
Trove DBPF Handle Allocator

PVFS Development Team

March 30, 2008

$Id: handle-allocator.tex,v 1.1 2003/01/24 23:29:18 pcarns Exp $

1 Introduction

The Trove interface gives out handles – unique identifiers totrove objects. In addition to being unique, handles will
not be reused within a configurable amount of time. These two constraints make for a handle allocator that ends up
being a bit more complicated than one might expect. Add to that the fact that we want to serialize on disk all or part
of the handle allocator’s state, and here we are with a document to explain it all.

1.1 Data Structures

1.1.1 Extents

We have a large handle space we need to represent efficiently.This approach uses extents:

struct extent {
int64_t first;
int64_t last;
};

1.1.2 Extent List

We keep the extents (not nescessarily sorted) in theextents array. For faster searches,index keeps an index
into extents in an AVL tree. In addition to the extents themselves, some bookkeeping members are added. The
most important is thetimestamp member, used to make sure no handle in its list gets reused before it should.
size is only used internally, keeping track of how bigextents is.

struct extentlist {
int64_t __size;
int64_t num_extents;

1

int64_t num_handles;
struct timeval timestamp;
struct extent * extents;
};

1.1.3 Handle Ledger

We manage several lists. Thefree list contains all the valid handles. Therecently freed list contains
handles which have been freed, but possibly before some expire time has passed. Theoverflow list holds
freed handles while items on therecently freed list wait for the expire time to pass.

We save our state by writing out and reading from the threeTROVE handle members, making use of the higher
level trove interface.

struct handle_ledger {
struct extentlist free_list;

struct extentlist recently_freed_list;
struct extentlist overflow_list;
FILE *backing_store;
TROVE_handle free_list_handle;
TROVE_handle recently_freed_list_handle;
TROVE_handle overflow_list_handle;
}

2 Algorithm

2.1 Assigning handles

Start off with afree list of one big extent encompassing the entire handle space.

• Get the last extent from thefree list (We hope getting the last extent improves the effiency of the extent
representation)

• Savelast for later return to the caller

• Decrementlast

• if first > last, mark the extent as empty.

2.2 returning handles

• when the first handle is returned, it gets added to therecently freed list. Because this is the first item
on that list, we check the time.

• now we add more handles to the list. we check the time afterN handles are returned and update the times-
tamp.

2

• Once we have addedH handles, we decide therecently freed list has enough handles. We then start
using theoverflow list to hold returned handles.

• as with therecently freed list, we record the time that this handle was added, updatingthe timestamp
after everyN additions. We also check how old therecently freed list is.

• at some point in time, the wholerecently freed list is ready to be returned to thefree list. The
recently freed list is merged into thefree list, theoverflow list becomes therecently freed
list and theoverflow list is empty.

2.3 I don’t know what to call this section

Let Tr be the minimum response time for an operation of any sort,Tf be the time a handle must sit before being
moved back to the free list, andNtot be the total number of handles available on a server.

The pathological case would be one where a caller

• fills up therecently freed list

• immediately starts consuming handles as quickly as possible to make for the largest possiblerecently freed
list in the next pass

This results in the largest number of handles being unavailable due to sitting on theoverflow list. Call Npurg

the number of handles waiting in “purgatory” (waiting forTf to pass)

Npurg = Tf/Tr (1)

Fpurg = Npurg/Ntot (2)

Fpurg = Tf/(Tr ∗ Ntot) (3)

We should try to collect statistics and see whatTr andNpurg end up being for real and pathological workloads.

3

