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1. INTRODUCTION
In file systems, metadata (e.g., directories, inodes, and free block maps)
gives structure to raw storage capacity. Metadata consists of pointers and
descriptions for linking multiple disk sectors into files and identifying
those files. To be useful for persistent storage, a file system must maintain
the integrity of its metadata in the face of unpredictable system crashes,
such as power interruptions and operating system failures. Because such
crashes usually result in the loss of all information in volatile main
memory, the information in nonvolatile storage (i.e., disk) must always be
consistent enough to deterministically reconstruct a coherent file system
state. Specifically, the on-disk image of the file system must have no
dangling pointers to uninitialized space, no ambiguous resource ownership
caused by multiple pointers, and no live resources to which there are no
pointers. Maintaining these invariants generally requires sequencing (or
atomic grouping) of updates to small on-disk metadata objects.


From a performance standpoint, recent and predicted future technology
trends result in a growing disparity between processing performance and
disk access times. This disparity, combined with increasing main memory
sizes, dictates that high-performance file systems aggressively employ
caching techniques to avoid disk accesses and hide disk latencies. For
metadata updates, which are characterized by strong spatial and temporal
locality and by small sizes relative to the units of disk access, this means
write-back caching. Write-back caching can substantially improve meta-
data update performance by combining multiple updates into a much
smaller quantity of background disk writes. The savings come from two
sources: multiples updates to a single metadata component (e.g., removal of
a recently added directory entry) and multiple independent updates to a
single block of metadata (e.g., several entries added to a directory block).


This article describes soft updates, an implementation technique for
low-cost sequencing of fine-grained updates to write-back cache blocks
[Ganger and Patt 1994]. The soft updates mechanism tracks dependencies
among updates to cached (i.e., in-memory) copies of metadata and enforces
these dependencies, via update sequencing, as the dirty metadata blocks
are written back to nonvolatile storage. Because most metadata blocks
contain many pointers, cyclic dependencies occur frequently when depen-
dencies are recorded only at the block level. Therefore, soft updates tracks
dependencies on a per-pointer basis and allows blocks to be written in any
order. Any still-dependent updates in a metadata block are rolled-back
before the block is written and rolled-forward afterward. Thus, dependency
cycles are eliminated as an issue. With soft updates, applications always
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see the most current copies of metadata blocks, and the disk always sees
copies that are consistent with its other contents.


With soft updates, the cost of maintaining integrity is low, and disk-
based file system performance can be within a few percent of a memory-
based file system’s performance. For workloads that frequently perform
updates on metadata, this improves performance by more than a factor of
two (and up to a factor of 20) when compared to the conventional approach
and by 4–19% when compared to an aggressive write-ahead logging ap-
proach. Also, additional update sequencing can be realized with little
performance loss. So, integrity and security can be improved relative to
many current implementations. Further, the on-disk state can be main-
tained such that the file system can be safely mounted and used immedi-
ately (without preuse consistency checking, such as the fsck utility [McKu-
sick and Kowalski 1994]) after any system failure other than media
corruption. This reduces file system recovery times by more than two
orders of magnitude (to less than one second) when compared to fsck-like
approaches.


Initially proposed and evaluated by Ganger and Patt [1994], soft updates
has now been incorporated into the 4.4BSD fast file system (FFS) used in
the NetBSD, OpenBSD, FreeBSD, and BSDI operating systems [McKusick
and Ganger 1999]. This article briefly describes the incorporation. In doing
so, it discusses experiences and lessons learned, including some not antici-
pated in the original research paper, and shows that achieved performance
matches expectations. Specifically, using soft updates in BSD FFS elimi-
nates most synchronous writes by allowing safe use of delayed writes for
metadata updates. This results in significant performance increases, and,
in most cases, the soft updates implementation is within 5% of ideal (i.e.,
the same file system with no update ordering). Further, soft updates allows
BSD FFS to provide cleaner semantics, stronger integrity and security
guarantees, and immediate crash recovery at the same time.


The remainder of this article is organized as follows. Section 2 describes
the metadata update problem in more detail, discusses previous solutions,
and outlines the characteristics of an ideal solution. Section 3 describes soft
updates in general, the implementation of soft updates in the 4.4BSD FFS,
some lessons learned from two implementations (the original research
prototype and the production-quality 4.4BSD module), and the effects of
soft updates on file system availability, semantics, and complexity. Then,
Section 4 evaluates the soft updates implementation, comparing it to the
default 4.4BSD FFS, a version that uses delayed writes for all updates, and
a version that uses write-ahead logging. Section 5 summarizes the article’s
contributions.


2. THE METADATA UPDATE PROBLEM


Several important file system operations consist of a series of related
modifications to separate metadata structures. To ensure recoverability in
the presence of unpredictable failures, the modifications often must be
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propagated to stable storage in a specific order. For example, when creating
a new file, the file system allocates an inode, initializes it, and constructs a
directory entry that points to it. If the system goes down after the new
directory entry has been written to disk but before the initialized inode is
written, consistency may be compromised, since the contents of the on-disk
inode are unknown. To ensure metadata consistency, the initialized inode
must reach stable storage before the new directory entry. We refer to this
requirement as an update dependency, because safely writing the direc-
tory entry depends on first writing the inode. The ordering constraints map
onto three simple rules:


(1) Never point to a structure before it has been initialized (e.g., an inode
must be initialized before a directory entry references it).


