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Filing services have experienced a number of innovations in recent years, but many of these


promising Ideas have faded to enter into broad use. One reason is that current filing environ-


ments present several barriers to new development. For example, file systems today typically


stand alone instead of building on the work of others, and support of new filing services often


requires changes that invahdate existing work.


Stackable file-system design addresses these issues m several ways. Complex fihng services


are constructed from layer “building blocks,” each of which may be provided by independent


parties. There are no syntactic constraints to layer order, and layers can occupy different address


spaces, allowing very flexible layer configuration Independent layer evolution and development


are supported by an extensible interface bounding each layer


This paper discusses stackable layering in detad and presents design techniques it enables We


describe an implementation providing these facilities that exhibits very high performance. By


lowering barriers to new filing design, stackable layering offers the potential of broad third-party


file-system development not feasible today.


Categories and Subject Descriptors: D 4.3 [Operating Systems]: File System


Management—rnatntenance; D.47 [Operating Systems]: organization and Deslgn—hLerai”cht-


cal design; D.4.8 [Operating Systems] Performance—measurements; E.5 [Data]:


Files—orgaruzatzon / structure


General Terms: Design, Performance


Additional Key Words and Phrases Composablhty, file system design. operating system struc-


ture, reuse


1. INTRODUCTION


File systems represent one of the most important aspects of operating-system


services. Traditionally, the file system has been tightly integrated with the


operating system proper. As a result, the evolution of filing services has been
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relatively slow. For example, the primary file system in UNIX@ systems


today, called UFS, is basically the Berkeley Fast File System introduced


almost a decade ago. The situation for filing in proprietary operating systems


is similar. The MVS catalog system, for example, has seen little architectural


change in over a decade and a half. This state of affairs exists despite the fact


that there are numerous improvements that are well known and have been


constructed in one context or another. By contrast, applications software in


many areas has evolved much more rapidly giving far more benefit to users.


This stifling of innovation and inhibition of evolution have kept a variety of


benefits from users and have caused applications developers such as database


builders to provide their own filing services inside their applications software


at considerable expense and without much generality.


There are several reasons why this unappealing situation persists. First, it


is very difficult for anyone other than a major system vendor to introduce a


file-system service or incremental improvement into an operating system.


There is no well-defined interface to employ. Despite the fact that in a few


systems, like UNIX, there is a coarse-grain interface (the Virtual File Sys-


tem, or VFS) by which an entire file system can be installed, in practice, this


fact has not worked well. VFS is inflexible in addressing the range of issues,


so most vendors have extended it in incompatible ways. Furthermore, any


real file system is a complex service that requires successful solution to a


variety of functional requirements, and is thus a daunting effort when viewed


in its entirety. Since filing is such a key part of an operating system, with so


much dependent on it, excellent performance is critical. Also, the impact of an


error in the filing system’s logic can be quite devasting, as it is usually


responsible for all of the persistent storage in the computer system.


In addition, the file service must interact on an intimate basis with other


core operating-system services. For example, there is considerable motivation


to arrange for the file service and the operating system’s virtual memory


manager to share management of pages, perhaps with a single buffer pool. In


the face of these observations, it is not surprising then that a file system,


once operational and deployed, is not changed for a long time.


Despite these problems, a great deal of benefit would accrue if it were


possible to add file-system services to an existing system in a very simple


manner, analogous to the way that an additional service is obtained at the


user level merely by adding another application. That is, the set of user


services is not provided by a monolithic program, but by a large number of


individually developed packages, many of which today can exchange data


with one another in a straightforward way. In the personal-computer arena, a


user may select the services he wishes, acquire appropriate “shrink-wrap


software” at a local store, and install it himself. This situation has provided


an explosion of services at a far faster rate, for example, than on mainframe


systems, where the process is traditionally considerably more cumbersome.


@ UNIX is a trademark of UNIX System Laboratories,
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We believe that a similar situation would benefit filing services a great


deal. Suppose it were just as straightforward to construct independently, or


obtain and install packages for such services as


—fast physical storage management,


—extended directory services,


—compression and decompression,


—automatic encryption and decryption,


—cache performance enhancement,


—remote-access services,


—selective file replication,


—undo and undelete, and


—transactions,


with assurance that they would work together effectively. Then, we contend,


the available services would be much richer, particular solutions would be


much more widely available, and evolution would be far more rapid. In


addition, the wide variety of expensive and confusing ad hoc solutions em-


ployed today would not occur.1


The goal of the research reported in this paper is to contribute toward


making it as easy to add a function to a file system in practice as it is to


install an application on a personal computer. To do so, it is necessary to


provide an environment in which file-system fragments can be easily and


effectively assembled, and for which the result makes no compromises in


functionality or performance. The environment must be extensible so that its


useful lifetime spans generations of computer systems. Continued successful


operation of modules built in the past must be assured. Multiple third-party


additions must be able to coexist in this environment, some of which may


provide unforeseen services.


The impact of such an environment can be considerable. For example,


many recognize the utility of microkernels such as Mach or Chorus. Such


systems, however, address the structure of about 15 percent of a typical


operating system, compared to the filing environment, which often represents


40 percent of the operating system.


This paper describes an interface and framework that support stackable


file-system development. This framework allows new layers to build on the


functionality of existing services, while allowing all parties to gradually grow
and evolve the interface and set of services. Unique characteristics of this


framework include the ability of layers in different address spaces to interact


and for layers to react gracefully in the face of change.


1Consider, for example, the grouping facihty in MS-Windows. It m, in effect, another directory


service on top of and independent of the underling MS-DOS directory system. It provides services


that would not have been easy to incorporate into the underlying file system in an upward


compatible fashion.
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Actual experience with software environments is an important test of their


utility. For this reason much of the body of this paper is accompanied by


examples drawn from the UNIX system, where these experiences were


obtained. Our work draws on earlier research with stream protocols [Ritchie


1984], file-system modularity [Keiman 1986], and object-oriented design (see


Section 6.2), as well as fragments of ideas in a variety of other referenced


work. The experiences and application of these principles to a complex


interface controlling access to persistent data differentiate this work from


that which has come before.


1.1 Organization of the Paper


This paper first examines the evolution of file-system development. We then


consider the essential characteristics of a stackable file system and discuss


how direct support for stacking can enable new approaches to file-system


design. An implementation of this framework is next examined, focusing on


the elements of filing unique to stacking. We follow with an evaluation of this


implementation, examining both performance and usability. Finally, we con-


sider similar areas of operating-systems research to place this work in


context.


2. FILE-SYSTEM DESIGN


Many new filing services have been suggested in recent years. The Introduc-


tion presented a certainly incomplete list of nine such services, each of which


exists today in some form. This section compares alternative implementation


approaches for new services, examining characteristics of each that hinder or


simplify development.


2.1 Traditional Design


A first approach to providing new filing functionality might be to modify an


existing file system. There are several widely available file systems, any of


which can be modified to add new features. Although beginning with an


existing implementation can speed development, “standard” services have


frequently evolved significantly since their initial implementation. Support-


ing new capabilities across a dozen different platforms may well mean a


dozen separate sets of modifications, each nearly as difficult as the previous.


Furthermore, it is often difficult to localize changes; correctness verification


of the modified file system will require examination of its entire implementa-


tion, not just the modifications. Finally, although file systems may be widely


used, source code for a particular system may be expensive, difficult, or


impossible to acquire. Even when source code is available, it can be expected


to change frequently as vendors update their system.


