PVFS2: System Interface
Test Suite

Frank Shorter
Michael Speth

May 16, 2003

1 Introduction

The Parallel Virtual File System version 2 (PVFSZ2) is in depenent. This document attempts to out-

line the process of validating the System Interface of thentl The testing process is divided into two

parts: positive tests and negative tests. Positive tesimige functions operating on normal procedures.
Negative tests examine the functions behavior on abnornegkepures designed to make the functions
fail.

2 Setup

Describe the system (hardware and OS) that the tests arg togiron and the version of pvfs2.

3 Positive Tests

The positive tests will verify basic functionality, and ens that the system interface behaves as expected
for a given set of reasonable inputs. We expect that all afdloalls should succeed. It is the goal of this
section to provide coverage for all areas of the systemfatterthat will recieve the most usage.

3.1 Startup and Shutdown

The most trivial test of the system interface, we initialael finalize the system interface.

1

3.2

1.

Metadata tests

File creation: We will test the creation of files with valid attributes idsiof directories where we
have permission to do so. The number of data files will be dafiem 1 to 2N (where N is the
number of 1/O servers). Creation will be verified with a lopkaperation.

. File removal: We will test the removal of files that have the appropriateypgsions for our user.

Removal will be verified by a failed lookup operation. Afteetfile is removed, we will re-create
a new file with the same name. Lookup of the new file must retuemew handle. as well as the
attributes of the new file(including datafile handles).

Setting/retrieving attributes on a file: Setting/retrieving attributes will be tested by settitiglze
attributes on a file to some known values, then calling getatensure that they have been set.
Important things to pay attention to here are the filesizeyelbas permissions.

. Lookup of a file: Lookup will be tested by creating a file, and then looking battfile and com-

paring the handles. Create and Lookup should return the bandles and file system id numbers.

Renaming files We will create a file, lookup the file, then call rename. Wel wdrify rename
by calling lookup on the old filename, ensuring that it fadsd then calling lookup on the new
filename and ensuring that it returns the handle we were givereate time. Renaming will need
to be tested within the same directory, as well as renamssg(eially moving) files into different
directories.

Directory creation: We will test the creation of directories with valid attriles inside of directories
where we have permission to do so. We're only looking to ereainoderate number of directories
with this test case. Please refer to the stress testingoseitti info on the directory tests where
a very large number of directories are added. directoryticreavill be verified both by having it
appear when readdir is called, as well as being able to logk with the lookup function.

. Directory removal: We will create a directory, verify that it exists with readdnd lookup, then

call rmdir. To ensure that it has been deleted, we will attetngookup and call readdir on the
directory name that was just removed. Both of these calld matgeturn any trace of the directory.
Additionally, we will create a directory of the same namej aompare its attributes to the previous
directory.

Lookup of a directory: Lookup will be tested by creating a directory, and then lagkup that
directory and comparing the handles. Create and Lookupldmeturn the same handles and file
system id numbers.

. Setting/retrieving attributes on a directory: Setting/retrieving attributes will be tested by setting

all the attributes on a directory to some known values, ttading getattr to ensure that they have
been set.

3.3 I/Otests
3.3.1 Reading

The read tests will be performed on files where we have readipsgion, and data exists within the file.
The request will be committed prior to the 10 call. We will det® test every combination of requests
(from pvfs-request.h):

1. Contiguous count should be varied to ensure that we're hitting mudtipervers as well as only
getting data from each server at time.

2. Vector: with "stride” lengths that span multiple servers.
3. Hvector: see vector.

4. Indexed: indexed will be tested with varying block lengths and diggiments. displacements that
cause multiple servers to be spanned as well as large blnogkhlewill also be used.

5. Hindexed: see indexed.

6. Manual ub/Ib/extents. Calling read with varying the displacements on ub, Ib, axtéms will be
performed.

3.3.2 Writing

The write tests will be performed on files where we have wrgenpssion. Data may or may not exist
within file prior to calling write. The request will be comrtet prior to the 10 call. We will need to test
every combination of requests (from pvfs-request.h):

1. Contiguous count should be varied to ensure that we're hitting mudtipervers as well as only
getting data from each server at time.

2. Vector: with "stride” lengths that span multiple servers.
3. Hvector: see vector.

4. Indexed: indexed will be tested with varying block lengths and diggiments. displacements that
cause multiple servers to be spanned as well as large blogkhlewill also be used.