(2) Never reuse a resource before nullifying all previous pointers to it (e.g.,
an inode’s pointer to a data block must be nullified before that disk
block may be reallocated for a new inode).


(3) Never reset the last pointer to a live resource before a new pointer has
been set (e.g., when renaming a file, do not remove the old name for an
inode until after the new name has been written).


The metadata update problem can be addressed with several mecha-
nisms. The remainder of this section discusses previous approaches and the
characteristics of an ideal solution.


2.1 Previous Solutions


Synchronous Writes. Synchronous writes are used for metadata update
sequencing by many file systems, including the VMS file system [McCoy
1990], the DOS file system [Duncan 1986], and most variants of the UNIX
file systems [Ritchie and Thompson 1978; McKusick et al. 1984]. As a
result, metadata updates in these file systems proceed at disk speeds
rather than processor/memory speeds [Ousterhout 1990; McVoy and
Kleiman 1991; Seltzer et al. 1993]. The performance degradation can be so
dramatic that many implementations choose to ignore certain update
dependencies, thereby reducing integrity, security, and availability. For
example, many file systems do not initialize a newly allocated disk block
before attaching it to a file, which can reduce both integrity and security,
since an uninitialized block often contains previously deleted file data.
Also, many file systems do not protect the consistency of the on-disk free
block/inode maps, electing to reconstruct them after a system failure (e.g.,
with the fsck utility [McKusick and Kowalski 1994]).


Nonvolatile RAM (NVRAM). To eliminate the need to keep the on-disk
state consistent, one can employ NVRAM technologies, such as an uninter-
ruptable power supply for the entire system or a distinct Flash RAM device
[Wu and Zwaenepoel 1994]. With this approach, only updates to the
NVRAM need to be kept consistent, and updates can propagate to disk in
any order and whenever it is convenient. The performance of this approach
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far exceeds that of synchronous writes, since ordering updates to RAM is
much less time-consuming. In fact, in addition to eliminating the need for
update ordering, NVRAM eliminates the need for periodic syncer daemon
activity; write-backs are only required when space needs to be reclaimed.
There is a concern that failing operating systems may destroy some of the
contents of the NVRAM cache, but this problem can be prevented with a
reasonable amount of effort and overhead [Chen et al. 1996]. The main
drawbacks, of course, are the cost of NVRAM and the fact that it is only a
solution for systems that are actually equipped with it. In addition, file
systems that rely on distinct NVRAM devices incur additional overheads
for moving data to and from them. Finally, file system recovery after a
system crash requires both the NVRAM and the disk contents, which
means that it is not possible to just move one component or the other from
a broken system to a working one. With soft updates, NVRAM-like perfor-
mance can be achieved without the extra hardware expenses.


Atomic Updates. Although update sequencing will maintain file system
integrity, an alternative approach is to group each set of dependent
updates as an atomic operation. Most implementations of storage update
atomicity entail some form of write-ahead logging [Hagmann 1987; Chutani
et al. 1992; NCR 1992] or shadow-paging [Chamberlin et. al. 1981; Stone-
braker 1987; Chao et al. 1992; Rosenblum and Ousterhout 1992]. Generally
speaking, these approaches augment the on-disk state with additional
information that can be used to reconstruct the committed metadata values
after any system failure other than media corruption. Many modern file
systems successfully employ write-ahead logging to improve performance
compared to the synchronous write approach. However, there is still value
in exploring implementations that do not require changes to the on-disk
structures (which may have a large installed base) and may offer higher
performance with lower complexity. In particular, this article and Ganger
and Patt [1994] both show that a file system augmented with soft updates
requires minimal changes to the file system proper and can deliver perfor-
mance almost equivalent to having no update ordering at all. The same has
not been shown for approaches based on update atomicity, and Section 4.5
indicates that logging can involve a 4–19% performance degradation.


Scheduler-Enforced Ordering. With appropriate support in disk request
schedulers, a file system can use asynchronous writes for metadata and
pass any sequencing restrictions to the disk scheduler with each request
[Ganger and Patt 1994]. This approach has been shown to outperform the
conventional synchronous write implementation by more than 30% for
workloads that frequently do updates on metadata. However, with such
scheduler-enforced ordering, delayed writes cannot safely be used when
sequencing is required, since a disk request scheduler cannot enforce an
ordering on or prevent dependency cycles among requests not yet visible to
it. Also, all disk schedulers, which are generally located in disk device
drivers or disk drives, must support the modified interface and the corre-
sponding sequencing rules.
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Interbuffer Dependencies. Another approach is to use delayed writes for
all updates and have the cache write-back code enforce an ordering on disk
writes. Tracking dependencies among buffers is straightforward, but this
approach provides only a marginal reduction in the number of synchronous
writes. The lack of improvement occurs because the system must avoid the
creation of circular dependencies. Whenever a circular dependency is about
to be created, the system must prevent the circularity (e.g., by doing a
synchronous write). Unfortunately, circular dependencies quickly arise in
the normal course of file system operation. For example, consider a file
creation and a file deletion performed in the same directory. The file
creation requires that the inode block be written before the directory. The
file deletion requires that the directory be written before the inode block.
For correct operation, this scenario must revert to the use of synchronous
writes or some other update ordering mechanism.