Standard filing interfaces, such as the vnode interface [Kleinman 1986]


and NFS [Sandberg et al. 1985], address some of these issues. By defining an
“airtight” boundary for change, such interfaces avoid modification of existing


services, preventing introduction of bugs outside new activity. Yet, by employ-


ing existing file systems for data storage, basic filing services do not need to
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be reimplemented. NFS also allows file systems to be developed at the user


level, simplifying development and reducing the impact of error.


Use of standard interfaces introduces implementation problems of their


own. The interface is either evolving or static. If, like the vnode interface, it


evolves to provide new services and functionality, compatibility problems are


introduced. A change to the vnode interface requires corresponding changes


to each existing filing service, today.


Compatibility problems can be avoided by keeping the interface static, as


with NFS. Although this approach improves portability, it becomes difficult


to provide new services cleanly. If protocol change is not allowed, then new


services must either be overloaded on existing facilities or employ a parallel


interface. Finally, NFS-like RPC interfaces to user-level services burden the


concept of modularity with particular choices of process execution and protec-


tion. A naive implementation approach can easily interpose repeated data


copies between the hardware and the user. Although performance can be


improved by in-kernel caching [Steere et al. 1990], portability is reduced, and


the result is not fully satisfactory. Finally, even with careful caching, the cost


of layer crossings is often orders of magnitude greater than subroutine calls,


thus discouraging the use of layering for structuring and reuse.


2.2 Stackable Design


Stackable file systems construct complex filing services from a number of


independently developed layers, each potentially available only in binary


form. New services are provided as separate layers; the layer division pro-


vides a clear boundary for modifications. Errors can be then isolated to the


current layer or an invalid implementation of the interlayer interface by


another layer. Figures 1–5 (discussed further in the following sections)


illustrate how stacking can be used to provide services in a variety of


environments. Stacking is actually somewhat of a misnomer, since nonlinear


“stacks,” such as those of Figures 3 and 4, should be common; we retain the


term for historic reasons.
Layers are joined by a symmetric interface, syntactically identical above


and below. Because of this symmetry, there are no syntactic restrictions in


the configuration of layers. New layers can be easily added or removed from a


file-system stack, much as Streams modules can be configured onto a net-


work interface. Such filing configuration is simple to do; no kernel changes


are required, allowing each experimentation with stack behavior.
Because new services often employ or export additional functionality, the


interlayer interface is extensible. Any layer can add new operations; existing


layers adapt automatically to support these operations. If a layer encounters


an operation it does not recognize, the operation can be forwarded to a lower


layer in the stack for processing. Since new file systems can support opera-


tions not conceived of by the original operating-system developer, unconven-


tional file services can now be supported as easily as standard file systems.


The goals of interface symmetry and extensibility may initially appear


incompatible. Confiwration is most flexible when all interfaces are literally
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syntactically identical, that is, when all layers can take advantage of the


same mechanisms. But extensibility implies that layers may be semantically


distinct, restricting how layers can be combined. Semantic constraints do


limit layer configurations, but Sections 4.2 and 4.4 discuss how layers may


provide reasonable default semantics in the face of extensibility.


Address-space independence is another important characteristic of stack-


able file-system development. Layers often execute in a single protection


domain, but there is considerable advantage to making layers also able to run


transparently in different address spaces. Whether or not different layers


exist in the same address space should require no changes to the layer and


should not affect stack behavior. New layers can then be developed at the


user level and later put into the kernel for maximum performance.


A transport layer bridges the gap between address spaces, transferring all


operations and results back and forth. Like the interlayer interface, a trans-


port layer must be extensible, to support new operations automatically. In


this way, distributed filing implementations fit smoothly into the same


framework and are afforded the same advantages. More importantly, the


transport layer isolates the “distributed” component of the stacking and its


corresponding performance impact. Stack calls between layers in a single


address space, the statistically dominate case, can then operate in an ex-


tremely rapid manner, avoiding distributed protocols such as argument


marshaling. The interface has been developed to enable absolutely minimum


crossing cost locally while still maintaining the structure necessary for


address-space independence.


This stacking model of layers joined by a symmetric but extensible filing


interface, constrained by the requirements of address-space independence,


the binary-only environment of kernels, and the overriding demand for


absolutely minimal performance impact, represents the primary contribution


of this work. The next section discusses approaches to file-system design that


are enabled or facilitated by the stacking model.


3. STACKABLE LAYERING TECHNIQUES


This section examines in detail a number of different file-system development


techniques enabled or simplified by stackable layering.


3.1 Layer Composition


One goal of layered file-system design is the construction of complex filing


services from a number of simple, independently developed layers. If the file


systems are to be constructed from multiple layers, one must decide how


services should be decomposed to make individual components most reusable.


Our experience shows that layers are most easily reusable and composable


when each encompasses a single abstraction. This experience parallels those
encountered in designing composable network protocols in the x-kernel


[Hutchinson et al. 1989] and tool development with the UNIX shells [Pike


and Kernighan 1984].
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Fig. 1. Compression serwce stacked over a UNIX file system. &


layer I


As an example of this problem in the context of file-system layering,


consider the stack presented in Figure 1. A compression layer is stacked over


a standard UNIX file system (UFS); the UFS handles file services, while the


compression layer periodically compresses rarely used files.


A compression service provided above the UNIX directory abstraction has


difficulty efficiently handling files with multiple names (hard links). This is


because the UFS was not designed as a stackable layer; it encompasses


several separate abstractions. Examining the UFS in more detail, we see at


least three basic abstractions: a disk partition, arbitrary-length files refer-


enced by fixed names (inode-level access), and a hierarchical directory ser-


vice. Instead of a single layer, the “UFS service” should be composed of a


stack of directory, file, and disk layers. In this architecture the compression


layer could be configured directly above the file layer. Multiply named files


would no longer be a problem because multiple names would be provided by a


higher-level layer. One could also imagine reusing the directory service over


other low-level storage implementations. Stacks of this type are shown in


Figure 2.


3.2 Layer Substitution


Figure 2 also demonstrates layer substitution. Because the log-structured file


system and the UFS are semantically similar, the compression layer can


stack equally well over either. Substitution of one for the other is possible,


allowing selection of low-level storage to be independent of higher-level


services. This ability to have “plug-compatible” layers not only supports


higher-level services across a variety of vendor-customized storage facilities,


but also supports the evolution and replacement of the lower layers as


desired.


3.3 Nonlinear Stacking


File-system stacks are frequently linear; all access proceeds from the top


down through each layer. However, there are also times when nonlinear


stacks are desirable.


Fan-oz/t occurs when a layer references “out” to multiple layers beneath it.


Figure 3 illustrates how this structure is used to provide replication in Ficus


[Guy et al. 1990].
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Fan-in allows multiple clients access to a particular layer. If each stack


layer is separately named, it is possible for knowledgeable programs to


choose to avoid upper stack layers. For example, one would prefer to back up


compressed or encrypted data without uncompressing or decrypting it to


conserve space and to preserve privacy (Figure 4). This could easily be done


by direct access to the underlying storage layer. Network access of encrypted


ACM Transactions on Computer Systems, Vol. 12, No. 1, February 1994.







66 . J. S. Heidemann and G. J. Popek


A&
Fig. 4. Access through the compression layer provides users transpar-


ently uncompressed data. Fan-in allows a backup program to access


the compressed version dmectly.


~


comprason
layer


UFS


data could also be provided by direct access to the underlying encrypted


storage, avoiding clear-text transfer over the network.


