pvfs2-client Design Document (DRAFT)

PVFES Development Team

April 2003

1 Introduction

The primary role of the pvfs2-client daemon is to efficiemtigrshaloperation requests and data from the ker-
nel's VFS Wirtual File Systemor Virtual Filesystem Switghlayer to the pvfs2-server, and return responses
from the pvfs2-server(s) back to the VFS layer. This invelwaiting for file system and 1/O requests, per-
forming operations against the pvfs2-server applicasiprgnd passing responses back to the Linux kernel’s
VFS layer. The data medium for the communication betweernvV#i® request and the pvfs2-client appli-
cation is the /dev/pvfs2 device node. An interface that alibw incoming unexpected requests from the
/dev/pvfs2 device node is required, and using the existiNi iBterface is preferred.

Figure 1 illustrates the architecture of several compaehPVFS2. This document will focus specifically
on the pvfs2-client application.

2 Moaotivation for thepvf s2-cl i ent Application

Currently, our entire code base exists as user space cowangludes all of our networking support (through
the BMI andFlow Interface$, and our non-blocking request handling architectureughotheJob Interface

To pvfs2 servers

!

User Application

(e.g. /bin/touch) pvfs2-client
\.) L)
A User Space A
A 4 Kernel Space v

{ 3\ { 3\

Device Node
> (e.g. /dev/pvfs2)

| J | J

VFS

A

Figure 1: High Level PVFS2 Architecture

The pvfs2-server already uses these interfaces to manaljplensimultaneous operations in flight at once.

Similarly, it is highly desirable to have a pvfs2-client éipation that can issue and manage multiple simulta-
neous operations at once when communicating with the mds2ers. Therefore, at least in the short term, it
would be most appropriate to leverage as much of our existiolg as possible. A user-space application is
required to make use of this code, and thus the need for tls2lient application to bridge the gap between
the Linux kernel’'s VFS layer and tHgystem Interface

3 pvfs2-client Application Architecture

The pvfs2-client application consists of a set of state nmashroughly corresponding to all file system and
I/O operations that can be requested from the VFS. At a highl,I¢he pvfs2-client application appears to
share a common architecture with the pvfs2-server apjgitatThe most notable distinction between the
pvfs2-client architecture and the pvfs2-server architects the source of the unexpected requests. On the
pvfs2-server, unexpected requests come from over the netiwmugh the BMI Interface. The pvfs2-client
receives unexpected messages from the /dev/pvis2 deuitee tiavould be ideal if the BMI Interface could
be used to monitor the /dev/pvfs2 device node.

One responsibility of the pvfs2-client application is toitvar jobs in progress to complete. Waiting on
pending jobs is implemented as a non-blocking operatioinagéhe existing job interface using the call
job_testcontext. This call returns a list of unexpected or catagl jobs that were submitted previously by
states of the various state machine operation implementati

For each job returned from jotestcontext, the pvfs2-client application checks if thie i® an unexpected
request. If the jolis an unexpected request, it initializes an appropriate stathine for that job. Regardless
of whether or not the job was unexpected, the state of eaclisjabvanced to the next until a blocking
operation is encountered.

Unexpected requests are delivered to the pvfs2-clienicgtian only from the /dev/pvfs2 device node that
the pvfs2-client application monitors through the job ifdee. These requests are generated and passed up
from the Linux kernel's VFS layer by the PVFS2 kernel modilattimplements the VFS operations.

The pvfs2-client has a similar processing loop as the ps&Rer:

while (pvfs2-client application is running)

{

wait on pending jobs in progress and expected requests
foreach job returned
if job is an unexpected request
initialize appropriate operation state machi ne
end if

whil e conpl eti ons occur i medi ately

2

advance to next state in state nachi ne
end while
end foreach

4 Limitations of the Existing System I nterface

Currently, all client interaction to a pvfs2-server is daheough theSystem Interfac@&PI. This interface
provides a set of file system and I/O operations to be perforagainst the pvfs2-server(s), but suffers from
several major limitations in its current state. These ktndins can be described briefly as:

e Semantic Limitationsthe current implementation provides a blocking interfaxall operations. We
already know that a non-blocking interface is required flicient access through other existing non-
blocking iterfaces such as ROMIO.

e Reusability Limitationsthe current implementation performs many blocking openat This cannot
be useds isin the proposed non-blocking state-machine oriented tactuire of the pvfs2-client.

A proposed redesign of the System Interface implementesting of reusable state machines can solve these
limitations, as discussed below.

5 pvfs2-client Request Servicing

Operation request servicing in the pvfs2-client applaratwvill be implemented by state machines. That is,
for each type of request that can be handed up from the PVFR®2lkeodule, a matching state machine
will exist to service it. The types of operation requestsures will roughly correspond to all of the possi-
ble operations available through the System Interface A&i.the proposed pvfs2-client architecture, it is
clear that a non-blocking implementation of the Systemrfate is desirable for the state machine architec-
ture. Further, to encourage code re-use, each operatidre Bystem Interfacean be expressed as a state
machine. Implementing the core functionality of the Systaterface methods in terms of state machines
allows an opportunity for blockingnd non-blocking interface implementations, heavier codese; and
design simplicity.

We can think of all pvfs2-client operations as having a samdtructure, as depicted in Figure 2. What we
see here is a generic state machine implementing an oper&io all operations there will bewse specific
initialization, execution of some core routines (i.e. flimeality provided by the current System Interface),
and a use-specific notification of status and completionhdfdore functionality of each System Interface
routine were implemented in terms of a state machine, theutixsm of a core routine could be embedded as
a nested state machine within the operation specific stat@inmea

Figure 2 shows a complete operation state machine, alorgthét embedded (nested) state machine that
implements core functionality of a System Interface calieTirst state calleadit represents the use specific

3

State Machine
[init]4— —

bmi-send-request

get-response

setup-flow

do-flow-operation

check-op-result

[]
v
[report-complete]— — |

Figure 2: Operation Servicing State Machine (w/nested st machine)

initialization state. Each operation may have a differeirttdlization phase, but at the very least, the source
and target endpoints for the Flow (to be performed insidenttsted state machine) are selected. Following
initialization, the nested state machine is executed opmiifig the core operation requested. After this, the
operation state machine checks the status of the performpedation to properly handle error reporting.
Finally, the state is advanced to the initial state of théestaachine, which is the default action when the
operation has completed.

In order to represent the core functionality of a Systemrfate method as a re-useable state machine, we
must take advantage of the source and target endpoint gadicifis allowed by the existinglow Interface
Assuming it is possible to know the source and target endpaihthe Flow prior to executing the System
Interface core functionality, it can be re-used by embegldims a nested state machine in the pvfs2-client
architecture,and shared between the blocking and non-blocking System aderimplementations. The
requirement for this is that the source and target endpointise Flow be established before using the core
functionality state machine. In Figure 2, for example, tisp-client application may specify that the Flow’s
target endpoint should be the /dev/pvfs2 device node.

6 Non-blocking and Blocking System I nterface | mplementations

Non-blocking and blocking System Interface methods (as/aho Figure 3) can use the same core function-
ality once implemented as a state machine. The blockingorexsgill manually advance the state machine
internal to the call and not return until the operation hamngieted. The non-blocking implementation will
start the state machine and offer a mechanism for testingatipe completion. For the non-blocking inter-
face, some method of asynchronous progress must be providhgican be done either with a background
thread, or completing work during a test for completion.