2.2 Characteristics of an Ideal Solution


An ideal solution to the metadata update problem would provide immediate
stability and consistency of all metadata updates with no restrictions on
on-disk data organization, no performance overhead, and no special hard-
ware support. Unfortunately, to our knowledge, no such solution exists.
One must therefore choose to relax the constraints in one or more of these
areas. For general-purpose file systems, we believe that consistency is not
negotiable and that requirements for special hardware support should be
avoided. In many environments, users are willing to compromise immedi-
ate stability and live with a small window of vulnerability for new data
(e.g., 30 seconds) in order to achieve much higher performance. With these
assumptions, we wish to find a software-only implementation of consistent
metadata updates with the smallest possible performance penalty given a
small write-back window. In approximate order of importance, the perfor-
mance-related characteristics of an ideal solution are:


(1) Applications should never wait for disk writes unless they explicitly
choose to do so for application-specific purposes.


(2) The system should propagate modified metadata to disk using the
minimum possible number of disk writes, given the allowed window of
vulnerability. Specifically, this requires aggressive write-back caching
of metadata structures to absorb and coalesce writes.


(3) The solution should minimize the amount of main memory needed to
cache dirty metadata and related auxiliary information. This will
maximize the availability of memory for other purposes.


(4) The cache write-back code and the disk request scheduler should not be
constrained in choosing what blocks to write to disk when, beyond the
minimal restrictions necessary to guarantee consistency. This flexibil-
ity is important for scheduling algorithms that reduce mechanical
positioning delays [Denning 1967; Worthington et al. 1994].
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Soft updates provides a reasonable approximation of this ideal.


3. SOFT UPDATES


This section describes the soft updates mechanism. It consists of an
overview of the approach, a description of an implementation of soft
updates in a UNIX file system, and discussion of the impact of soft updates
on availability, semantics, and complexity.


3.1 Overview


The soft updates mechanism allows safe use of write-back caching for
metadata blocks. As discussed earlier, this improves performance by com-
bining multiple metadata updates into a much smaller quantity of back-
ground disk writes. However, to maintain integrity in the face of unpredict-
able failures, sequencing constraints must be upheld as dirty blocks are
propagated to stable storage. To address this requirement, the soft updates
mechanism maintains dependency information, associated with any dirty
in-memory copies of metadata, to keep track of sequencing requirements.
When performing a metadata update, the in-memory copy of the relevant
block is modified normally, and the corresponding dependency information
is updated appropriately. The dependency information is then consulted
when dirty blocks are flushed to disk.


When we began this work, we envisioned a dynamically managed DAG
(Directed, Acyclic Graph) of dirty blocks for which disk writes are issued
only after all writes on which they depend complete. In practice, we found
this to be a very difficult model to maintain, being susceptible to cyclic
dependencies and aging problems (e.g., blocks could consistently have
dependencies and never be written to stable storage). Like false sharing in
multiprocessor caches, these difficulties relate to the granularity of the
dependency information. The blocks that are read from and written to disk
often contain multiple structures (e.g., inodes or directory fragments), each
of which generally contains multiple dependency-causing components (e.g.,
block pointers and directory entries). As a result, originally independent
changes can easily cause dependency cycles (see Figure 1) and excessive
aging. Detecting and handling these problems increases implementation
complexity and reduces performance.


With soft updates, dependency information is maintained at a very fine
granularity: per field or pointer. “Before” and “after” versions are kept for
each individual update (e.g., the addition of a directory entry or the setting
of a block pointer) together with a list of updates on which it depends. A
dirty block can be written to disk at any time, as long as any updates
within the in-memory block that have pending dependencies are first
temporarily “undone” (rolled back). This guarantees that every block writ-
ten to disk is consistent with respect to the current on-disk state. During
the disk write, the block is locked to prevent applications from seeing the
rolled-back state. When a disk write completes, any undone updates in the
source memory block are restored before the block is unlocked. So, for
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example, the two metadata blocks in Figure 1(c) can be safely transferred
to disk with three writes (see Figure 2). With this approach, dependency
cycles do not occur because independent sequences of dependent updates
remain independent and no single sequence is cyclic. Aging problems do not
occur because new dependencies are not added to existing update se-
quences.