5. Hindexed: see indexed.

6. Manual ub/lbextent: Calling write with varying the displacements on ub, |b, axdents will be
performed.

3.3.3 Truncate

The truncate tests will be performed on files where we haveevaermission. This test will need to be
performed on files of size 0, as well as files with data on everglination of servers.

4 Negative Tests

The negative tests are broken up into two sections: invalidmeters and functional ordering. The invalid
parameters tests examines the functions’ behaviors whahdmparameters are supplied. The tests for
functional ordering examines functions’ behaviors whendldering of functions are incorrect.

4.1 Invalid Parameters

Tests functions’ behavior when invalid parameters are lseghp

4.1.1 Null parameters

All parameters of each function are null. Note, before antheffunctions can be called, initialize must
be called with valid parameters expect for tests regardiigliize.

=

Call initialize and set its parameters to null. Recordrétarn value and error code returned.
Call finalize and set its parameters to null. Record themetalue and error code returned.
Call lookup and set its parameters to null. Record themetalue and error code returned.
Call getattr and set its parameters to null. Record themetalue and error code returned.
Call setattr and set its parameters to null. Record therretalue and error code returned.
Call mkdir and set its parameters to null. Record the netafue and error code returned.
Call readdir and set its parameters to null. Record thenetalue and error code returned.

Call create and set its parameters to null. Record thergalue and error code returned.

© © N o 00 bk~ W D

Call remove and set its parameters to null. Record therrelue and error code returned.

[—
o

Call rename and set its parameters to null. Record thenrealue and error code returned.

11. Call symlink and set its parameters to null. Record th&mevalue and error code returned.
12. Call readlink and set its parameters to null. Recorde¢h&m value and error code returned.
13. Call read and set its parameters to null. Record therrealue and error code returned.

14. Call write and set its parameters to null. Record themetalue and error code returned.

4.1.2 Varied Null Parameters

Some of the parameters of each function are null. Note, befioy of the functions can be called, initialize
must be called with valid parameters expect for tests regauditialize.

1. Iterate through the list found in section 4.1.1 with thetfparameter set to null. The remaining
parameters (if there are any) are set to a valid value. Rebengturn value and error code returned.

2. Iterate through the list found in section 4.1.1 with thess®l parameter (if there is one) set to null.
The remaining parameters (if there are any) are set to a valice. Record the return value and
error code returned.

3. Iterate through the list found in section 4.1.1 with thiediparameter (if there is one) set to null.
The remaining parameters (if there are any) are set to a valice. Record the return value and
error code returned.

4. Iterate through the list found in section 4.1.1 with thstfand second parameter (if there is one) set
to null. The remaining parameters (if there are any) areosatvalid value. Record the return value
and error code returned.

4.1.3 Invalid File

All test cases use an invalid file

1. Call lookup and set the pinodefernce.handle to -1. Record the return value and erroe ced
turned.

2. Call getattr and set its parameters to null. Record themetalue and error code returned.
3. Call setattr and set its parameters to null. Record thenetlue and error code returned.
4. Call mkdir and set its parameters to null. Record the netatue and error code returned.

5. Call readdir and set its parameters to null. Record thenmetalue and error code returned.

Call create and set its parameters to null. Record thergalue and error code returned.
Call remove and set its parameters to null. Record therrelue and error code returned.

Call rename and set its parameters to null. Record thenretdue and error code returned.

© 0 N O

Call symlink and set its parameters to null. Record thernetalue and error code returned.
10. Call readlink and set its parameters to null. Recorde¢h&m value and error code returned.
11. Call read and set its parameters to null. Record therrealue and error code returned.

12. Call write and set its parameters to null. Record theametalue and error code returned.

4.2 Functional Ordering

All test cases use the pre-built file found in section 2.

4.2.1 Client uninitialized

Test the behavior of all functions when the initialize fuonthas not been called.

Call lookup and record the return value and error codes.
Call getattr and record the return value and error codes.
Call setattr and record the return value and error codes.
Call mkdir and record the return value and error codes.
Call readdir and record the return value and error codes.
Call create and record the return value and error codes.
Call remove and record the return value and error codes.

Call rename and record the return value and error codes.

© © N o 00 B~ w0 NP

Call symlink and record the return value and error codes.

