
PVFS2 MPI Based Requests
Design Notes

PVFS Development Team

march 2002

1 PVFS Requests

PVFS user programs can construct a data structure that represents a specifc set of non-contiguous data
that is to be read from or written to a PVFS file. The PVFS library includes a set of routines for creating
these structures in a controlled manner. These routines produce an opaque type the PVFSRequest which
is actually a pointer to an internal structure, the PINTRequest.

typedef struct PINT_Request *PVFS_Request; /* user type for requests */

int PVFS_Request_contiguous(int count, PVFS_Request oldreq,
PVFS_Request *newreq);

int PVFS_Request_vector(int count, int blocklength, int stride,
PVFS_Request oldreq, PVFS_Request *newreq);

int PVFS_Request_hvector(int count, int blocklength, int64_t stride,
PVFS_Request oldreq, PVFS_Request *newreq);

int PVFS_Request_indexed(int count, int *blocklengths,
int *displacements, PVFS_Request oldreq, PVFS_Request *newreq);

int PVFS_Request_hindexed(int count, int *blocklengths, int64_t *displacements,
PVFS_Request oldreq, PVFS_Request *newreq);

int PVFS_Request_struct(int count, int *blocklengths, int64_t *displacements,
PVFS_Request *oldreqs, PVFS_Request *newreq);

1



int PVFS_Address(void* location, int64_t *address);

int PVFS_Request_extent(PVFS_Request request, int64_t *extent);

int PVFS_Request_size(PVFS_Request request, int *size);

int PVFS_Request_lb(PVFS_Request request, int64_t* displacement);

int PVFS_Request_ub(PVFS_Request request, int64_t* displacement);

These routines are based directly on the MPI datatype constructor routines of similar name and have the
same semantics.

2 Request Data Structures

The PINTRequest is designed to represent any data layout that can be specified using MPI’s MPIDatatype
constructors. The PINTRequeststate is a structure that indicates how much of a request has actually been
processed. Using these structures it is possible to processpart of a PVFS request, stop, and then resume
processing at a later time when resources become available.This document outlines these structures and
the algorithms for using them.

The PINT Request

typedef struct PINT_Request {
PVFS_offset offset; /* offset from start of last set of elements */
int32_t num_ereqs; /* number of ereqs in a block */
PVFS_size stride; /* stride between blocks in bytes */
int32_t num_blocks; /* number of blocks */
PVFS_offset ub; /* upper bound of the type in bytes */
PVFS_offset lb; /* lower bound of the type in bytes */
PVFS_size aggregate_size; /* amount of aggregate data in bytes */
int32_t depth; /* number of levels of nesting */
int32_t num_contig_chunks; /* number of contiguous data chunks */
struct PINT_Request *ereq; /* element type */
struct PINT_Request *sreq; /* sequence type */

} PINT_Request;

A single PINTRequest structure represents numblocks blocks of numereqs elements separated by stride
bytes, beginning offest bytes from the logical start of the file, and followed by an arbitrary data layout

2



described by the sequence type. The elements are of an arbitrary data layout described by the element
type. The ub, lb, aggregatesize, depth, and numcontig chunks fields are statistics of the entire data area
beginning with the current PINTRequest struct and including the element and sequence types. Depth
records the maximum depth of the element type chain. Calls toMPI Type contiguous, MPIType vector,
and MPIType hvector can be constructed with a single PINTRequest struct and the PINTRequest struct
passed in as the element type. Calls to MPIType indexed, MPIType hindexed, and MPIType struct
generally utilize the sequence type chain.

Example Requests

The following are a few examples of how request patterns would be represented using the PVFSRequest
structure.

SIZE

OFFSET

OFFSET

ESIZE

OFFSET

COUNT

ESIZE

COUNT

ELEMENTS

STRIDE

ETYPE

A)

B)

C)

3



Single Contiguous Region Requests

A single contiguous region is represented by a single structure. The region can be specified as SIZE bytes
at location OFFSET as in figure A:

PTYPE:
offset = OFFSET
num_ereqs = SIZE
stride = 1
num_blocks = 1
ub = SIZE
lb = 0
aggregate_size = SIZE
depth = 1
num_contig_chunks = 1
etype = PVFS_Request_byte
stype = NULL

Or can be specified as an array of COUNT integers as in figure B:

PTYPE:
offset = OFFSET
num_ereqs = COUNT
stride = 1
num_blocks = 1
ub = COUNT * 4
lb = 0
aggregate_size = COUNT * 4
depth = 1
num_contig_chunks = 1
etype = PVFS_Request_int
stype = NULL

PVFS_Request_int:
offset = 0
num_ereqs = 4
stride = 1
num_blocks = 1
ub = 4
lb = 0
aggregate_size = 4

4



depth = 0
num_contig_chunks = 1
etype = NULL
stype = NULL

Note that default PVFSRequest exist for standard data types including: PVFSRequestbyte, PVFSRequestchar,
PVFS Requestshort, PVFSRequestint, PVFSRequestlong, PVFSRequestfloat, PVFSRequestdouble.
Each of these standard types is defined with an etype of NULL which indicates that the region is contigu-
ous regardless of the other parameters.