3.1.1 Design Issues. Prior to each update for which sequencing will be
required, dependency information must be set up. While soft updates, in
essence, employs an in-memory log of update dependencies, efficiency
requires more aggressive indexing (e.g., to identify the associated block)
and cross-referencing (e.g., to identify dependent updates) of dependency
structures. The modules that flush dirty cache blocks must also be modified
to check and enforce dependencies appropriately. Many dependencies
should be handled by the undo/redo approach described above. Others can
be more efficiently handled by postponing in-memory updates until after
the updates on which they depend reach stable storage. This deferred
update approach is only safe when freeing file system resources, since
applications can not be shown out-of-date data. In a sense, deferred
updates are undone until the disk writes on which they depend complete.
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Inode Block Directory Block
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(a) Original Organization (b) Create File A


(c) Remove File B
Fig. 1. A Cyclic Dependency. (a), (b), and (c) each show the same pair of in-memory metadata
blocks. The shaded metadata structures are unowned and available for allocation. The arrows
indicate dependencies. (a) shows the blocks before any updates. (b) shows the blocks after
creating file A. When creating a new file, the newly initialized inode must be written to disk
before the new directory entry. (c) shows the blocks after removing file B. When removing a
file, the reset directory entry must be written before the reinitialized inode. Viewed at a block
level, the two metadata blocks in (c) depend on each other. Viewed at a finer granularity, there
are two independent update sequences.
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Fig. 2. Undo/redo operations in soft updates. (a) shows the in-memory and on-disk copies of
the two modified metadata blocks from Figure 1(c). (b), (c), and (d) show the same blocks after
each of three disk writes. For the duration of each disk write, the in-memory copy matches the
resulting on-disk copy, and locks prevent any application from observing out-of-date informa-
tion. As desired, the application-visible copies of metadata are always fully up-to-date, and the
on-disk copy of the file system is always internally consistent.
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When a disk write completes, there is often some processing needed to
update/remove dependency information, restore undone changes, and deal
with deferred work. An implementation of soft updates requires some
method of performing these tasks in the background. Very simple changes
can be made during the disk I/O completion interrupt service routine (ISR),
which generally calls a predefined procedure in the higher-level module
(e.g., a file system) that issued the request. However, any task that can
block and wait for a resource (e.g., a lock or, worse yet, an uncached disk
block) cannot be handled in this way. Such tasks must be handled outside
of the ISR, preferably by a background process that executes in the near
future (e.g., within a few seconds).


3.2 Soft Updates in the 4.4BSD Fast File System


Soft updates has been implemented in the 4.4BSD FFS [McKusick et al.
1984] used in the NetBSD, OpenBSD, FreeBSD, and BSDI operating
systems. The basic operation of the 4.4BSD implementation of soft updates
is based on and similar to the SVR4 implementation [Ganger and Patt
1994], but it is more complete, robust, and clean. This section overviews the
operation of soft updates in these two systems; much more detailed
descriptions are provided by Ganger and Patt [1995] and McKusick and
Ganger [1999].


In both implementations, almost all of the synchronous and asynchro-
nous metadata updates have been replaced with delayed writes. The main
exceptions are: (1) when the user explicitly requests synchronous updates,
as with the fsync() system call or the O_SYNC modifier to the open() system
call, and (2) when mounting or unmounting a file system. Dependency-
setup code has been added before each update that requires sequencing.
The disk write routines have been modified to perform the appropriate
undo/redo actions on source memory blocks. Background processing that
cannot be handled during the ISR is performed by the syncer daemon when
it next awakens.


In FFS-based file systems, there are four main structural changes that
require sequenced metadata updates: (1) block allocation, (2) block deallo-
cation, (3) link addition (e.g., file creation), and (4) link removal. The
dependencies associated with each are described below together with a
brief description of how they are handled in both implementations.


Block Allocation. When a new block or fragment is allocated for a file,
the new block pointer (whether in the inode or an indirect block) should not
be written to stable storage until after the block has been initialized.1 Also,
if the on-disk free space maps are being protected (See Section 3.3), the free


1Most file systems do not actually guarantee that newly allocated blocks are initialized on
disk. Because it is expensive with synchronous writes (e.g., factor of two reduction in create
performance [Ganger and Patt 1994]), no traditional FFS implementation with which we are
familiar supports it. Because it is inexpensive with soft updates (e.g., around 2% overhead,
with a maximum of 8% observed), guaranteeing initialization of new allocations is the default
in our implementation. All of our experiments utilize this default.
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space map from which the block or fragment is allocated must be written to
disk before the new pointer. These two dependencies are independent of
each other and apply to allocation of both file blocks and indirect blocks. In
our implementations, both dependencies are enforced by undo/redo on the
block pointer and the file size. So, for example, when an inode with an
unsafe block pointer (i.e., one for which there are unsatisfied dependencies)
is written to disk, the in-memory copy is first modified such that the
pointer is nullified, and, if appropriate, the file size is reduced. After the
disk write completes, the undone modifications are replayed so that the file
size and block pointer are restored to their most current in-memory values.