[—
o

Call readlink and record the return value and error codes

=
=

. Call read and record the return value and error codes.

=
N

. Call write and record the return value and error codes.

4.2.2 Client unfinalized

Test the behavior of the system when the system is initidkze the program exits without calling finalize.
Another program is run after the previous program exitedahfiinctions are tested including initialize
and finalize.

10.

11.

12.

13.

Call initialize and exit the program

Call initialize and exit the program
codes.

Call initialize and exit the program
codes.

Call initialize and exit the program
codes.

Call initialize and exit the program
codes.

Call initialize and exit the program
codes.

. Call initialize and exit the program

codes.

. Call initialize aretord the return value and error codes.

. Call initialize théokup and record the return value and error

. Call initialize thhgetattr and record the return value and error

. Call initialize theetattr and record the return value and error

. Call initialize thenkdir and record the return value and error

. Call initialize thecaddir and record the return value and error

. Call initialize thereate and record the return value and error

Call initialize and exit the program. Call initialize theemove and record the return value and error

codes.

Callinitialize and exit the program. Call initialize theename and record the return value and error

codes.

Call initialize and exit the program. Call initializeeth symlink and record the return value and

error codes.

Call initialize and exit the program. Call initializeeih readlink and record the return value and

error codes.

Call initialize and exit the program. Call initializeeth read and record the return value and error

codes.

Call initialize and exit the program. Call initializeethh write and record the return value and error

codes.

4.2.3 Clientfinalized

The initialize function is called and immediately after ttialize function is called. Test behavior of
system functions under this scenario.

10.

11.

12.

Call initialize then finalize
codes.

Call initialize then finalize
codes.

Call initialize then finalize
codes.

Call initialize then finalize
codes.

Call initialize then finalize
codes.

Call initialize then finalize
codes.

. Call initialize then finalize

codes.

Call initialize then finalize
codes.

. Immediately after finalizeall lookup and record the return and error

. Immediately after finalizeall getattr and record the return and error

. Immediately after finalizeall setattr and record the return and error

. Immediately after finalizeall mkdir and record the return and error

. Immediately after finalizeall readdir and record the return and error

. Immediately after finaljizeall create and record the return and error

. Immediately after finalizeall remove and record the return and error

. Immediately after finaljzeall rename and record the return and error

Call initialize then finalize. Immediately after finalizgall symlink and record the return and error

codes.

Call initialize then finalize
codes.

. Immediately after finadizcall readlink and record the return and error

Call initialize then finalize. Immediately after finadizcall read and record the return and error

codes.

Call initialize then finalize. Immediately after finadizcall write and record the return and error

codes.

4.2.4 Operations on non-existent Files

Tests for functions that operate on existing files on a fil¢ ltlag not been created.

1. Call initialize then lookup on a file that has not been @datRecord the return value and error
codes.

2. Call initialize then getattr on a file that has not been teeta Record the return value and error
codes.

3. Call initialize then setattr on a file that has not beenteta Record the return value and error
codes.

4. Call initialize then readdir on a file that has not been te@da Record the return value and error
codes.

5. Call initialize then remove on a file that has not been eckaRecord the return value and error
codes.

6. Call initialize then rename on a file that has not been etkaRecord the return value and error
codes.

7. Call initialize then symlink on a file that has not been teda Record the return value and error
codes.

8. Call initialize then readlink on a file that has not beeratzd. Record the return value and error
codes.

9. Callinitialize then read on a file that has not been cred&edord the return value and error codes.
10. Callinitialize then write on a file that has not been adaRecord the return value and error codes.

4.2.5 Repeated Operations: meta data

Continually call functions that change the meta data of a file

1. Call initialize and then call setattr on the same test fl6 fimes. Record return values and error
codes.

2. Callinitialize and then call rename 100 times. Recordrrevalues and error codes.
3. Callinitialize and then call symlink 100 times. Recortura values and error codes.

4.2.6 Repeated Operations: create

Continually call functions on one file that create new filestsas mkdir and create.

1. Call initialize and then call mkdir on the same test file 1i®d®es. Record return values and error
codes.

2. Call initialize and then call create on the same test fil@ tides. Record return values and error
codes.

3. Call initialize and then call mkdir on differnt test file®d times. Record return values and error
codes.

4. Call initialize and then call create on differnt test file0ltimes. Record return values and error
codes.

5 Results

10