3.4 Cooperating Layers


Layered design encourages the separation of file systems into small, reusable


layers. Sometimes services that could be reusable occur in the middle of an


otherwise special-purpose file system. For example, a distributed file system


may consist of a client and server portion, with a remote-access service in


between. One can envision several possible distributed file systems offering


simple stateless service, exact UNIX semantics, or even file replication. Each


might build its particular semantics on top of an “RPC” remote-access


service, but if remote access is buried in the internals of each specific file


system, it will be unavailable for reuse.


Cases such as these call for cooperating layers. A “semantics-free” remote-


access service is provided as a reusable layer, and the remainder is split into


two separate, cooperating layers. When the file-system stack is composed, the


reusable layer is placed between the others. Because the reusable portion is


encapsulated as a separate layer, it is available for use in other stacks. For


example, a new secure remote filing service could be built by configuring


encryption/decryption layers around the basic transport service.


An example of the use of cooperating layers in the Ficus replicated file


system [Guy et al. 1990] is shown in Figure 3. The Ficus logical and physical


layers correspond roughly to a client and server of a replicated service. A


remote-access layer is placed between them when necessary.


3.5 Compatibility with Layers


The flexibility stacking provides promotes rapid interface and layer evolution.


Unfortunately, rapid change often rapidly results in incompatibility. Inter-


face change and incompatibility today often prevent the use of existing filing


abstractions [Webber 1993]. A goal of our design is to provide approaches to


cope with interface change in a binary-only environment.


File-system interface evolution takes a number of forms. Third parties wish


to extend interfaces to provide new services. Operating-system vendors must


change interfaces to evolve the operating system, but usually also wish to
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maintain backward compatibility. Stackable layering provides a number of


approaches to address the problems of interface evolution.


Extensibility of the file-system interface is the primary tool to address


compatibility. Any party can add operations to the interface; such additions


need not invalidate existing services. Third-party development is facilitated,


gradual operating-system evolution becomes possible, and the useful lifetime


of a filing layer is greatly increased, protecting the investment in its construc-


tion.


Layer substitution (see Section 3.2) is another approach to address simple


incompatibilities. Substitution of semantically similar layers allows easy


adaption to differences in environments. For example, a low-level storage


format tied to particular hardware can be replaced by an alternate base layer


on other machines.


Resolution of more significant problems may employ a compatibility layer.


If two layers have similar but not identical views of the semantics of their


shared interface, a thin layer can easily be constructed to map between


incompatibilities. This facility could be used by third parties to map a single


service to several similar platforms or by an operating-system vendor to


provide backward comparability after significant changes.


A still more significant barrier is posed by different operating systems.


Although direct portability of layers between operating systems with radi-


cally different system services and operation sets is difficult, limited access to


remote services may be possible. Transport layers can bridge machine and


operating-system boundaries, extending many of the benefits of stackable


layering to a nonstacking computing environment. NFS can be thought of as


a widely used transport layer, available on platforms ranging from personal


computers to mainframes. Although standard NFS provides only core filing


services, imparts restrictions, and is not extensible, it is still quite useful in


this limited role. Section 5.3 describes how this approach is used to make


Ficus replication available on PCs.


3.6 User-Level Development


One advantage of microkernel design is the ability to move large portions of


the operating system outside of the kernel. Stackable layering fits naturally


with this approach. Each layer can be thought of as a server, and operations


are simply RPC messages between servers. In fact, new layer development


usually takes this form at UCLA (Figure 5). A transport layer (such as NFS)


serves as the RPC interface, moving all operations from the kernel to a


user-level file-system server. Another transport service (the “u-to-k layer”)


allows user-level calls on vnodes that exist inside the kernel. With this


framework layers may be developed and executed as user code. Although


inter-address-space RPC has real cost, caching may provide reasonable per-


formance for an out-of-kernel file system [Steere et al. 1990] in some cases,


particularly if other characteristics of the filing service have inherently high


latency (for example, hierarchical storage management).
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Fig, 5. User-level layer development via transport layers


Nevertheless, many filing services will find the cost of frequent RPCS


overly expensive. Stackable layering offers valuable flexibility in this case.


Because file-system layers each interact only through the layer interface, the


transport layers can be removed from this configuration without affecting a


layer’s implementation. An appropriately constructed layer can then run in


the kernel, avoiding all RPC overhead. Layers can be moved in an out of the


kernel (or between different user-level servers) as usage requires. By separat-


ing the concepts of modularity from address-space protection, stackable layer-


ing permits the advantages of microkernel development and the efficiency of


an integrated execution environment.


4. IMPLEMENTATION


The UCLA stackable layers interface and its environment are the results of


our efforts to tailor file-system development to the stackable model. Sun’s


vnode interface is extended to provide extensibility, stacking, and address-


space independence. We describe this implementation here, beginning with a


summary of the vnode interface and then examining important differences in


our stackable interface.


4.1 Existing File System Interfaces


Sun’s vnode interface is a good example of several “file-system switches”


developed for the UNIX operating system [Kleiman 1986; Rodriguez 1986].


All have the same goal, to support multiple file-system types in the same


operating system. The vnode interface has been quite successful in this


respect, providing dozens of different filing services in several versions of


UNIX.


The vnode interface is a method of abstracting the details of a file-system


implement ation from the majority of the kernel. The kernel views file access
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A


Fig. 6. Namespace composed of two subtrees.


through two abstract data types. A vnode identifies individual files. A small


set of file types is supported, including regular files, which provide an


uninterpreted array of bytes for user data, and directories, which list other


files. Directories include references to other directories, forming a hierarchy


of files. For implementation reasons, the directory portion of this hierarchy is


typically limited to a strict tree structure.


The other major data structure is the vfs, representing groups of files. For


configuration purposes, sets of files are grouped into sub trees (traditionally


referred to as file systems or disk partitions), each corresponding to one vfs.


Subtrees are added to the file-system namespace by mounting.


Mounting is the process of adding new collections of files into the global


file-system namespace. Figure 6 shows two subtrees: the root subtree and


another attached under /usr. Once a subtree is mounted, name translation


proceeds automatically across subtree boundaries, presenting the user with


an apparently seamless namespace.


All files within a subtree typically have similar characteristics. Tradition-


al UNIX disk partitions correspond one-to-one with subtrees. When NFS


is employed, each collection of files from a remote machine is assigned


a corresponding subtree on the local machine. Each subtree is allowed a


completely separate implementation.


Data encapsulation requires that these abstract data types for files and


subtrees be manipulated only by a restricted set of operations. The operations


supported by vnodes, the abstract data type for “files,” vary according to


implementation (see Karels and McKusick [1986] and Kleiman [1986] for


semantics of typical operations).
To allow this generic treatment of vnodes, binding of desired function to


correct implementation is delayed until kernel initialization. This is imple-


mented by associating with each vnode type an operations vector identifying


the correct implementation of each operation for that vnode type. Operations


can then be invoked on a given vnode by looking up the correct operation in


this vector (this mechanism is analogous to typical implementations of C+ +


virtual class method invocation).


Limited file-system stacking is possible with the standard vnode interface


using the mount mechanism. Sun Microsystems’ NFS [ Sandberg 1985], loop-
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back and translucent [Hendricks 1990] file systems take this approach.


Information associated with the mount command identifies the existing stack


layer and where the new layer should be attached into the filing namespace.


4.2 Extensibility in the UCLA Interface


Accommodation of interface evolution is a critical problem with existing


interfaces. Incompatible change and the lock-step release problem [Webber


1993] are serious concerns of developers today. The ability to add to the set of


filing services without disrupting existing practices is a requirement of


diverse third-party filing development and would greatly ease vendor evolu-


tion of existing systems.


