvfs2-client-c
pvfs2-client starting
Spawning new child process
About to exec ./pvfs2-client-core
Waiting on child with pid 17731

The -f argument is not required. For reference, this keeps the PVFS2 client application running in the
foreground.

The -p argument is required unless the pvfs2-client-core isinstalled and can be found in your PATH.
Also worth noting is the -a argument (not required). For reference, this sets the timeout value (in mil-

liseconds) of the client side attribute cache. Setting thisto a large value will improve attribute read times
(e.g. running “ls” repeatedly), but can reflect incorrect attributes if a remote client is modifying them. The
default value is 0 milliseconds, effectively disabling this client side attribute cache.

Other arguments and descriptions can be viewed by running the program with the -h option.
Now that the module is loaded, and the pvfs2-server and pvfs2-client programs are running, we can

mount our PVFS2 file system (and verify that it’s properly mounted) as follows:

lain pvfs2 # mount -t pvfs2 tcp://testhost:3334/pvfs2-fs / mnt/pvfs2
lain pvfs2 # mount | grep pvfs2
tcp://lain.mcs.anl.gov:3334/pvfs2-fs on /tmp/mnt type p vfs2 (rw)

NOTE: The device of the format tcp://testhost:3334/pvfs2-fs MUST be specified, as we need to know a
valid running pvfs2-server and file system name to dynamically mount a pvfs2 volume. These values can
be read from your configuration files. As a side note, you can use “umount” to unmount the PVFS2 volume
when you’re ready.

Now that a PVFS2 volume is mounted, normal VFS operation can be issued on the command line. An
example is provided below:

gil:/usr/src/pvfs2/src/kernel/linux-2.6# mkdir /mnt/p vfs2/newdir
gil:/usr/src/pvfs2/src/kernel/linux-2.6# ls -al /mnt/p vfs2/newdir
total 1
drwxr-xr-x 2 root root 0 Aug 15 13:29 .
drwxr-xr-x 3 root root 0 Aug 15 13:21 ..
gil:/usr/src/pvfs2/src/kernel/linux-2.6# cp pvfs2.ko
/mnt/pvfs2/newdir/foo
gil:/usr/src/pvfs2/src/kernel/linux-2.6# ls -al /mnt/p vfs2/newdir
total 2
drwxr-xr-x 2 root root 0 Aug 15 13:29 .
drwxr-xr-x 3 root root 0 Aug 15 13:21 ..
-rw-r--r-- 1 root root 330526 Aug 15 13:30 foo

5.4.2 Special Note for 2.4 kernels

We need a small helper application/sbin/mount.pvfs2 to mount pvfs2 under 2.4 kernels. It must be
installed under/sbin . Note that “make install” will not touch/sbin , so you will have to install it by
hand. With the helper application installed, the 2.6 mount commands and fstab entries are the same.

If you do not have/sbin/mount.pvfs2 available, you can still use the old appraoch:

gil:˜# mount -t pvfs2 pvfs2 /mnt/pvfs2 -o tcp://testhost:3 334/pvfs2-fs
gil:˜# mount | grep pvfs2
pvfs2 on /mnt/pvfs2 type pvfs2 (rw)

5.5 Unmounting and stopping PVFS2 on a client

While this is a quickstart guide, knowing how to cleanly shut things down can be helpfultoo!
Unmounting a PVFS2 volume is as simple as using “umount”:

gil:˜# umount /mnt/pvfs2
gil:˜# mount | grep pvfs2

After all PVFS2 volumes have been unmounted, it is safe to kill the pvfs2-client:

gil:˜# killall pvfs2-client

Waiting a few seconds after killing the pvfs2-client will ensure that everything has terminated properly.
Once the pvfs2-client has been killed, it is safe to remove the PVFS2 kernel module:

gil:˜# rmmod pvfs2

A Notes on running PVFS2 without root access

The preceding documentation assumes that you have root access on the machine(s) that you wish to install
the file system. However, this is not strictly required for any component except for the kernel VFS support.
The servers, client libraries (such as MPI-IO), and administrative tools can all be used by non-priviledged
users. This may be particularly useful for evaluation or testing purposes.

In order to do this, you must make the following adjustments to the installation and configuration pro-
cess:

• Use the –prefix option at configure time to choose an alternatedirectory (one that you have write
access to) for installation. An example would be /home/username/pvfs2-build.

• When generating the server config files, choose a data storagedirectory that you have write access to,
but preferably not NFS mounted. An example would be /tmp/pvfs2-test-space.