Block Deallocation. A deallocated disk block must not be reused before
the previous on-disk pointer to it has been reset. In our implementations,
we satisfy this requirement by not deallocating a block (i.e., setting the bits
in the in-memory free space map) until after the reset block pointer reaches
stable storage. When block deallocation is requested, the appropriate
in-memory pointers are nullified, and control returns to the caller. Only
after the modified metadata block has propagated to disk are the blocks
actually deallocated and made available for reuse. Of course, recently
allocated blocks to which pointers have not yet been written to disk can be
immediately deallocated.


Link Addition. When adding a directory entry, the (possibly new) inode,
with its incremented link count, must be written to disk before the new
directory entry’s pointer to it. Also, if the inode is new and the on-disk free
maps are being protected, the free inode map from which the inode is
allocated must be written to disk before the new pointer. These two
dependencies are independent of each other. In our implementations, both
dependencies are enforced by undo/redo on the inode pointer field of the
directory entry, since nullifying this field is sufficient to identify the entry
as invalid after a system failure.


Link Removal. When removing a directory entry, the on-disk directory
entry’s inode pointer must be nullified before the corresponding on-disk
inode’s link count is decremented (possibly freeing the inode for reuse).2 In
our implementations, we achieve this by not decrementing the in-memory
inode’s link count until after the reset pointer reaches stable storage. So,
when link removal is requested, the in-memory directory entry is nullified.
Also, if the directory entry was recently added and not yet written to disk,
the inode’s link count is immediately decremented. (In this case, the link
addition and removal are serviced with no disk writes.) Otherwise, control
is returned to the caller, and the inode’s link count is not decremented until
after the dirty directory block is written to stable storage.


2The actual requirement is that the on-disk inode should not be reinitialized or pointed to by
the free inode map (if the on-disk map is to be trusted after failure) before all previous on-disk
directory entry pointers to it have been nullified. Our more stringent requirement simplifies
the implementation and protects on-disk link counts for safe postcrash file system use.
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3.3 File System Recovery


Most file system implementations minimize update sequencing in order to
reduce the performance degradation caused by synchronous writes. As a
result, they require time-consuming, off-line assistance (e.g., the fsck
utility) before a file system can be safely used after any system failure.
Because update sequencing costs so little with soft updates, our enhanced
file systems extend the set of protected updates to guarantee that the
on-disk metadata can always be used safely (except when media corruption
destroys live metadata), eliminating the need for premount crash-recovery
assistance. So, with our soft updates implementation, a file system can be
safely mounted and used immediately after a system failure. However, it
may contain several minor inconsistencies:


—Unused blocks may not appear in the free space maps.


—Unreferenced inodes may not appear in the free inode maps.


—Inode link counts may exceed the actual number of associated directory
entries, which can lead to unclaimed blocks and inodes over time.


One can run the fsck utility on the file system, when it is convenient to
have file system downtime, to reclaim unreferenced resources, and correct
link counts. In the latest versions of most 4.4BSD-based OSes, a back-
ground version of fsck can be used to reclaim these resources while the file
system is actively being used [McKusick and Ganger 1999].


Maintaining the dependencies described in Section 3.2 is sufficient to
guarantee that the on-disk copies of inodes, directories, indirect blocks, and
free space/inode bitmaps are always safe for immediate use after a system
failure. However, FFS maintains a number of free block/inode counts in
addition to the bitmaps. These counts are used to improve efficiency during
allocation and therefore must be consistent with the bitmaps for safe
operation. Because we know of no convenient way to guarantee postcrash
consistency of these counts via update sequencing, we simply recompute
them from the bitmaps when mounting a file system after a crash. By not
requiring that the fsck utility be run on the file system after a crash, soft
updates reduces file system recovery time by more than two orders of
magnitude (see Section 4.4).


3.4 File System Semantics


The use of synchronous writes to sequence metadata updates does not
imply synchronous file system semantics. In most implementations, the
last write in a sequence of metadata updates is asynchronous or delayed.
Therefore, when a file system call returns control to the caller, there is no
guarantee that the change is permanent. For link addition (e.g., file
creation) and block allocation, the last update adds the new name and
pointer to the directory block, inode, or indirect block. As a result, such
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changes are not permanent when control returns to the caller.3 For link
removal and block deallocation, on the other hand, the last update modifies
the free space/inode maps. When control returns to the caller, the link is
permanently removed, and/or the blocks have been deallocated and are
available for reuse. With soft updates, neither is true. In particular,
deallocated resources do not become available for reuse until after the
reinitialized inode or indirect block reaches stable storage.


Some system calls have a flag telling the file system to guarantee that
changes are permanent before returning. It may be useful to augment
additional file system calls (e.g., link addition) with such a flag in order to
support certain applications (e.g., those that require lock files).


It is important to note that soft updates does not significantly increase
the amount of data that can be lost when the system crashes. Rather, using
soft updates allows a file system to employ the same write-back strategies
for metadata as it uses for file data. When file systems employ soft updates,
users will continue to face the same persistence dangers that they already
choose to accept with any given system (e.g., potential for loss of 30 seconds
worth of information in most UNIX-derived systems).