The vnode interface allows the association of an operation with its imple-


mentation to be delayed until run time by fixing the formal definition of all


permissible operations before kernel compilation. This convention prohibits


the addition of new operations at kernel link time or during execution, since


file systems have no method of ensuring interface compatibility after change.


The UCLA interface addresses this problem of extensibility by maintaining


all interface definition information until execution beings and then dynami-


cally constructing the interface. Each file system provides a list of all the


operations it supports. At kernel initialization, the union of these operations


is taken, yielding the list of all operations supported by this kernel. This set


of operations is then used to define the global operations vector dynamically,


adapting it to arbitrary additions.z Vectors customized to each file system are


then constructed, caching information sufficient to permit very rapid opera-


tion invocation. During operation these vectors select the correct implementa-


tion of each operation for a given vnode. Thus, each file system may include


new operations, and new file systems can be added to a kernel with a simple


reconfiguration.


New operations may be added by any layer. Because the interface does not


define a fixed set of operations, a new layer must expect “unsupported”


operations and accommodate them consistently. The UCLA interface requires


a defaalt routine that will be invoked for all operations not otherwise


provided by a file system. File systems may simply return an “unsupported


operation” error code, but we expect most layers to pass unknown operations


to a lower layer for processing.


The new structure of the operations vector also requires a new method of


operation invocation. The calling sequence for new operations replaces the


static offset into the operations vector of the old interface with a dynamically


computed new offset. These changes have very little performance impact, an


important consideration for a service that will be as frequently employed as


2For simplicity, we ignore here the problem of adding new operations at run time. This “fully


dynamic” addition of operations can be supported with an extension to the approach described


here, although this extension is not part of current implementations.
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Fig. 7. Mounting a UFS layer. The new layer is instantiated at /layer/ufs/crypt raw from a disk


device /dev/dskOg.


an interlayer interface. Section 5.1 discusses performance of stackable layer-


ing in detail.


4.3 Stack Creation


This section discusses how stacks are formed. In the prototype interface,


stacks are configured at the file-system granularity and constructed as


required on a file-by-file basis.


4.3.1 Stack Configuration. Section 4.1 has described how a UNIX file


system is built from a number of individual subtrees by mounting. Subtrees


are the basic unit of file-system configuration; each is either mounted making


all of its files accessible, or unmounted and unavailable. We employ this same


mechanism for layer construction.


Fundamentally, the UNIX mount mechanism has two purposes: it creates a


new “subtree object” of the requested type, and it attaches this object into the


file-system namespace for layer use. Frequently, creation of subtrees uses


other objects in the file system. An example of this is shown in Figure


7, where a new UFS is instantiated from a disk device


/layer/ufs/crypt raw


from /dev/dskOg.
Configuration of layers requires the same basic steps of layer creation and


naming, so we employ the same mount mechanism for layer construction.3


Layers are built at the subtree granularity, a mount command creating each


layer of a stack. Typically, stacks are built bottom up. After a layer is


mounted to a name, the next higher layer’s mount command uses that name


to identify its “lower-layer neighbor” in initialization. Figure 8 continues the


‘;Although mount is typically used today to provide “expensive” services, the mechanism is not


inherently costly. Mount constructs an object and gives it a name; when object initialization is


inexpensive, so is the corresponding mount.
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Fig. 8.
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previous example by stacking an encryption layer over the UFS. In this figure


an encryption layer is created with a new name (/usr/data) after specifying


the lower layer (/lay er/ufs/crypt. raw). Alternatively, if no new name is neces-


sary or desired, the new layer can be mounted to the same place in the


namespace.4 Stacks with fan-out typically require that each lower layer be


named when constructed.


Stack construction does not necessarily proceed from the bottom up. So-


phisticated file systems may create lower layers on demand. The Ficus


distributed file system takes this approach in its use of volumes. Each volume


is a subtree storing related files. To ensure that all sites maintain a consis-


tent view about the location of the thousands of volumes in a large-scale


distributed system, volume mount information is maintained on disk at the


mount location. When a volume mount point is encountered during path-name


translation, the corresponding volume (and lower stack layers) is automati-


cally located and mounted.


4.3.2 File-Level Stacking. While stacks are configured at the subtree
level, most user actions take place on individual files. Files are represented


by vnodes, with one vnode per layer.


When a user opens a new file in a stack, a vnode is constructed to represent


each layer of the stack. User actions begin in the top stack layer and are then


forwarded down the stack as required. If an action requires creation of a new


vnode (such as referencing a new file), then as the action proceeds down the


stack, each layer will build the appropriate vnode and return its reference to


the layer above. The higher layer will then store this reference in the private


4Mounts to the same name are currently possible only in BSD 4.4-derived systems. If each layer


is separately named, standard access control mechanisms can be used to mediate access to lower


layers
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data of the vnode it constructs. Should a layer employ fan-out, each of its


vnodes will reference several lower-level vnodes similarly.


Since vnode references are used both to bind layers and to access files from


the rest of the kernel, no special provision needs to be made to perform


operations between layers. The same operations used by the general kernel


can be used between layers; layers treat all incoming operations identically.


Although the current implementation does not explicitly support stack


configuration at a per-file granularity, there is nothing in the model that


prohibits finer configuration control. A typed-file layer, for example, could


maintain layer configuration details for each file and automatically create the


proper layers when the file is opened.


4.3.3 Stack Data Caching. Individual stack layers often wish to cache


data, both for performance and to support memory mapped files. If each layer


may independently cache data pages, writes to different cached copies can


cause cache aliasing problems and possible data 10SS.5


A cache manager coordinates page caching in the UCLA interface. Before


any stack layer may cache a page, it must acquire “ownership” of that page


from the cache manager. The cache manager immediately grants ownership if


the page was not previously cached. If the page is cached by another layer,


the other layer is called upon to flush its cache before ownership is trans-


ferred. This approach is analogous to callbacks or token passing in a dis-


tributed file system.


A consistent page-naming policy is required to identify cached data pages


between different layers. The cache manager identifies pages by a pair: [stack


identifier, file offset]. Stack layers that provide semantics that violate this


naming convention are required to conceal this difference from their clients.


For example, a replication service must coordinate stack identifiers between


its clients, itself, and its several lower layers, providing replica storage. To


conceal this fact, the replication layer will claim to be the bottom of the stack


to its clients. A compression layer presents another example, since file offsets


have different meanings above and below a compression layer. The compres-


sion layer will explicitly coordinate cache behavior above and below itself.


Attribute the name caching by layers present similar problems; we are


currently investigating solutions in these areas.


4.4 Stacking and Extensibility


One of the most powerful features of a stackable interface is that layers can


be stacked together, each adding functionality to the whole. Often, layers in


the middle of a stack will modify only a few operations, passing most to the


next lower layer unchanged. For example, although an encryption layer


would encrypt and decrypt all data accessed by read and write requests, it


may not need to modify operations for directory manipulation. Since the


interlayer interface is extensible and therefore new operations may always be


5Imagine modifying the first byte of a page in one stack layer and the last byte of the same page


in another layer. Without some cache consistency policy, one of these modifications will be lost.
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added, an intermediate layer must be prepared to forward arbitrary, new


operations.


One way to pass operations to a lower layer is to implement, for each


operation, a routine that explicitly invokes the same operation in the next


lower layer. This approach would fail to adapt automatically to the addition


of new operations, requiring modification of all existing layers when any


layer adds a new operation. The creation of new layers and new operations


would be discouraged, and the use of unmodified third-party layers in the


middle of new stacks would be impossible.


