
CMU 18-746 Storage Systems Assigned: 3 Feb 2010

Spring 2010 Project 1: fsck Due: 19 Feb 2010

Overview: In this laboratory you will create tools to identify, parse,read, and manipulate the on-disk image
of a file system. The end product of this project is a rudimentary fsck utility for the ext2 file system.

Many file systems contain afsck (file system check) utility to check for and repair errors in the file system
at mount time. Before starting work on this laboratory, readFsck—the UNIX file system check program
(McKusick & Kowalski 1994, revised 1996). Although this paper refers to the BSD FFSfsck utility, most
of the concepts hold valid for ext2fs and many other file systems.

You will complete this lab on your own. While you can talk withothers about the project at a high level,
you must do all the work, and write all the code by yourself.

The four parts below outline the work that must be completed for this project. They are not independent;
each of Parts II, III and IV depends on the tool created in the previous part.

Part I: Read the partition table (10 points)

You have been provided with a disk image (seeResourcesbelow). Build a tool to read andprint out both the
DOS-style partition table located on sector 0, and the extended partition information (pointed to by partition
4) for extended partitions 5 and 6. You can verify that you’vedone this correctly when your code produces
the following values:

partition number partition type start length

1 0x83 (ext2) 63 48132
2 0x00 (unused) 0 0
3 0x83 (ext2) 48195 48195
4 0x05 (Extended) 96390 64260
5 0x82 (Linux swap) 96453 16002
6 0x83 (ext2) 112518 48132

Partition 1 contains an ext2 file system with no errors. Partitions 3 and 6 contain ext2 file systems with
various errors that should be detectable and correctable byyour utility. The files and directory structure on
each partition table are similar but not necessarily the same.

The executable you generate should be calledmyfsck . For this part, it should take as input two parameters,
the partition number, and the name of the disk image, and output the appropriate start and end sectors.

./myfsck -p <partition number >-i <disk image file >

./myfsck -p 1 -i diskimage
0x83 63 48132

Runningmyfsck on a partition that does not exist should return -1.

./myfsck -p 10 -i diskimage
-1

Your code for this part will be tested against multiple different partition tables.



Part II: Read the file system structures (0 points)

Extend your tool from the previous section to accomplish thefollowing tasks. Though this part will not be
graded, completing it will help you develop and test the codeinfrastructure needed to successfully create
your tool. We recommend not skipping this step. In general, each item depends on the functionality of the
item before it.� Read the ext2 superblock for partition 1. This is located at offset 1024 bytes into the partition (not the

disk), and is of size 1024 bytes.Print out the superblock magic number and verify that it is is correct.� Determine how to translate an inode number into its equivalent sector number. To do this you will
need to read the correct entry in the inode table—which itself is split across multiple block groups.
(The first inode in the inode table is inode number 1, not 0.)� Determine how to locate an inode’s (and block’s) entry in theinode allocation bitmap and block
allocation bitmap.� Locate and read the root inode. Verify that the inode attributes show that it is a directory inode. Verify
that this inode is allocated in the inode allocation bitmap.� Read the directory information pointed to by the root inode.(Be sure to usestruct ext2 dir entry 2
for this.) Determine the directory entry that points to the directory /lions .� Read the inode for the directory/lions and determine the inode number. This should be in-
ode 4017. Verify the attributes of this inode. Continue thisprocess until you find the file/li-
ons/tigers/bears/ohmy.txt . Determine the inode number of this file – it should be 4021.
Verify that the data blocks for this file are allocated in the block allocation bitmap.� Print out the inode number for the file/oz/tornado/dorothy . What is special about this file?� Determine the inode number for the file/oz/tornado/glinda . Verify that this file’s type is a
symbolic link. What is the name of the file this link references?

Part III: Correcting errors on a disk image with well-known e rrors (50 points)

Extend your tool to checks for the specific file system errors listed below. Your tool should make four
“passes”, checking for the specified errors in each pass. When an error is found, you should print a de-
scription of the error tostdout and automatically fix the error. Your tool must only generateoutput when
detecting and repairing errors—in other words, it should generate no output for a correct file system.� Pass 1: Directory pointers(see McKusick & Kowalski, section 3.7). Verify for each directory: that

the first directory entry is “.” and self-references, and that the second directory entry is “..” and
references its parent inode. If you find an error, notify the user and correct the entry.� Pass 2: Unreferenced inodes(section 3.5). Check to make sure all allocated inodes are referenced
in a directory entry somewhere. If you find an unreferenced inode, place it in the/lost+found
directory—make the new filename the same as the inode number.(I.e., if the unreferenced inode is
#1074, make it the file or directory/lost+found/#1074 .)� Pass 3: Inode link count(section 3.5). Count the number of directory entries that point to each inode
(e.g., the number of hard links) and compare that to the inodelink counter. If you find a discrepancy,
notify the user and update the inode link counter.� Pass 4: Block allocation bitmap(section 3.3). Walk the directory tree and verify that the block
bitmap is correct. If you find a block that should (or should not) be marked in the bitmap, notify the
user and correct the bitmap.