Strided Region Requests

A data area made up of regular strided groups of contiguous elements can also be represented with a single
PINT Request structure. A region consisting of GROUPS groups of ELEMENTS items of type ETYPE
with a size of ESIZE each with a stride between the first element of each group of STRIDE bytes would
be as in figure C:

PTYPE:
offset = OFFSET
num_ereqs = ELEMENTS
stride = STRIDE
num_blocks = GROUPS
ub = ((GROUPS - 1) * STRIDE) + (ELEMENTS * ESIZE)
lb = 0
aggregate_size = GROUPS * ELEMENTS * ESIZE
depth = 1
num_contig_chunks = GROUPS
etype = ETYPE
stype = NULL

Once again this assumes that ETYPE is a contiguous type.

5



OFFSET

D) OFFSET+40

PVFS_Request_float * 6

OFFSET+760

INNER−PTYPE

E)

OFFSET

Sequential Requests

A data area may consist of a region that conforms to one type, followed by a region that conforms to
another. Example might include a strided region where one wants to begin and/or end in the middle of a
group, rather than have a integral number of whole groups, ormay be two unrelated segments of data. For
this, a sequence of PINTRequest structures is specified using the stype field to determine the sequence.
The offset is specified relative to the beginning of the data area.

In this example we have a strided region shown in D. We want to start 8 bytes into the first group (yellow),
then have 15 whole groups (blue), and finally end 4 bytes into the last group (green). Each group is 6
elements, and each element is a float (4 bytes). The stride between groups is 48 bytes (12 floats).

FIRST-PTYPE:
offset = OFFSET
num_ereqs = 4
stride = 1
num_blocks = 1
ub = 764
lb = 0
aggregate_size = 380
depth = 1
num_contig_chunks = 17
etype = PVFS_Request_float
stype = NEXT-PTYPE

6



NEXT-PTYPE:
offset = OFFSET + 40
num_ereqs = 6
stride = 48
num_blocks = 15
ub = 764
lb = 40
aggregate_size = 364
depth = 1
num_contig_chunks = 16
etype = PVFS_Request_float
stype = LAST-PTYPE

LAST-PTYPE:
offset = OFFSET + 760
num_ereqs = 1
stride = 1
num_blocks = 1
ub = 764
lb = 760
aggregate_size = 4
depth = 1
num_contig_chunks = 1
etype = PVFS_Request_float
stype = NULL

Note that ub, lb, aggregatesize, depth, and numcontig chunks always refers to the region represented
down stream of the current PINTRequest record, and not the whole region, however ub and lb are still
expressed in terms of the entire data area.

Nested Types

Any request can be built on top of another request. When the base request is contiguous the result is as
above, but when the base request is not contiguous things aremore complicated. Examples include nested
strided regions and vectors of records that are only partially accessed.

The following is a nested strided region. There are 4 groups of two ”elements,” with a stride of 8 elements.
Each element consts of 2 groups of 6 integers (one element shown in green), with a stride of 48 bytes.

OUTER-PTYPE:
offset = OFFSET

7



num_ereqs = 2
stride = 768
num_blocks = 4
ub = 3264
lb = 0
aggregate_size = 384
depth = 2
num_contig_chunks = 16
etype = INNER-PTYPE
stype = NULL

INNER-PTYPE:
offset = 0
num_ereqs = 6
stride = 48
num_blocks = 2
ub = 96
lb = 0
aggregate_size = 48
depth = 1
num_contig_chunks = 2
etype = PVFS_Request_int
stype = NULL

Note that the offset, ub, and lb are in terms of the inner elements and not of the entire buffer, thus the
offset is the offset from the beginning of that element to thefirst bit of data in that element.

3 The PINT Request state

When processing a request described with a PVFSRequest the following structures are used to keep track
of how much of the request has been processed.

typedef struct PINT_reqstack {
int32_t el; /* number of element being processed */
int32_t maxel; /* total number of these elements to process */
PINT_Request *rq; /* pointer to request structure */
PINT_Request *rqbase; /* pointer to first request is sequence chain */
int32_t blk; /* number of block being processed */
PVFS_offset chunk_offset; /* offset of beginning of current contiguous

} PINT_reqstack;

8



typedef struct PINT_Request_state {
struct PINT_reqstack *cur; /* request element chain stack */
int32_t lvl; /* level in element chain */
PVFS_size bytes; /* bytes in current contiguous chunk processed
PVFS_offset buf_offset; /* byte offset in user buffer */

} PINT_Request_state;

The PINTRequeststate utilizes a stack to keep up with each level in the element type chain. For each
level, a stack element records which block and which elementwithin the block is being processed as well
as which PVFSRequest record in the sequence chain is being processed. Themaxel and dtbase fields are
used to reset each level each time it is entered. The PINTRequeststate records the level being processed
and a function used to process each contiguous block of data.The bytes field is used to record the results
of a partial processing of bytes so the processing can be paused and resumed later.