What is needed is a single bypass routine that forwards new operations to


a lower level. Default routines (discussed in Section 4.2) provide the capabil-


ity to have a generic routine intercept unknown operations, but the standard


vnode interface provides no way to process this operation in a general


manner. To handle multiple operations, a single routine must be able to


handle the variety of arguments used by different operations, It must also be


possible to identify the operation taking place and to map any vnode argu-


ments to their lower-level counterparts.G


Neither of these characteristics is possible with existing interfaces where


operations are implemented as standard function calls. And, of course, sup-


port for these characteristics must have absolutely minimal performance


impact.


The UCLA interface accommodates these characteristics by explicitly man-


aging operations’ arguments as collections. In addition, metadata are associ-


ated with each collection, providing the operation identity, argument types,


and other pertinent information. Together, this explicit management of oper-


ation invocations allows arguments to be manipulated in a generic fashion


and efficiently forwarded between layers, usually with pointer manipulation.


These characteristics make it possible for a simple bypass routine to


forward all operations to a lower layer in the UCLA interface. By convention,


we expect most file-system layers to support such a bypass routine. More


importantly, these changes to the interface have minimal impact on perfor-


mance. For example, passing metadata requires only one additional arg-w


ment to each operation. See Section 5.1 for a detailed analysis of performance,


4.5 Intermachine Operation


A transport layer is a stackable layer that transfers operations from one


address space to another. Because vnodes for both local and remote file


systems accept the same operations, they may be used interchangeably,


providing network transparency. Sections 3.5 and 3.6 describe some of the


ways to configure the layers this transparency allows.


Providing a bridge between address spaces presents several potential


problems. Different machines might have differently configured sets of opera-


GVnode arguments change as a call proceeds down the stack, much as protocol headers are


stripped off as network messages are processed. No other argument processing is required to


bypass an operation between two layers in the same address space.
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tions. Heterogeneity can make basic data types incompatible. Finally, meth-


ods to support variable-length and dynamically allocated data structures


for traditional kernel interfaces do not always generalize when crossing


address-space boundaries.


For two hosts to interoperate, it must be possible to identify each desired


operation unambiguously. Well-defined RPC protocols, such as NFS, ensure


compatibility by providing only a fixed set of operations. Since restricting the


set of operations frequently restricts and impedes innovation, each operation


in the UCLA interface is assigned a universally unique identifier when it is


defined.7 Intermachine communication of arbitrary operations uses these


labels to reject locally unknown operations.


Transparent forwarding of operations across address-space boundaries re-


quires not only that operations be identified consistently, but also that


arguments be communicated correctly in spite of machine heterogeneity. Part


of the metadata associated with each operation includes a complete type


description of all arguments. With this information, an RPC protocol can


marshal operation arguments and results between heterogeneous machines.


Thus, a transport layer may be thought of as a semantics-free RPC protocol


with a stylized method of marshaling and delivering arguments.


NFS provides a good prototype transport layer. It stacks on top of existing


local file systems, using the vnode interface above and below. But NFS was


not designed as a transport layer; its supported operations are not extensible,


and its implementations define particular caching semantics. We extend NFS


to bypass new operations automatically. We have also prototyped a cache


consistency layer, providing a separate consistency policy.


In addition to the use of an NFS-like inter-address-space transport layer,


we employ a more efficient transport layer operating between the user and


the kernel level. Such a transport layer provides “system-call’’-level access to


the UCLA interface allowing user-level development of file-system layers and


providing user-level access to new file-system functionality. The desire to


support a system-call-like transport layer places one additional constraint on


the interface. Traditional system calls expect the user to provide space for all


returned data. We have chosen to extend this restriction to the UCLA


interface to make the user-to-kernel transport layer universal. In practice,


this restriction has not been serious since the client can often make a good


estimate of storage requirements. If the client’s first guess is wrong, informa-


tion is returned, allowing the client to repeat the operation correctly.


4.6 Centralized Interface Definition


Several aspects of the UCLA interface require precise information about the


characteristics of the operation taking place. Network transparency requires


a complete definition of all operation types, and a bypass routine must be


able to map vnodes from one layer to the next. The designer of a file system


employing new operations must provide this information.


7Generation schemes based on host identifier and time-stamp support fully distributed identifier


creation and assignment. We therefore employ the NCS UUID mechanism.
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Detailed interface information is needed at several different places


throughout the layers. Rather than require that the interface designer keep


this information consistent in several different places, operation definitions


are combined into an interface definition. Similar to the data-description


language used by RPC packages, this description lists each operation, its


arguments, and the direction of data movement. An interface “compiler”


translates this into forms convenient for automatic manipulation.


4.7 Framework Portability


The UCLA interface has proved to be quite portable. Initially implemented


under SunOS 4.0.3, it has since been ported to SunOS 4.1.1. In addition, the


in-kernel stacking and extensibility portions of the interface have been ported


to BSD 4.4. Although BSD’S namei approach to path-name translation re-


quired some change, we are largely pleased with our framework’s portability


to a system with an independently derived vnode interface. Section 5.3


discusses portability of individual layers.


While the UCLA interface itself has proved to be portable, portability of


individual layers is somewhat more difficult. None of the implementations


described have identical sets of vnode operations, and path-name translation


approaches differ considerably between SunOS and BSD.


Fortunately, several aspects of the UCLA interface provide approaches to


address layer portability. Extensibility allows layers with different sets of


operations to coexist. In fact, interface additions from SunOS 4.0.3 to 4,1.1


require no changes to existing layers. When interface differences are signifi-


cantly greater, a compatibility layer (see Section 3.5) provides an opportunity


to run layers without change. Ultimately, adoption of a standard set of core


operations (as well as other system services) is required for effortless layer


portability.


5. PERFORMANCE AND EXPERIENCE


While a stackable file-system design offers numerous advantages, file-system


layering will not be widely accepted if layer overhead is such that a mono-


lithic file system performs significantly better than one formed from multiple


layers. To verify layering performance, overhead was evaluated from several


points of view.


If stackable layering is to encourage rapid advance in filing, not only must


it have good performance, but it also must facilitate file-system development.


Here, we also examine this aspect of “performance,” first by comparing the


development of similar file systems with and without the UCLA interface,


and then by examining the development of layers in the new system.


Finally, compatibility problems are one of the primary barriers to the use of


current filing abstractions. We conclude by describing our experiences in


applying stacking to resolve filing incompatibilities.


5.1 Layer Performance


To examine the performance of the UCLA interface, we consider several


classes of benchmarks. First, we examine the costs of particular parts of this
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interface with “microbenchmarks.” We then consider how the interface affects


overall system performance by comparing a stackable layers kernel to an


unmodified kernel. Finally, we evaluate the performance of multilayer file


systems by determining the overhead as the number of layers changes.


The UCLA interface measured here was implemented as a modification to


SunOS 4.0.3. All timing data were collected on a Sun-3\60 with 8 Mb of RAM


and two 70-Mb Maxtor XT-1085 hard disks. The measurements in Section


5.1.2 use the new interface throughout the new kernel, while those in Section


5.1.3 use it only within file systems.


5.1.1 Microbenchmarks. The new interface changes the way every file-


system operation is invoked. To minimize overhead, operation calls must be


very inexpensive. Here, we discuss two portions of the interface: the method


for calling an operation, and the bypass routine. Cost of operation invocation


is the key to performance, since it is an unavoidable cost of stacking no


matter how layers themselves are constructed.


