
pvfs2-client Design Document (DRAFT)

PVFS Development Team

April 2003

1 Introduction

The primary role of the pvfs2-client daemon is to efficientlymarshaloperation requests and data from the ker-
nel’s VFS (Virtual File System, or Virtual Filesystem Switch) layer to the pvfs2-server, and return responses
from the pvfs2-server(s) back to the VFS layer. This involves waiting for file system and I/O requests, per-
forming operations against the pvfs2-server application(s), and passing responses back to the Linux kernel’s
VFS layer. The data medium for the communication between theVFS request and the pvfs2-client appli-
cation is the /dev/pvfs2 device node. An interface that willallow incoming unexpected requests from the
/dev/pvfs2 device node is required, and using the existing BMI interface is preferred.

Figure 1 illustrates the architecture of several components of PVFS2. This document will focus specifically
on the pvfs2-client application.

2 Motivation for the pvfs2-client Application

Currently, our entire code base exists as user space code. This includes all of our networking support (through
theBMI andFlow Interfaces), and our non-blocking request handling architecture through theJob Interface.

Figure 1: High Level PVFS2 Architecture

1



The pvfs2-server already uses these interfaces to manage multiple simultaneous operations in flight at once.
Similarly, it is highly desirable to have a pvfs2-client application that can issue and manage multiple simulta-
neous operations at once when communicating with the pvfs2-servers. Therefore, at least in the short term, it
would be most appropriate to leverage as much of our existingcode as possible. A user-space application is
required to make use of this code, and thus the need for the pvfs2-client application to bridge the gap between
the Linux kernel’s VFS layer and theSystem Interface.

3 pvfs2-client Application Architecture

The pvfs2-client application consists of a set of state machines roughly corresponding to all file system and
I/O operations that can be requested from the VFS. At a high level, the pvfs2-client application appears to
share a common architecture with the pvfs2-server application. The most notable distinction between the
pvfs2-client architecture and the pvfs2-server architecture is the source of the unexpected requests. On the
pvfs2-server, unexpected requests come from over the network through the BMI Interface. The pvfs2-client
receives unexpected messages from the /dev/pvfs2 device node. It would be ideal if the BMI Interface could
be used to monitor the /dev/pvfs2 device node.

One responsibility of the pvfs2-client application is to wait for jobs in progress to complete. Waiting on
pending jobs is implemented as a non-blocking operation against the existing job interface using the call
job testcontext. This call returns a list of unexpected or completed jobs that were submitted previously by
states of the various state machine operation implementations.

For each job returned from jobtestcontext, the pvfs2-client application checks if the job is an unexpected
request. If the jobis an unexpected request, it initializes an appropriate statemachine for that job. Regardless
of whether or not the job was unexpected, the state of each jobis advanced to the next until a blocking
operation is encountered.

Unexpected requests are delivered to the pvfs2-client application only from the /dev/pvfs2 device node that
the pvfs2-client application monitors through the job interface. These requests are generated and passed up
from the Linux kernel’s VFS layer by the PVFS2 kernel module that implements the VFS operations.

The pvfs2-client has a similar processing loop as the pvfs2-server:

while (pvfs2-client application is running)
{
...
wait on pending jobs in progress and expected requests
...
foreach job returned

if job is an unexpected request
initialize appropriate operation state machine

end if
...
while completions occur immediately

2



advance to next state in state machine
end while

end foreach
}

4 Limitations of the Existing System Interface

Currently, all client interaction to a pvfs2-server is donethrough theSystem InterfaceAPI. This interface
provides a set of file system and I/O operations to be performed against the pvfs2-server(s), but suffers from
several major limitations in its current state. These limitations can be described briefly as:

• Semantic Limitations: the current implementation provides a blocking interfaceto all operations. We
already know that a non-blocking interface is required for efficient access through other existing non-
blocking iterfaces such as ROMIO.

• Reusability Limitations: the current implementation performs many blocking operations. This cannot
be usedas isin the proposed non-blocking state-machine oriented architecture of the pvfs2-client.

A proposed redesign of the System Interface implemented in terms of reusable state machines can solve these
limitations, as discussed below.

5 pvfs2-client Request Servicing

Operation request servicing in the pvfs2-client application will be implemented by state machines. That is,
for each type of request that can be handed up from the PVFS2 kernel module, a matching state machine
will exist to service it. The types of operation requests required will roughly correspond to all of the possi-
ble operations available through the System Interface API.For the proposed pvfs2-client architecture, it is
clear that a non-blocking implementation of the System Interface is desirable for the state machine architec-
ture. Further, to encourage code re-use, each operation in the System Interfacecan be expressed as a state
machine. Implementing the core functionality of the SystemInterface methods in terms of state machines
allows an opportunity for blockingand non-blocking interface implementations, heavier code re-use, and
design simplicity.

We can think of all pvfs2-client operations as having a similar structure, as depicted in Figure 2. What we
see here is a generic state machine implementing an operation. For all operations there will be ause specific
initialization, execution of some core routines (i.e. functionality provided by the current System Interface),
and a use-specific notification of status and completion. If the core functionality of each System Interface
routine were implemented in terms of a state machine, the execution of a core routine could be embedded as
a nested state machine within the operation specific state machine.

Figure 2 shows a complete operation state machine, along with the embedded (nested) state machine that
implements core functionality of a System Interface call. The first state calledinit represents the use specific

3



Figure 2: Operation Servicing State Machine (w/nested corestate machine)

4



initialization state. Each operation may have a different initialization phase, but at the very least, the source
and target endpoints for the Flow (to be performed inside thenested state machine) are selected. Following
initialization, the nested state machine is executed, performing the core operation requested. After this, the
operation state machine checks the status of the performed operation to properly handle error reporting.
Finally, the state is advanced to the initial state of the state machine, which is the default action when the
operation has completed.

In order to represent the core functionality of a System Interface method as a re-useable state machine, we
must take advantage of the source and target endpoint specifications allowed by the existingFlow Interface.
Assuming it is possible to know the source and target endpoints of the Flow prior to executing the System
Interface core functionality, it can be re-used by embedding it as a nested state machine in the pvfs2-client
architecture,and shared between the blocking and non-blocking System Interface implementations. The
requirement for this is that the source and target endpointsof the Flow be established before using the core
functionality state machine. In Figure 2, for example, the pvfs2-client application may specify that the Flow’s
target endpoint should be the /dev/pvfs2 device node.

6 Non-blocking and Blocking System Interface Implementations

Non-blocking and blocking System Interface methods (as shown in Figure 3) can use the same core function-
ality once implemented as a state machine. The blocking version will manually advance the state machine
internal to the call and not return until the operation has completed. The non-blocking implementation will
start the state machine and offer a mechanism for testing operation completion. For the non-blocking inter-
face, some method of asynchronous progress must be provided. This can be done either with a background
thread, or completing work during a test for completion.

5