3.5 Implementation Complexity and Lessons Learned


The original soft updates implementation consisted of 1800 lines of com-
mented C code and only required (minor) changes to the file system and
buffer cache modules. The implementation was largely straightforward,
containing many procedures with similar code for dependency structure
initialization, scanning, and deallocation. No changes to the on-disk meta-
data structures were required. Having learned key lessons from an initial
implementation, a single graduate student completed a partial soft updates
implementation (described by Ganger and Patt [1994]) in three weeks.
Update sequencing for fragment extension and the free space/inode maps
took an additional two weeks to add and debug.


The transition of soft updates from research prototype to product-quality
software (for 4.4BSD) came with several lessons and problems that were
more complex than was suggested in the original research papers. Some of
these issues were known shortcomings of the research prototype, and some
were simply the result of differences in the host operating systems. Others,
however, only became evident as we gained operational experience with
soft updates. The remainder of this section describes the most significant of
these issues.


The “fsync“ System Call. The “fsync” system call requests that a specific
file be completely committed to stable storage and that the system call not
return until all associated writes have completed. The task of completing
an “fsync” requires more than simply writing all the file’s dirty data blocks
to disk. It also requires that any unwritten directory entries that reference
the file also be written, as well as any unwritten directories between the


3Software locking schemes that use lock files may encounter surprises because of this.
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file and the root of the file system. Simply getting the data blocks to disk
can be a major task. First, the system must check to see if the bitmap for
the inode has been written, finding the bitmap and writing it if necessary.
It must then check for, find, and write the bitmaps for any new blocks in
the file. Next, any unwritten data blocks must go to disk. Following the
data blocks, any first-level indirect blocks that have newly allocated blocks
in them are written, followed by any double indirect blocks, then triple
indirect blocks. Finally, the inode can be written, which will ensure that
the contents of the file are on stable store. Ensuring that all names for the
file are also on stable storage requires data structures that can determine
whether there are any uncommitted names and, if so, in which directories
they occur. For each directory containing an uncommitted name, the soft
updates code must go through the same set of flush operations that it has
just done on the file itself.


Although the “fsync” system call must ultimately be done synchronously,
this does not mean that the flushing operations must each be done
synchronously. Instead, whole sets of bitmaps or data blocks are pushed
into the disk queue, and the soft updates code then waits for all the writes
to complete. This approach is more efficient because it allows the disk
subsystem to sort all the write requests into the most efficient order for
writing. Still, the “fsync” part of the soft updates code generates most of the
remaining synchronous writes in the file system.


Unmounting File Systems. Unmounting a file system requires finding
and flushing all the dirty blocks that are associated with the file system.
Flushing these blocks may lead to the generation of background activity
such as removing files whose reference count drops to zero as a result of
their nullified directory entries being written. Thus, the system must be
able to find all background activity requests and process them. Even on a
quiescent file system, several iterations of file flushes followed by back-
ground activity may be required.


Memory Used for Dependency Structures. One concern with soft updates
is the amount of memory consumed by the dependency structures. This
problem was attacked on two fronts: memory efficiency and usage bound-
ing.


The prototype implementation generally used multiple structures for
each update dependency: one for the “depender” and one for each “de-
pendee.” For example, each time a block was allocated, new dependency
structures were associated with the disk block, the bitmap, and the inode
(the “depender” in this case). The 4.4BSD soft updates code instead uses a
single dependency structure to describe a block allocation. This one depen-
dency structure is linked into multiple lists: one for the allocated block, one
for the bitmap, and one for the inode. By constructing lists rather than
using separate structures, the demand on memory was reduced by about
40%.


In actual operation, we have found that the additional dynamic memory
used for soft updates structures is roughly equal to the amount of memory
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used by vnodes plus inodes; for a system with 1000 vnodes, the additional
peak memory used is about 300KB. The one exception to this guideline
occurs when large directory trees are removed. In this case, the file system
code can get arbitrarily far ahead of the on-disk state, causing the amount
of memory dedicated to dependency structures to grow without bound. The
4.4BSD soft updates code monitors the memory load for this case and
prevents it from growing past a tunable upper bound. When the bound is
reached, new dependency structures can only be created at the rate at
which old ones are retired. This reduces the sustained rate of file removal
to disk speeds, but does so 20 times more efficiently than the traditional
synchronous write file system. In steady-state, the soft updates remove
algorithm requires about one disk write for each ten files removed, while
the traditional file system requires at least two writes for every file
removed.


Useless Write-Backs. While soft updates allows blocks to be written
back in any order, blocks with pending dependencies will remain dirty after
a disk write. When we instrumented the initial BSD soft updates code, we
found that 10–20% of all disk writes had pending dependencies and were
immediately redirtied by the required roll-back. Many of these “useless”
writes occurred because the default syncer daemon algorithm produced
nearly worst-case ordering of disk writes. Specifically, it initiated all disk
writes associated with particular files in a burst, which meant that all of
them were initiated before any of them completed. By modifying the flush
routines to roughly prioritize block write-backs based on dependency infor-
mation, we eliminated over 50% of these “useless” write-backs. The revised
syncer daemon initiates and waits for writes for bitmap blocks, data blocks,
and other nondependent blocks. Only after these all complete does the
syncer move on to metadata blocks that previously had pending dependen-
cies—at that point, many no longer will.