To evaluate the performance of these portions of the interface, we consider


the number of assembly-language instructions generated in the implementa-


tion. Although this statistic is only a very rough indication of true cost, it


provides an order-of-magnitude comparison.8


We begin by considering the cost of invoking an operation in the vnode and


the UCLA interfaces. On a Sun-3 platform, the original vnode calling se-


quence translates into four assembly-language instructions, while the new


sequence requires six instructions.g We view this overhead as not significant


with respect to most file-system operations.


We are also interested in the cost of the bypass routine, We envision a


number of “filter” file-system layers, each adding new abilities to the file-sys-


tem stack. File compression or local disk caching are examples of services


such layers might offer. These layers pass many operations directly to the


next layer down, modifying the user’s actions only to uncompress a com-


pressed file or to bring a remote file into the local disk cache. For such layers


to be practical, the bypass routine must be inexpensive. A complete bypass


routine in our design amounts to about 54 assembly-language instructions.l 0


About one-third of these instructions are not in the main flow, being used


only for uncommon argument combinations, reducing the cost of forwarding


simple vnode operations to 34 instructions. Although this cost is significantly


more than a simple subroutine call, it is not significant with respect to the


cost of an average file-system operation. To investigate the effects of


8Factors such as machine architecture and the choice of compiler have a significant impact on


these figures. Many architectures have instructions that are significantly slower than others. We
claim only a rough comparison from these statistics.


9We found a similar ratio on SPARC-based architectures, where the old sequence required five


instructions and the new required eight. In both cases these calling sequences do not include


code to pass arguments of the operation.


10 These figures were produced by the Free Software Foundation’s gcc compiler. Sun’s C compiler


bundled with SunOS 4.0.3 produced 71 instructions.
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Table I. Modified Andrew Benchmark Results Running on Kernels Using the Vnode and the


UCLA Interfacesa


Vnode interface UCLA interface Percent


Phase Time YoRSD Time %RSD overhead


MakeDir 3.3 16.1 3.2 14.8 -3.03


copy 18.8 4.7 191 5.0 1.60


ScanDir 17.3 5.1 17.8 7.9 2.89


ReadAll 28.2 1.8 28.8 2.0 2.13


Make 327.1 0.4 328.1 0.7 0.31


Overall 394.7 0.4 396.9 0.9 0.56


aTime values (in seconds; timer granularity = 1 s) are the means of elapsed time from 29 sample


runs. % RSD indicates the percent relative standard deviation ( ~X\W.Y ). overhead is the Percent


overhead of the new interface. High relative standard deviations for MakeDir are a result of poor


timer granularity.


file-system layering further, Section 5.1.3 examines the overall performance


impact of a multilayered file system.


5.1.2 lrzter~ace Performance. Although instruction counts are useful, ac-


tual implementation performance measurements are essential for evaluation.


The first step compares a kernel supporting only the UCLA interface with a


standard kernel. To do so, we consider two benchmarks: the modified Andrew


benchmarks [Ousterhout 1990; Howard et al. 1988] and the recursive copy


and removal of large subdirectory trees. In addition, we examine the effect of


adding multiple layers in the new interface.


The Andrew benchmark has several phases, each of which examines differ-


ent file-system activities. Unfortunately, the brevity of the first four phases


relative to granularity makes accuracy difficult. In addition, the long compile


phase dominates overall benchmark results. Nevertheless, taken as a whole,


this benchmark probably characterizes “normal use” better than a file-sys-


tem-intensive benchmark such as a recursive copy/remove.


The results from the benchmark can be seen in Table I. Overhead for the


first four phases averages about 2 percent. Coarse timing granularity and the


very short run times for these benchmarks limit their accuracy, The compile


phase shows only a slight overhead. We attribute this lower overhead to the


fewer number of file-system operations done per unit of time by this phase of


the benchmark.


To exercise the interface more strenuously, we examined recursive copy


and remove times. This benchmark employs two phases, the first doing a


recursive copy and the second a recursive remove. Both phases operate on


large amounts of data (a 4.8-Mb /usr/include directory tree) to extend the


duration of the benchmark. Because we knew all overhead occurred in the


kernel, we measured system time (time spent in the kernel) instead of total


elapsed time. This greatly exaggerates the impact of layering, since all


overhead is in the kernel and since system time is usually small compared to
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Table II. Recursive Copy and Remove Benchmark Results Running on Kernels Using
the Vnode and UCLA Interfacesa


Phase


Vnode interface UCLA interface Percent
Time %RSD Time %RSD overhead


Recursive copy 51.57 1.28 52.55 1.11 1.90
Recursive remove 25.26 2.50 25.41 2.80 0.59


Overall 76.83 0.87 77.96 1.11 1.47


‘Time values (in seconds; timer granularity = 0.1 s) are the means of system time from 20
sample runs. 70RSD indicates the percent relative standard deviation. Overhead is the percent
overhead of the new interface.


the elapsed “wall-clock” time a user actually experiences. As can be seen in


Table II, system-time overhead averages about 1.5 percent.


5.1.3 Multiple-Layer Performance. Since the stackable-layers design phi-


losophy advocates using several layers to implement what has traditionally


been provided by a monolithic module, the cost of layer transitions must be


minimal if it is to be used for serious file-system implementations. To


examine the overall impact of a multilayer file system, we analyze the


performance of a file-system stack as the number of layers that employs


changes.


To perform this experiment, we began with a kernel modified to support


the UCLA interface within all file systems and the vnode interface through-


out the rest of the kernel.11 At the base of the stack, we placed a Berkeley


Fast File System, modified to use the UCLA interface. Above this layer we


mounted from zero to six null layers, each of which merely forwards all


operations to the next layer of the stack. We ran the benchmarks described in


the previous section upon those file-system stacks. This test is by far the


worst possible case for layering, since each added layer incurs full overhead


without providing any additional functionality.


Figure 9 shows the results of this study. Performance varies nearly linearly


with the number of layers used. The modified Andrew benchmark shows


about a 0.3 percent elapsed-time overhead per layer. Alternate benchmarks


such as the recursive copy and remove phases, also show less than 0.25


percent overhead per layer.


To get a better feel for the costs of layering, we also measured system time,


that is, time spent in the kernel on behalf of the process. Figare 10 compares


recursive copy and remove system times (the modified Andrew benchmark


does not report system-time statistics). Because all overhead is in the kernel


and the total time spent in the kernel is only one-tenth of elapsed time,


comparisons of system time indicate a higher overhead: about 2 percent per


layer for recursive copy and remove. Slightly better performance for the case


of one layer in Figure 10 results from a slight caching effect of the null layer


11To Improve portability, we desired to modify as little of the kernel as possible. Mapping
between interfaces occurs automatically upon first entry of a file-system layer.
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Fig. 9. Elapsed time of recursive copy/remove and modified Andrew benchmarks as layers are


added to a file-system stack. Each data point is the mean of four runs,
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Fig. 10 System time of recursive copy/remove benchmarks as layers are added to a file-system


stack (the modified Andrew benchmark does not provide system time ). Each data point is the


mean of four runs. Measuring system time alone of a do-nothing layer represents the worst


possible layering overhead.
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compared to the standard UFS. Differences in benchmark overheads are the


result of differences in the ratio between the number of vnode operations and


benchmark length.


We draw two conclusions from these figures. First, elapsed-time results


indicate that under normal load usage,, a layered file-system architecture will


be virtually undetectable. Also, system-time costs imply that during heavy


file-system use a small overhead will be incurred when numerous layers are


involved.