2



For this part, running the following command should fix disk errors on the specified partition.

./myfsck -f <partition number > -i <disk image file >
If the user specifies-f 0 , your tool should correct disk errors on every ext2 partition contained in the disk
image.

If you run your tool against the file systems on partitions 3 and 6, you should find one of each error (two on
one file system, two on the other). To formally test your tool,use it to fix the errors and then run the version
of fsck provided by the system on the image (See the Resourcessection). If no errors are returned, your tool
works. This part will be graded by penalizing 10 points for every error the system fsck finds, for a total of
50 points.

Part IV: Correcting errors on a disk image with random errors inserted (40 points)

In this part, your tool will be evaluated by running it against the provided disk image with random errors
inserted. Errors will be inserted by the script provided in theResourcesbelow. All four types of errors in
Part III can be inserted randomly. Grading policy is the sameas Part III.

Deliverables: All deliverables are due at the beginning of class on the assigned date. Late submissions will
not be accepted, and no extensions will be granted.

You should copy your files to a tarball calledmyfsck.tar . This file will contain the source code for your
tool and aMakefile to build your tool. Be sure to include all header files and any supplementary files
required for themake. In order words, your friendly neighborhood T.A. must be able to do this:

unix49{˜}% mkdir foo ; cd foo
unix49{foo}% tar xf ../myfsck.tar
unix49{foo}% make
unix49{foo}% ./myfsck -p 1 -i ../some_disk_image
unix49{foo}% ./myfsck -f 0 -i ../some_disk_image

Your tool must compile on the Linux systems atunix.andrew.cmu.edu .

The dropbox is at/afs/ece/usr/ganger/public html/746.spring10/proj1 handin . Cre-
ate a directory named your andrew user id and copy the tarballto this directory. For example, if your andrew
id is “raja”, you will copy the tarballmyfsck.tar to the directory:
/afs/ece/usr/ganger/public html/746.spring10/proj1 handin/raja .

In your tarball, please include a filesuggestion.txt to tell your friendly T.A. what you like and dislike
about this laboratory, and whether there is anything you would suggest we change (to make it easier to
understand, more challenging, etc.)

3



Resources:The following resources are available on the course web site:� genhd.h andext2 fs.h : These are relevant header files from the Linux 2.4.17 kerneldistribution.
These files contain the structures you will need to read in order to interpret the on-disk file system
organization. You will not need to use all the structures and#define s from these files.� readwrite.c : This is a stub program that will read and write one “sector” at at time for you from
the disk file. You should use this program as the basis for yourfsck tool.� disk : This is a disk image that contains 6 partitions. You should use this disk for your tool devel-
opment and testing. Assume that the disk sector size is 512 bytes, and that sector numbering starts at
0.� run fsck : This is a script that will run the system fsck against a partition on the provided disk and
report errors. It will not modify the disk image. The usage options are:

./run fsck --partition <valid partition number > --image <name of disk
image >
When<valid partition number> is set to zero, the system fsck will be run against all ext2 partitions
on the image.� errinsert : This is a script which will insert random errors to the disk image. It takes one
argument—the name of the disk image. It inserts errors and outputs the partitions to which the errors
were added.

You should use the Internet (and the comments in the Linux header files) to figure out how to interpret the on-
disk data structures. Here are some suggested starting points (this list is neither exhaustive nor necessarily
the best source of information):

Information on partition tables:

http://www.tldp.org/HOWTO/Large-Disk-HOWTO-6.html
http://www.tldp.org/HOWTO/Large-Disk-HOWTO-13.html

Information on ext2 file system internals:

http://www.tldp.org/LDP/tlk/fs/filesystem.html
http://homepage.smc.edu/morgan david/cs40/analyze-ext2.htm

http://uranus.it.swin.edu.au/ jn/explore2fs/e2fs.htm

4


