PVFS2 Distribution Design Notes

PVES Development Team

May 2004

1 Introduction

This document is intended to serve as a reference for thgrdesthe PVFS2 file distributions. This should
(eventually) include a description of the mechanism andidegon developing new distribution methods.

Distributions in PVFS are a mapping from a logical sequerfdeytes to a physical sequence of bytes on
each of several I/O servers. To be of use to PVFS system cada#pping is expressed as a set of methods.

Files in PVFS appear as a linear sequence of bytes. A speygticiba file is identified by its offset from
the start of this sequence. This is refered to herelagieal offset. A contiguous sequence of bytes can be
specified with a logical offset and an extent.

Requests for access to file data can be to PVFS servers usiogs/aequest formats. Regardless of the
format, the same data request is sent to all PVFS serversttiatpart of the requested data. These formats
must be decoded to produce a series of contiguous sequedrpge®each with a logical offest and extent.

PVFS servers store some part of the logical byte sequencacbffée in a linear sequence of bytes or byte
stream within a data space associated with the file. Bytdsmiiis byte stream are identified by their offset
from the start of the byte stream referred to here ghyaical offset. On the server the PVFS distribution
methods are used to determine which portion of the requekttdis stored on the server, and where in the
associated byte stream the data is stored.

2 System Interface Distributions

PVFS2 users should be able to utilize distributions effetfithrough the system interface. API's are exposed
that allow users to create files with the user-specifiediligion. In the case that no distribution is specified
(i.e. the NULL distribution is specified), the default dibtrtion, simple stripe is used. The system interface
must be initialized before distributions may be accessed.

The external distribution APl is exposed to users via thiefghg data types and functions:

struct PVFS sys_dist;

The system interface distribution structure. It contaimesdistribution identifier (i.e. the name) and a pointer
to an instance of the distribution parameters for this tyipeibution. In general, the user should not modify
the data within this struct.

int PVFS _sys create(charx entry_nane,
PVFS obj ect ref ref,
PVFS sys_attr,
PVFS credentials credential s,
PVFS sys_di st dist,
PVFS sysresp_create* resp);

Creates a file using the specified distribution. If no disttitn is specified, the default distributicsim-
ple_ stripe is used during creation. The distribution used during fikmation is stored with the file and may
not be changed later. Altering the distribution used toestbe file contents could result in data corruption.

PVFS sys dist* PVFS sys dist_|ookup(const char* nane);

Allocates a new distribution instance by copying the indistribution registered for the supplied name.
Note that the internal distribution has additional dataexqiosed thru the system interface, but that should
be fully configurable thru the distribution parameters.

int PVFS sys dist_free(PVFS sys dist* dist);

Deallocate all system interface resources allocated gulistribution lookup.

int PVFS sys dist_setparam PVFS sys dist+* dist,
const char=* param
voi d* val ue);

Set the distribution parameter specified by the stpagam to value. The strings used to specify parameters
are distribution defined but should generally correspontddield name in the distributions parameter struct.
All parameters must be set before the distribution is usddartreation. Once a file is created, there is no
safe way to modify the distribution parameters for that file.

3 Distribution Initialization

All distributions are registered during PVFS2 initialimat. Although there has been some discussion about
having distributions function as loadable modules, theirrently no support for that feature within PVFS2.

2

All available distributions are loaded into a registrati@ile during initialization and registered with the
distribution name as the key. When a user then wishes toecaadistribution later, a lookup can be performed
with the distribution name, and a copy of the registereditistion is returned. The registered distribution
itself is never actually modified after registration. Thédyappportunity to modify the registered distribution
is during the registration itself. Each distribution implents a callback method nameadjister _init that is
called during registration. The function signature is diéstl completely below, for now we merely want to
note that this function is called exactly once (at regigiratime), and it is generally used by distributions
to setup the distribution parameter strings (for use in P¥&dist setparam), and to set default parameter
values.

Distribution initialization is performed by the functiorNPT _dist.initialize() in pint-dist-utils.h. In order to
add a new distribution to the table of registered distrimai it will be neccesary to modify this function.

4 Internal Distribution Representation

PVFS2 distributions are internally represented with tinecstPINT_dist. This structure contains a pointer to
the distribution name, methods, parameters and varioas.sihe internal distributions are used on both the
clients and the metadata server, as well as being storedcphyswith the file metadata.