• Place the pvfs2tab file in an alternate location, such as /home/username/pvfs2-build/pvfs2tab, instead
of /etc/pvfs2tab. Then set the PVFS2TABFILE environment variable to the full path to this file. A
tcsh example would be: “setenv PVFS2TABFILE /home/username/pvfs2-build/pvfs2tab”.

B Debugging your PVFS2 configuration

Bug reports and questions should be directed to the PVFS2 users mailing list for best results (see the PVFS2
web site for details: http://www.pvfs.org/pvfs2/lists.html). It is helpful to include a description of your
problem, the PVFS2 version number, and include relevant loginformation from /var/log/messages and
/tmp/pvfs2-server.log.

People who wish to find more verbose information about what the file system is doing can enable extra
logging messages from the server. This is done by adjusting the “EventLogging” field in the file system
configuration file. By default it is set to “none”. You can set it to a comma seperated list of log masks to
get more information. An example would be “EventLogging storage,network,server”, which will result in
verbose messages from the storage subsystem, the network subsystem, and server state machines.WARN-
ING: this may result in extremely large log files!The logging masks can also be set at runtime using the
pvfs2-set-debugmask command line tool. Usage informationand a list of supported masks will be shown if
it is run with no arguments.

Similarly, run-time client debugging information can be gathered by using environment variables before
running the client application. The default client loggingmethod is to set the variable PVFS2DEBUGMASK
to values such as “client,network”. Many of the supported client debugging masks overlap the server masks
that can be verified using pvfs2-set-debugmask. By default,setting PVFS2DEBUGMASK emits debug-
ging information to stderr, often intermixed with the client program output. If you’d like to redirect client
debugging to a file, set the PVFS2DEBUGFILE environment variable to a valid file name. This causes
all debug information specified by the PVFS2DEBUGMASK to be stored in the file specified, no longer
intermixing the output with the client program. The file specified in the PVFS2DEBUGFILE environment
variable will be appended if it already exists. Another influential environment variable that can be used to
trigger kmod logging messages is PVFS2KMODMASK. By setting values of this variable to “file, inode”
prior to starting pvfs2-client-core daemon, verbose kmod subsystem error diagnostics are written to the sys-
tem ring buffer and eventually to the kernel logs. One could also set the kmod diagnostic level when the
kernel module is loaded like so, insmod pvfs2.ko gossipdebugmask=¡diagnostic level¿. The diagnostic
level will be a bitwise OR of values specified in pvfs2-debug.h.

C ROMIO Support

Building ROMIO with PVFS2 support can be a bit tricky, and is certainly not well documented. Reports
of the correct way to build for OpenMPI would be appreciated.This document will cover building for
MPICH2.

First, get the software. Download MPICH2 from http://www.mcs.anl.gov/mpi/mpich2/. We may have
found bug fixes since the last MPICH2 release. If there are bugfixes, they can be found at http://www.mcs.anl.gov/romio/pvfs2-
patches.html.

Unpack mpich2. Apply the ROMIO patch in the src/mpi/romio directory if one is needed.

prompt% tar xzf ˜/src/mpich2-1.4.0p1.tar.gz # unpack mpic h2 source
prompt% cd mpich2-1.4.0p1/src/mpi/romio # change to ROMIO dir
prompt% patch -p1 < ˜/src/romio-<CORRECT_VERSION>.diff # apply patch
prompt% cd ../../.. # return to top of src
prompt%

In order to build MPICH2 with a ROMIO that speaks PVFS2, pass the--with-pvfs2=PVFS PREFIX
option to configure. ’PVFS2PREFIX’ is the prefix you gave to the PVFS configure script (e.g. /usr/local or
/opt/packages/pvfs-2.6.0).

configure --with-pvfs2=PVFS_PREFIX [other flags]

Now compile and install MPICH2 as you normally would. Applications accessing PVFS2 through MPI-
IO will bypass the kernel interface and talk to PVFS2 serversdirectly.

Please note: older versions of MPICH2 need a few changes to the normal configure process. MPICH2-
1.0.4p1 and older will need to know the path to the PVFS2 installation. Modify theCFLAGS, LDFLAGS
andLIBS environment variables.

prompt% export CFLAGS="<other desired flags> -I/usr/loca l/pvfs2/include"
prompt% export LDFLAGS="-L/usr/local/pvfs2/lib"
prompt% export LIBS="-lpvfs2 -lpthread"
prompt% configure --with-file-system=ufs+nfs+testfs+p vfs2 [other flags]