5.2 Layer Implementation Effort


An important goal of stackable file systems and this interface is to ease the


job of new file-system development. Importing functional with existing layers


saves a significant amount of time in new development, but this savings must


be compared to the effort required to employ stackable layers. The next three


sections compare development with and without the UCLA interface, and


examine how layering can be used for both large and small filing services. We


conclude that layering simplifies both small and large projects.


5.2.1 Simple Layer Development. A first concern when developing new


file-system layers was that the process would prove to be more complicated


than the development was of existing file systems. Most other kernel inter-


faces do not support extensibility; would this facility complicate implementa-


tion?


To evaluate complexity, we chose to examine the size of similar layers


implemented both with and without the UCLA interface. A simple “pass-


through layer was chosen for comparison: the loopback file system under the


traditional vnode interface, and the null layer under the UCLA interface.lz


We performed this comparison for both the SunOS 4.0.3 and the BSD 4.4


implementations, measuring complexity as numbers of lines of comment-free


C code.13


Table III compares the code length of each service in the two operating


systems. Closer examination reveals that the majority of code savings occurs


in the implementation of individual vnode operations. The null layer imple-


ments most operations with a bypass routine, while the loopback file system


must explicitly forward each operation. In spite of a smaller implementation,


the services provided by the null layer are also more general; the same


implementation will support the addition of future operations.


For the example of a pass-through layer, use of the UCLA interface enables


improved functionality with a smaller implementation. Although the relative


difference in size would be less for single layers providing multiple services, a


goal of stackable layers is to provide sophisticated services through multiple,


‘2 In SunOS the null layer was augmented to reproduce the semantics of the loopback layer
exactly. This was not necessary in BSD UNIX.
13Although well-commented code might be a better comparison, the null layer was quite heavily
commented for pedagogical reasons, whereas the loopback layer had only sparse comments. We
chose to eliminate this variable.
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Table III. Number of Lines of Comment-Free Code Needed to Implement a Pass-Through


Layer or File System in SunOS 4.0.3 and BSD 4.4


SunOS BSD


Loopback-fs 743 lines 1046 lines


Null layer 632 lines 578 lines


Difference 111 lines (15%) 468 lines (45%)


reusable layers. This goal requires that minimal layers be as simple as


possible.


We are currently pursuing strategies to reduce the absolute size of null


layer code further. We expect to unify vnode management routines for


null-derived layers, centralizing this common service.


5.2.2 Layer Development Experience. The best way to demonstrate the


generality of a new design technique is through its use by different parties


and in application to different problems. To gain more perspective on this


issue, students were invited to design and develop new layers as part of a


graduate class at UCLA. While all were proficient programmers, their kernel


programming experience ranged from none to considerable. Five groups of


one or two students were each provided with a null layer and a user-level


development environment.


All projects succeeded in provided functioning prototype layers. Prototypes


include a file-versioning layer, an encryption layer, a compression layer,


second-class replication as a layer, and an NFS consistency layer. Other than


the consistency layer, each was designed to stack over a standard UFS layer,


providing its service as an optional enhancement. Self-estimates of develop-


ment time ranged from 40 to 60 person-hours. This figure included time to


become familiar with the development environment, as well as layer design


and implementation,


Review of the development of these layers suggested three primary contri-


butions of stacking to this experiment. First, by relying on a lower layer to


provide basic filing services, detailed understanding of these services was


unnecessary. Second, by beginning with a null layer, new implementation


required was largely focused on the problem being solved rather than on


peripheral framework issues. Finally, the out-of-kernel layer development


platform provided a convenient, familiar environment compared to tradi-


tional kernel development.


We consider this experience a promising indication of the ease of develop-


ment offered by stackable layers. Previously, new-file-system functionality


required in-kernel modification of current file systems, requiring knowledge


of multi-thousand-line file systems and low-level kernel debugging tools.


With stackable layers, students in the class were able to investigate signifi-


cant new filing capabilities with knowledge only of the stackable interface


and programming methodology.
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5.2.3 Large-Scale Example. The previous section has discussed our expe-


riences in stackable development of several prototype layers. This section


concludes with the results of developing a replicated file system suitable for


daily use.


Ficus is a “real” system, both in terms of size and use. It is comparable in


code size to other production file systems (12,000 lines for Ficus compared to


7,000–8,000 lines of comment-free NFS or UFS code). Ficus has seen exten-


sive development over its three-year existence. Its developers’ computing


environment (including Ficus development) is completely supported in Ficus,


and it is now in use at various sites in the United States.


Stacking has been a part of Ficus from its very early development. Ficus


has provided both a fertile source of layered development techniques, and a


proving ground for what works and what does not work.


Ficus makes good use of stackable concepts such as extensibility, cooperat-


ing layers, an extensible transport layer, and out-of-kernel development.


Extensibility is widely used in Ficus to provide replication-specific operations.


The concept of cooperating layers is fundamental to the Ficus architecture,


where some services must be provided “close” to the user whereas others


must be close to data storage. Between the Ficus layers, the optional trans-


port layer has provided easy access to any replica, leveraging location trans-


parency as well. Finally, the out-of-kernel debugging environment has proved


particularly important in early development, saving significant development


time.


As a full-scale example of the use of stackable layering and the UCLA


interface, Ficus illustrates the success of these tools for file-system develop-


ment. Layered file systems can be robust enough for daily use, and the


development process is suitable for long-term projects.


5.3 Compatibility Experiences


Extensibility and layering are powerful tools to address compatibility prob-


lems. Section 3.5 discusses several different approaches to employ these tools;


here we consider how effective these tools have proved to be in practice. Our


experiences primarily concern the use and evolution of the Ficus layers, the


user-id mapping and null layers, and the stack-enabled versions of NFS and


UFS.


Extensibility has proved quite effective in supporting “third-party’’-style


change. The file-system layers developed at UCLA evolve independently of


each other and of standard filing services. Operations are frequently added to


the Ficus layers with minimal consequences on the other layers. We have


encountered some cache consistency problems resulting from extensibility


and our transport layer. We are currently implementing cache coherence


protocols as discussed in Section 4.3.3 to address this issue. Without extensi-


bility, each interface change would require changes to all other layers, greatly


slowing progress.


We have had mixed experiences with portability between different operat-


ing systems. On the positive side, Ficus is currently accessible from PCS
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running MS-DOS (see Figure 11). The PC runs an NFS implementation to


communicate with a UNIX host running Ficus. Ficus requires more informa-


tion to identify files than will fit in an NFS file identifier, so we employ an


additional “shrinkfid” layer to map over this difference.


Actual portability of layers between the SunOS and BSD stacking imple-


mentations is more difficult. Each operating system has a radically different


set of core vnode operations and related services. For this reason and because


of licensing restrictions, we chose to reimplement the null and user-id map-


ping layers for the BSJ3 port. Although we expect that a compatibility layer


could mask interface differences, long-term interoperability requires not only


a consistent stacking framework, but also a common set of core operations


and related operating-system services.


Finally, we have been successful employing simple compatibility layers to


map over minor interface differences. The shrinkfld and umap layers each


correct deficiencies in interface or administrative configuration. We have also


constructed a simple layer that passes additional state information closes


through extensible NFS as new operations.


6. RELATED WORK


Stackable filing environments build upon several bodies of existing work.


UNIX shell programming, streams, and the x-kernel present examples of


stackable development, primarily applied to network protocols and terminal
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processing. There is also a significant relationship between stacking and


object-oriented design. Sun’s vnode interface provides a basis for modular file


systems. Finally, Rosenthal has presented a prototype stackable filing inter-


face independently descended from these examples. We consider each of these


in turn.