When a user creates a file, the system distribution supptiethe default distribution is exchanged for a
corresponding PINIist structure. It is this structure that will be used for &mther operations performed
on the file and stored in the metadata for the file.

The client and server both use the distribution methodslitl filne request from the client to the server to
locate a specific byte range in a specific file. All this promeps performed within the PINT request for the
file and byte range. The main difference in the client andesgpvocessing is the way segments are built is
different as they represent the distribution of data fromwthrious servers, not the distribution of data on the
server (What in the world does this sentence mean?!?)

Distribution parameters are defined in the exported heamtethé distribution (e.g. for the simple stripe
distribution, the header file is pvfs2-dist-simple-strige The distribution methods are usually defined in a
corresponding implementation file in the io/descriptiobststem (e.g. the simple stripe implementation is
in io/description/dist-simple-stripe.c).

The methods defined for each distribution allow it to congdiespecify how the file data is mapped to the
PVFS2 disk abstraction, the data file object. The one passikteption to this is that distributions cannot
currently assert their preference in how data file objeatsnaapped to data servers. This is planned in the
near future, however their is no current consensus on hompoave upon the current round robin mapping
approach (see PINBucketget nextio).

5 Distribution Parameters

The parameters for each distribution are defined in a strefthetd specifically for the distribution, and an
individual instance of the parameters is stored in the nad¢adf every file.

Both the PVFSsys dist and PINTdist data structures maintain a pointer to the same disiitopparameters.
The parameters are passed into every call to distributiole s that distribution can modify its behavior
as neccesary. The distribution provider can also providesthoa for setting the distribution parameters
explicitly as described in the distribution methods below.

6 Distribution Methods

The distribution methods are the individual code used by estribution to perform mappings between the
logical file data and the data file objects. The methods algaige a mechanism for encoding/decoding the
distribution parameters, determining the number of dataofijects to create for a file, modifying distribution
parameters, and distribution registration tasks. For sufittee methods a default implementation is available
that may be acceptable for most distributions.

PVFS of fset |ogical _to physical offset(void* parans,
uint32_t dfile_nr,
uint32_t dfile_ct,
PVFS of fset | ogical _offset);

Given a logical offset, return the physical offset that esponds to that logical offset. Returns a physical
offset. The return value rounds down to the largest physiffakt held by the 1/O server if the logical offset
does not map to a physical offset on that server.

PVFS of fset physical _to_ | ogical _offset(void* parans,
uint32_t dfile_nr,
uint32_t dfile_ct,
PVFS of fset physical _of fset)

Given a physical offset, return the logical offset that esponds to that physical offset. Returns a logical
offset. The input value is assumed to be on the current PVR@rse

PVFS of fset next _mapped_of fset(voi dx parans,
uint32_t dfile_nr,
uint32_t dfile_ct,
PVFS of fset |ogical _offset)

Given a logical offset, find the logical offset greater thargual to the logical offset that maps to a physical
offset on the current PVFS server. Returns a logical offset.

PVFS_si ze conti guous_I| ength(voi d* parans,
uint32_t dfile_nr,
uint32_t dfile_ct,
PVFS of fset physical offset)

Beginning in a given physical location, return the numberaftiguous bytes in the physical bytes stream on
the current PVFS server that map to contiguous bytes in tiedbbyte sequence. Returns a length in bytes.

int get_numdfil es(void* parans,
uint32_t num servers_requested,
uint32_t numdfil es_requested)

Returns the number of data file objects to use for the requiédte The number of servers requested and
number of data files requested are hints from the user thalistrébution can ignore if neccesary. A default
implementation of this function is provided in pint-didils.h that returns the number of servers requested
(which is usually the number of data servers in the system).

int set_paran(const char* di st _nane, voi d+* parans
const char* param _nane, voi d+ val ue)

Set the distribution parameter describedgayam_name to value. A default implementation is provided in
pint-dist-utils.h that can handle parameters that hava besviously registered.

voi d encode_| ebf(char** pptr, void+ parans)

Write params into the data stream pptr in little endian byte format.

voi d decode_| ebf(char** pptr, void+ parans)

Readparams from the data stream pptr in little endian byte format.

void registration_init(void* params)

Called when the distribution is registered (i.e. once).dXseset default distribution values, register param-
eters, or any other initialization activity needed by th&tritbution.