Having found success with this simple technique, we set out to eliminate
other causes of roll-back triggered I/O. A second place where we found
success was in the cache reclamation code. By replacing the default LRU
scheme with a scheme that avoids selecting a block with pending dependen-
cies, we further reduced the number of roll-back triggered disk writes by
about half (to less than one quarter of its original value). The eventually
selected block is also generally much more efficient to reclaim and less
likely to be reused than a dirty, dependent metadata block.


The fsck Utility. In a conventional file system implementation, file
removal happens within a few milliseconds. Thus, there is a short period of
time between the directory entry being removed and the inode being
deallocated. If the system crashes during a bulk tree removal operation,
there are often no inodes lacking references from directory entries, though
in rare instances there may be one or two. By contrast, in a system running
with soft updates, many seconds may elapse between the time that the
directory entry is deleted and the time that the inode is deallocated. If the
system crashes during a bulk tree removal operation, there are usually
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tens to hundreds of inodes lacking references from directory entries.
Historically, fsck placed any unreferenced inodes into the lost1found
directory. This action is reasonable if the file system has been damaged by
a media failure that results in the loss of one or more directories. However,
it often stuffs the lost1found directory with partially deleted files when
running with soft updates. Thus, the fsck program must be modified to
check that a file system is running with soft updates and clear out rather
than saving unreferenced inodes, unless it has determined that unexpected
damage has occurred to the file system in which case the files are saved in
lost1found.


A peripheral benefit of soft updates is that fsck can trust the allocation
information in the bitmaps. Thus, it only needs to check the subset of
inodes in the file system that the bitmaps indicate are in use. Although
some of the inodes marked “in use“ may be free, none of those marked free
will ever be in use.


4. PERFORMANCE EVALUATION


In this section, we compare soft updates to its upper bound and show that a
file system using soft updates can achieve full metadata integrity at little
cost in performance or availability. We further show that this upper bound
represents a substantial increase in performance and availability when
compared to the conventional synchronous write approach. We also show
that soft updates compares favorably to write-ahead logging in BSD FFS.


The results of several comparisons are provided, each highlighting a
different aspect of soft updates performance. Microbenchmarks are used to
focus on particular activities and set expectations for more complete
workloads. Macrobenchmark workloads show the impact of soft updates in
multiprogramming and news/mail server environments; rough data from a
real system using soft updates in the field confirm the benchmark results.
Measurements of postcrash recovery time show that soft updates can
improve availability significantly. Finally, comparisons with write-ahead
logging indicate that soft updates provides similar or better performance
for BSD FFS.


4.1 Experimental Setup


Most of our experiments compare the performance of three instances of
FreeBSD’s FFS file system, referred to in the article as No Order, Conven-
tional, and Soft Updates. No Order corresponds to FreeBSD FFS mounted
with the O_ASYNC option, which causes the file system to ignore ordering
constraints and use delayed writes for all metadata updates. This baseline
has the same performance and lack of reliability as the delayed mount
option described in Ohta and Tezuka [1990]. It is also very similar to the
memory-based file system described in McKusick et al. [1990]. No Order
represents an upper bound on the FreeBSD FFS performance that can be
achieved by changing only the mechanisms used to deal with metadata
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integrity.4 Conventional corresponds to the default FreeBSD FFS imple-
mentation, which uses synchronous writes to sequence metadata updates.
Soft Updates corresponds to the same FreeBSD FFS modified to use soft
updates. Section 4.5 compares Soft Updates to a write-ahead logging
version of FreeBSD FFS; details are provided in that section.


With one exception, all experiments are performed on commodity PC
systems equipped with a 300MHz Pentium II processor, 128MB of main
memory, and two 4.5GB Quantum Viking disk drives (Fast SCSI-2, 7200
RPM, 8ms average seek for reads). One disk drive holds the root, home, and
swap partitions, and the second drive is used for the file system under test.
The operating system is FreeBSD 4.0, and all experiments are run with no
other nonessential activity in the system. All of the file system instances
benefit from the general FFS enhancements included in FreeBSD 4.0,
including block reallocation [Smith and Seltzer 1996] and extent-like
clustering [McVoy and Kleiman 1991]. Each experimental result is an
average of numerous measurements, and metrics of variation are provided
with the data.


4.2 Microbenchmark Performance Analysis of Soft Updates


This subsection uses microbenchmarks taken from Seltzer et al. [1995] to
illustrate the basic performance characteristics of BSD FFS using soft
updates. Specifically, the microbenchmarks measure the speed with which
a system can create, read, and delete 32MB of data for files that range in
size from 2KB to 4MB. The files are spread across directories, with no more
than 50 files per directory, to prevent excessive name lookup overheads.
Before each measurement, the file cache is emptied by unmounting and
then remounting the file system under test. Intuitively, we expect to find
that No Order and Soft Updates perform similarly and that they both
outperform Conventional for the create and delete experiments. For the
read experiments, which involve no metadata update ordering, we expect
all three to perform identically.


