CMU 18-746 Storage Systems
Spring 2010 Solutions to Homework 0

Problem 1 : Locality of reference. [10 points]

Spatial localityis the concept that objects logically “close” in locationai object in the cache are more
likely to be accessed than objects logically “far.” For exdan if disk block #3 is read and placed in the
cache, it is more likely that disk block #4 will be referencgmbn than block #31,415,926 because blocks
#3 and #4 are close to each other on the disk.

Temporal localityis the concept that items more recently accessed in the @ehmore likely to be
accessed than older, “stale” blocks. For example, if disklks are read and placed in the cache in the order
#271, #828, #182, then it is more likely that disk block #18R e referenced again soon than block #271.
Another way of thinking of this is that a block is likely to beaessed multiple times in a short span of time.

Problem 2 : Virtual memory. [20 points]

(a) Swappings the process of evicting a virtual memory page from physiemory (writing the contents
of the page to a backing store [for example, a disk]) and cémigthe freed memory with another page
(either a newly created page, or an existing page read frerbdbking store). In essence, one virtual
memory page is “swapped” with another. Swapping is inidlatdhenever all physical page frames are
allocated and a virtual memory reference is made to a pags tiwt in memory. The granularity of
swapping is a single page frame; it need not be an entire gsdbat gets swapped out.

(b) A page faultoccurs when a virtual memory reference is made to a virtuahomg page that is not
currently in memory. This may or may not cause swapping: éfeéhare free physical page frames,
and the virtual memory page is “new” (it was not previouslgated and written to the backing store)
then swapping is not necessary. These are the steps invalveahdling a page fault:

¢ An exception is raised by the memory management unit

e The faulting address is checked for validity (if invalidethrocess receives a segmentation vio-
lation signal)

¢ A clean physical page frame is allocated to make space fondtevirtual memory page (this
may require swapping)

e If the virtual memory page was previously written to disk, iskdl/O is initiated to read the
contents into the physical page frame

e The new physical page frame is mapped into the process’ seldpace
e The user process is re-started at the faulting instruction



Problem 3 : Polling and interrupts. [15 points]

Polling and interrupt-driven notification are methods ttiet operating systems uses to notify a processor
when an 1/O device requires attention; e.g., when requetdital are available or an operation completes.
In polling the processor reads the device’s status register (“pa@isd)checks whether a “finished” flag has
been set by the device. If the flag is set, the processortastia data transfer between the device and main
memory. If the flag is not set, the processor either triesralgaér or busy-waits (continuously reading the
register until the flag is set).

In interrupt-driven notificationthe device asserts a special 1/O line that triggers an ‘fiaptt on the
processor. This causes the processor to stop what it's doidgump to a special operating-system routine
that determines which device caused the interrupt and wéedshto be done next (e.g., initiating a data
transfer between the device and main memory).

Two advantages of polling are (1) its simpler hardware negpénts and software implementation, and
(2) greater efficiency when the 1/0O device generates a lotadfi¢. Two advantages of interrupt-driven
notification are (1) the processor does not need to expenescgolling the device, and (2) there can be less
latency between when the device is ready and the data asdersad.

Problem 4 : Application 1/0. [10 points]

(&) Application run time can usually be improved both by ioying the processor (faster clock speed,
greater IPC, etc.) and improving the 1/O subsystem (redubirs load, mirroring disks, etc.) How-
ever, a process is most “bound” by the resource that is therrfegjtor preventing that process from
completing faster. An application that spends over haltiitee stalled waiting for I/O requests to
complete (ar/O-bound procegswould be helped more by improving I/O latency and/or bartfwvi
than it would be by overclocking the processor (think of thiserms of Amdahl’s Law). The reverse
analogy holds foCPU-bound processes

(b) If an application is unable to continue execution untilautstanding 1/O request completes, then it
is ablocking I/O requestThis can be either necessary (a scientific application s\eeate data over
which to calculate) or application-directed (an eventgiog application that requests confirmation
that data have been written to stable storage before pargittrther events to occurNonblocking
I/O allows the application to continue execution regardlesthefavailability of the data or the 1/0
device. This can be by design (an application-directed &@cbloading request) or by circumstance
(a “select” system call when no clients have sent data to ¢feark interface).



Problem 5 : Programmed I/O and DMA. [15 points]

(@)

(b)

These are methods the OS programmer can use to contradtie transfer of data between system
memory and I/O devices.

In Programmed I/O (PIO}he processor reads or writes one byte of data at a time thrtheydata
register on the I/O device controller. Special flags in thated register are used to coordinate
some communication between the processor and 1/0O devideotlen (“new data are available in
the data register,” “I have finished transferring the dag#g.) The processor may use either polling
or interrupt-driven 1/O to learn when the 1/O device has fieid a task. PIO may be inefficient when
transferring large amounts of data to or from a storage deviecause the processor spends a large
amount of time dealing with one-byte reads and writes betvilee data register and main memory.

In Direct Memory Access (DMAJhe processor offloads the entire transfer to the DMA cdietr¢a
special-purpose processor attached to the system busprddessor writes the source and destination
memory locations and length to the DMA controller once, tthenDMA controller directs the transfer
of data between the 1/O controller and memory while the meoedoes other work. The processor is
eventually notified via interrupt when the DMA transfer cdetips.

Devices that transfer “large” amounts of data typicalbg DMA. For example, all PCl-bus-based 1/0O
controllers that support PCI bus mastering use DMA. Thituihes SCSI host adapters, some ATA
disk controllers, PCl-based network cards, video cards,”HD is used for devices that transfer small
amounts of data infrequently, such as keyboards and mice.

Problem 6 : Communications networks. [20 points]

@)

(b)

Both terms have slightly loose definitiorisatencyis the amount of time you wait to get the data your
requested—so it is the time between when you click on a web [k and either (1) that web page
appears in its entirity, or (2) you first start receiving ditathat web page. The unit of latency is
usually seconds.

Bandwidthis the rate at which your get the data you requested—so iteisitte of the web page

divided by either (1) the total time between when you clickedthe link and you received the last
byte of data, or (2) the total time between when you receikieditst and last bytes of data. The unit
of latency is usually bytes (or kB, mB, bits, etc.) per second

A Hamming codés a mechanism that enables error detection (for ud twt errors) and error cor-
rection (for fewer tharN bit errors) on an encoded string of bits. It works by caldottparity
information across different groups of bits inside thenggri-when errors occurs during transmission,
the location of errors can be pinpointed by recalculatirg “dorrect” parity values and comparing
them with those that were received.

Parity-based erraietectiononly detects than an error occured during transmission tfaardonly for
an odd number of bit errors). The use of Hamming codes all@veiror correction and for the
detection of either an even or odd number of bit errors (uplimid).



