
CMU 18-746 Storage Systems Assigned: 31st Aug. 2006
Fall 2006 Project 1 Due: 3d Oct. 2006

Overview: In this project you will probe the ordinary OS-level block storage device interface in order to
determine the low-level behavioral characteristics of an attached disk drive.

To prepare for this project, readMicrobenchmark-based Extraction of Local and Global Disk Character-
istics by Nisha Talagala, Remzi H. Arpaci-Dusseau and David Patterson (Technical Report CSD-99-1063,
University of California, Berkeley, 1999). Using the methods described in the paper, you will verify a subset
of their experimental results and perform several additional experiments not previously published.

We recommend that you run your experiments on a real disk or disk partition. This will require that
you have administrative access to a Unix-like system (Linux, FreeBSD, Solaris, etc.) with at least one
available disk partition to be overwritten (for example, a swap partition that can be disabled for the duration
of your experiments & reformatted at the conclusion). This disk may use any interconnect: SCSI, ATA,
Fibre Channel, etc. Your friendly T.A. is available if you have questions about setting up your experimental
environment.

If you do not have access to such a system (or you have trouble getting acceptable experimental results)
a disk emulator package specifically created for this project is available from the course Web pages. The
emulator is built using the DiskSim Simulation Environmentand models the Seagate Barracuda ST32171W,
which is similar to one of the experimental drives from Talagalaet al. There is a README file in the emulator
package that will help get you started. The library includedin the package was compiled under Solaris; to
compile your own progam and link against the library you’ll need to have access to a Solaris-based machine
(for example,sun4.andrew.cmu.edu).

This is an individual project. You are not permitted to collaborate with anybody, and all work and coding
must be your own. All questions should be directed to the T.A.Exception: you may ask anyone for help
setting up your experimental environment, verifying that you are not putting any data at risk, etc. You may
also share an experimental machine and disk partition with aclassmate, as long as you do not discuss the
project or share code.

Deliverables: All deliverables are due at the beginning of class on the assigned date. Late submissions will
not be accepted, and no extensions will be granted. You will submit a report containing (1) a description
of the problem and your experimental environment, (2) a description of each experiment and your results,
including any graphs you’ve generated, and (3) a conclusiondescribing what you’ve learned. This report
must be typed and neatly organized, and graphs must be clearly labeled. In addition to the report, you will
email a copy of your code to the T.A.

Experiments:

(a) Write-based SKIPPY: Reimplement the write-based SKIPPY and obtain results similar to those pre-
sented in (the upper part of) the figures in Section 5 of Talagala et al. Create a graph with your
results & a table to report values for rotational latency, MTM, sectors per track, number of heads,
head switch time, and cylinder switch time. Look up the manufacturer’s published specifications for
the disk you’re using (not all values will be available) and report any percent error in your experiment.
Explain what you believe to be the source of this error.

(b) Write-based SKIPPY variant #1: Modify your code above as follows. Choose a starting sector. Per-
form a small write to this sector, then incrementally hop to subsequent sectors and perform a small
write. For each data point, begin with a write to the originalstarting sector.

Algorithm: hop(i) = 0→ i | i ∈ {1,2,3, . . . ,n}

Example: 0→ 1,0→ 2,0→ 3, . . . ,0→ n

Create a graph with your results. Perform a similar analysisto the SKIPPY graphs and attempt to
abstract the physical characteristics of the disk drive: where are the head switches, cylinder switches,
and other artifacts of disk geometry?

(c) Write-based SKIPPY variant #2: Modify your code above as follows. Choose a starting sector. From
this sector, measure the time to write the subsequent sector. Repeat this for the sector you’ve just
written; do not return to the original sector.

Algorithm: hop(i) = (i−1) → i | i ∈ {1,2,3, . . . ,n}

Example: 0→ 1,1→ 2,2→ 3, . . . ,(n−1) → n

Create a graph with your results. Perform a similar analysisto the SKIPPY graphs and attempt to
abstract the physical characteristics of the disk drive: where are the head switches, cylinder switches,
and other artifacts of disk geometry?

(d) Read-based SKIPPY. Repeat the first SKIPPY experiment but use small reads instead of small writes.
Create a graph with your results. Are you able to extract the same information as from the write-based
SKIPPY? To what do you attribute any differences?

(e) ZONED: Reimplement the read-based ZONED and obtain results similar to those presented in Figure
10 of Talagalaet al. (Note: you should perform this test over the entire disk, notjust the disk partition
you used above). Create a graph with your results. Compare your results for maximum and minimum
bandwidth to the manufacturer’s published specifications.To what do you attribute any differences?

Suggestions: Here is an example of how you might set up the experimental environment on a Linux system.
Note: your disk labels and partition numbers may vary; if you’re not sure what you’re doing, ask somebody
before you risk irreparable loss of data!

• su to root

su

• Have an empty (and I mean EMPTY!) partition.

for the sake of argument say /dev/hda6

• Create a character device driver that links to that partition.

raw /dev/raw/raw1 /dev/hda6

• Turn off write-caching and read optimizations on this disk

hdparm -W 0 /dev/hda6

hdparm -A 0 /dev/hda6

The remaining steps must be taken inside your program.

• Create a buffer out of which to do I/O

char buf [1023];

• Open the raw device

rawdevh = open (/̈dev/raw/raw1 ,̈ O RDWR);

• Find the byte offset in this buffer that is memory aligned, i.e., offset 0, 512, 1024, 1536, etc. in a page.

for (i=0; i<512; i++) {
rc = read (rawdevh, buf+i, 512);
if (rc != -1) {

rawoffset = i;
break;

}
}

• Do all subsequent I/O aligned to that offset.

rc = write (rawdevh, (void *) buf + rawoffset, 512);