4 PINT Process request interface

Requests and distributions are processed using the interface described here. The caller allocates an array of
SEGMAX offsets and an array of SEGMAX segment sizes. These are passed to the PINTProcessrequest
function allong with an initialized PINTRequeststate, a PVFSRequest, a PVFSRequestfile data struct
which includes distribution, distribution parameters, metadata, and an EXTENDFLAG that indicates if
the routine should stop at the current end of file (if the valueis zero) or should extend the local file to
the size needed to complete the request (if the value is non-zero) in the even that the file ends before
the end of the request. A read will typically have a zero valueand a write will typically have a one
value. Other arguments to PINTProcessrequest include the maximum number of segments to process
SEGMAX, a maximum number of bytes to transfer BYTEMAX, and a starting offset STARTOFFSET,
and EOFFLAG argument returns whether the end of the request is at or beyond the end of file.

typedef struct PINT_Request_file_data {
PVFS_size fsize; /* actual size of local storage object */
int32_t server_nr; /* ordinal number of THIS server for this file */
int32_t server_ct; /* number of servers for this file */
PVFS_Distribution *dist;
PVFS_Dist_parm *dparm;
PVFS_boolean extend_flag;

} PINT_Request_file_data;

PINT Processrequest fills in up to SEGMAX array entries, updates SEGMAX toindicate the number
of segments processed, updates BYTEMAX to indicate the number of bytes processed, and updates

9



START OFFSET and the PINTReqeststate to indicate the last point in the request procssed. Thefunc-
tion attempts to process BYTEMAX bytes, but cannot process more than SEGMAX contiguous regions.
The code is expected to be optimized for the case where STARTOFFSET is equal to the value returned
the last time the function was called with the same PINTRequeststate.

int PINT_Process_request(PINT_Request_state *req,
PINT_Request_file_data *rfdata, int32_t *segmax,
PVFS_offset *offset_array, PVFS_size *size_array,
PVFS_offset *start_offset, PVFS_size *bytemax,
PVFS_boolean *eof_flag, int mode);

The MODE tells the request processor whether to process the request in terms of the local file offsets on
a server or local buffer offsets on a client. Clients should set this to PVFSCLIENT to indicate that the
data will be read into a contiguous buffer. Servers should set to PVFSSERVER to indicate that the offsets
computed by the distribution module should be used as the local file offsets. A third mode PVFSCKSIZE
indicates that the routine should count how many bytes up to BYTEMAX are left in the request, but does
not alter the requset state or update the SIZEARRAY or OFFSETARRAY.

Before calling PINTProcessrequest for a given request for the first time, the caller needs to allocate
a PINT Requeststate structure. This is done by calling PINTNew request passing in a pointer to the
request. Theoretically multiple request states can exist for the same request, thought there is really no
need to do such a thing.

struct PINT_Request_state *PINT_New_request_state (PINT_Request *request);

The new request state is positioned at the beginning of the request. The caller must also allocate a
64-bit startoffset, as well as the offset and size arrays, eofflag, segmax, and bytemax. Each time
PINT Processrequest is called, the segmax, bytemax, and eofflag should be reset to the proper val-
ues, as the function returns results in these variables as well as taking inputs from them. The offset and
size arrays are overwritten each time PINTProcessstate is called. The startoffset variable is normally
NOT reset between calls as the caller normally wishes to continue translating the request from the point
left off previously. After completing the processing of therequest, the caller is also responsible for freeing
the request state structure with a call to PINTFreerequest.

void PINT_Free_request_state (PINT_Request_state *req);

The following is a sample of code calling the request processing routines. It processes an entire request
using no more than SEGMAX contiguous sements at a time and no more than BYTEMAX bytes at a
time.

10



#include <pvfs-types.h>
#include <pint_distribution.h>

#define SEGMAX 32
#define BYTEMAX 250

do_a_request(PINT_Request *req,
PVFS_Distribution *dist,
PVFS_Dist_parm *dparm,
PVFS_Meta meta)

{
int i;

// PVFS_Process_request arguments
PINT_Request_state *reqs;

PINT_Request_file_data rfdata;
PVFS_offset offset_array[SEGMAX];
PVFS_size size_array[SEGMAX];
PVFS_offset offset;
PVFS_size bytemax;
int32_t segmax;
PVFS_boolean extend_flag;
PVFS_boolean eof_flag;

reqs = PINT_New_request_state(req);
rfdata.server_nr = 0;
rfdata.server_ct = 1;
rfdata.fsize = 10000000;
rfdata.dist = dist
rfdata.dparm = dparm
rfdata.extend_flag = 0;
eof_flag = 0;
offset = 0;
do {

segmax = SEGMAX;
bytemax = BYTEMAX;
PINT_Process_request(reqs, &rfdata, &segmax, offset_array,

size_array, &offset, &bytemax, &eof_flag, PINT_SERVER);
printf("processed %lld bytes in %d segments\n", bytemax, segmax);
for (i = 0; i < segmax; i++)
{

printf("segment %d: offset=%lld size=%lld\n", i,
offset_array[i], size_array[i]);

11



}
} while (offset != -1);

}

12