6.1 Other Stackable Systems


The key characteristics of a stackable file system are its symmetric interface


and a flexible method of joining these layers. UNIX shell programming


provides an early example of combining independently developed modules


with a syntactically identical interface [Pike and Kernighan 1984].


Ritchie [1984] applied these principles to one kernel subsystem with the


Streams device 1/0 system. Ritchie’s system constructed terminal and net-


work protocols by composing stackable modules that may be added and


removed during operation. Ritchie’s concluded that Streams significantly


reduce complexity and improve maintainability of this portion of the kernel.


Since their development, Streams have been widely adopted.


The x-kernel is an operating-system nucleus designed to simplify network


protocol implementation by implementing all protocols as stackable layers


[Hutchinson et al. 1989]. Key features are a uniform protocol interface,


allowing arbitrary protocol composition; run-time choice of protocol stacks,


allowing selection based on efficiency; and very inexpensive layer transition.


The x-kernel demonstrates the effectiveness of layering in new protocol


development in the network environment, and that performance need not


suffer.


Shell programming, Streams, and the x-kernel are all important examples


of stackable environments. They differ from our work in stackable file sys-


tems primarily in the richness of their services and in the level of perfor-


mance demands. The pipe mechanism provides only a simple byte-stream of


data, leaving it to the application to impose structure. Both Streams and the


x-kernel also place very few constraints or requirements on their interface,


effectively annotating message streams with control information. A stackable


file system, on the other hand, must provide the complete suite of expected


filing operations under reasonably extreme performance requirements.


Caching of persistent data is another major difference between Streams-like


approaches and stackable file systems. File systems store persistent data that


may be repeatedly accessed, making caching of frequently accessed data both


possible and necessary. Because of the performance differences between


cached and noncached data, file caching is mandatory in production systems.


Network protocols operate strictly with transient data, and so caching issues


need not be addressed.


6.2 Object-Orientation and Stacking


Strong parallels exist between “object-oriented design techniques and stack-


ing. Object-oriented design is frequently characterized by strong data encap-


sulation, late binding, and inheritance. Each of these has a counterpart in
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stacking. Strong data encapsulation is required; without encapsulation one


cannot manipulate layers as black boxes. Late binding is analogous to run-


time stack configuration. Inheritance parallels a layer providing a bypass


routine; operations inherited in an object-oriented system would be bypassed


through a stack to the implementing layer.


Stacking differs from object-oriented design in two broad areas. First,


object-orientation is often associated with a particular programming lan-


guage. Such languages are typically general purpose, while stackable filing


can be instead tuned for much more specific requirements. For example,


languages usually employ similar mechanisms (compilers and linkers) to


define a new class of objects and to instantiate individual objects. In a


stackable filing environment, however, far more people will configure (instan-


tiate) new stacks than will design new layers. As a result, special tools exist


to simplify this process.


A second difference concerns inheritance. Simple stackable layers can


easily be described in object-oriented terms. For example, the compression


stack of Figure 3 can be thought of as a compression subclass of normal files;


similarly, a remote-access layer could be described as a subclass of “files.” But


with staking it is not uncommon to employ multiple remote-access layers. It


is less clear how to express this characteristic in traditional object-oriented


terms.


6.3 Modular File Systems


Sun’s vnode interface [Kleinman 1986] has served as a foundation for our


stackable file-systems work. Section 2 compares stackable filing and the


standard vnode interface. We build upon its abstractions and approach to


modularity to provide stackable filing.


The standard vnode interface has been used to provide basic file-system


stacking. Sun’s loopback and translucent file systems [Hendricks 1990] and


early versions of the Ficus file system were all built with a standard vnode


interface. These implementations highlight the primary differences between


the standard vnode interface and our stackable environment; with support


for extensibility and explicit support for stacking, the UCLA interface is


significantly easier to employ (see Section 5.2.1).


6.4 Rosenthal’s Stackable Interface


Rosenthal [1990] also recently explored stackable filing, Although conceptu-


ally similar to our work, the approaches differ with regard to stack con@-ura-


tion, stack view consistency, and extensibility.


Stack configuration in Rosenthal’s model is accomplished by two new


operations, push and pop. Stacks are configured on a file-by-file basis with


these operations, unlike our subtree granularity configuration. Per-file config-
uration allows additional configuration flexibility, since arbitrary files can be


independently configured. However, this flexibility complicates the task of


maintaining this information; it is not clear how current tools can be applied


to this problem. A second concern is that these new operations are specialized
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for the construction of linear stacks. Push and pop do not support more


general stack fan-in and fan-out.


Rosenthal’s stack model requires that all users see an identical view of


stack layers; dynamic changes of the stack by one client will be perceived by


all other clients. As a result, it is possible to push a new layer on an existing


stack and to have all clients immediately begin using the new layer. In


principle, one might dynamically add and remove a measurements layer


during file use. This approach also can be used to implement mounts as a


new vnode pushed over the mount point.


However, it is not clear that this facility is widely needed. Bec~tise stack


layers typically have semantic content, a client will expect stack contents to


remain unchanged during use. Consider a compression layer. Clearly, if it


were used to write the file, the corresponding decompression service needs to


be employed to read the data. This suggests that a more global dynamic


change may not be necessary and, to the extent that it adds complexity and


overhead, may be undesirable.


In addition, ensuring that all stack clients agree on stack construction has


a number of drawbacks. As discussed in Section 3.3, access to different stack


layers is often useful for special tasks such as backup, debugging, and remote


access. Such diverse access is explicitly prohibited if only one stack view is


allowed. Ensuring a common stack top also requires very careful locking in a


multiprocessor implementation, at some performance cost. Since the UCLA


interface does not enforce atomic stack configuration, it does not share this


overhead.


The most significant problem with Rosenthal’s method of dynamic stacking


is that for many stacks there is no well-defined notion of “top-of-stack.”


Stacks with fan-in have multiple stack tops. Encryption is one service


requiring fan-in with multiple stack “views” (see Section 3.3). Rosenthal’s


guarantee of a single-stack view for all stack users does not make sense with


multiple stack tops. Furthermore, with transport layers, the correct stack top


could be in another address space, making it impossible to keep a top-of-stack


pointer. For all of these reasons, our stack model explicitly permits different


clients to access the stack at different layers. 14


A final difference between Rosenthal’s vnode interface and the UCLA


interface concerns extensibility. Rosenthal discussed the use of versioning


layers to map between different interfaces. While versioning layers work well


to map between pairs of layers with conflicting semantics, the number of
mappings required grows exponentially with the number of changes, making


this approach unsuitable for wide-scale, third-party change. A more general


solution to extensibility is preferable, in our view.


7. CONCLUSION


The focus of this work is to improve the file-system development process. This


has been approached in several ways. Stacking provides a framework allow-


14While Rosenthal’s model can be extended to support nonlinear stacking [UNIX International


Stackable Files Working Group 1992], the result is, in effect, two different “stacking” methods.
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ing reuse of existing filing services. Higher-level services can be built quickly


by leveraging the body of existing file systems; improved low-level facilities


can immediately have a wide-reaching impact by replacing existing services.


Formal mechanisms for extensibility provide a consistent approach to export


new services, even from lower layers of a sophisticated stack. When these


facilities are provided in an address-space-independent manner, this frame-


work enables a number of new development approaches.


Widespread adoption of a framework such as that described in this paper


will permit independent development of filing services by many parties, while


individual developers can benefit from the ability to leverage others’ work


while moving forward independently. By opening this field previously largely


restricted to major operating-systems vendors, it is hoped that the industry


as a whole can progress forward more rapidly.
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