Figure 3 shows the results of the create microbenchmark, which do
match overall expectations: No Order and Soft Updates are similar in
performance and both outperform Conventional. For all three, throughput
improves with file size up to 64KB, since, up to this size, a contiguously
allocated file can be written in a single disk operation. The performance
drops after 64KB, because files larger than 64KB involve at least two
contiguous data segments. Files beyond 104KB in size additionally require
an indirect block. Beyond 104KB, bandwidth increases with file size again,
as the cost of the indirect block is amortized over more and more data. The
small drop at 1024KB for No Order and Soft Updates occurs because the
file system cannot fit all 32MB of data in one cylinder group, which the
benchmark and allocation routines try to do for these two cases (32 and 8


4Better performance could be achieved by disabling the syncer daemon, which would also
eliminate the guarantee that new data blocks are written to disk soon after creation (e.g.,
within 30 seconds).
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files, respectively); as a result, the last file created is split between two
cylinder groups, which causes a performance drop mainly because the
second bitmap must be read from disk. The three implementations con-
verge as the file size increases, because the cost of writing the data begins
to dominate the cost of the two synchronous writes required by Conven-
tional for file creation.


Figure 4 shows the results of the delete microbenchmark. As expected,
Soft Updates and No Order dramatically outperform Conventional. In
addition, Soft Updates outperforms No Order, because No Order is actually
removing the files as it goes whereas soft updates is simply generating
work orders for the background process to do the removals. The large
performance drop at 104KB results from the per-file disk read required by
all schemes to fetch the indirect block. (Recall that each experiment starts
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Fig. 3. Create throughput, in megabytes/second, as a function of file size. The values are
averages of 25 runs, and all coefficients of variation are below 0.07.
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Fig. 4. Delete throughput, in files/second, as a function of file size. The values are averages of
25 runs, and most coefficients of variation are below 0.1. The one exception is the 4096KB data
point for Soft Updates, for which the coefficient of variation is 0.13.
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with a cold cache.) Above 104KB, No Order is approximately 3 times faster
than Conventional, because both are limited by synchronous disk I/O (one
disk read per file versus one disk read and two disk writes per file). Again,
by pushing actual removal to the background, Soft Updates avoids most of
this performance drop. For all schemes, file deletion throughput tends to
decrease with file size, because the work involved with each file’s deletion
increases.


Figure 5 shows the results of the read microbenchmark. As before,
performance increases with file size but drops significantly when the file
size requires an indirect block and thus an extra noncontiguous read. As
expected, there are no significant differences in performance between No
Order and Conventional, since there are no update dependencies associated
with reading a file. The surprising difference between these and Soft
Updates for files larger than 96KB is a microbenchmark artifact related to
BSD FFS’s reallocation scheme (for achieving maximum contiguity) and the
use of delayed deallocation in Soft Updates; by delaying deallocation, Soft
Updates prevents BSD FFS from placing indirect blocks in undesirable disk
locations for this microbenchmark. Though all of the results reported in
this article include BSD FFS’s default reallocation schemes, we have
verified that this read microbenchmark behavior does not recur in any of
the other experiments; with reallocation disabled, read microbenchmark
performance is identical for the three implementations, and the other
benchmarks have the same relative performance as reported.


Figure 6 shows the total number of disk writes initiated during the
create microbenchmark. As expected, the number of disk writes for Soft
Updates is close to the number for No Order and significantly smaller than
the number for Conventional. For 2KB thru 64KB files, Conventional
involves approximately 3.1 disk writes per file, which includes 2 synchro-
nous disk writes to create the file, 1 asynchronous disk write of the data,
and a partial disk write for coalesced updates to bitmap blocks and
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Fig. 5. Read throughput, in megabytes/second, as a function of file size. The values are
averages of 25 runs, and all coefficients of variation are below 0.04.
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directory inodes. For these same file sizes, Soft Updates and No Order
involve approximately 1.1 disk writes per file, corresponding to 1 asynchro-
nous disk write of the data and a partial disk write for coalesced updates to
bitmap, inode, and directory blocks. Thus, Soft Updates both eliminates
synchronous writes and reduces the number of disk writes, coalescing
many metadata updates into a much smaller number of disk writes. Above
64KB, the gap between implementations closes as the file size grows, and
the data block writes become a larger fraction of the total. The lines drift
down between 2KB and 64KB, because the number of files created de-
creases as the file size gets larger.


4.3 Overall System Performance with Soft Updates


To illustrate how soft updates can be expected to perform in normal
operation, we present measurements from two system benchmarks (Sdet
and Postmark) and one system in real use.


Sdet. Figure 7 compares the three implementations using the depre-
cated Sdet benchmark from SPEC. This benchmark concurrently executes
one or more scripts of user commands designed to emulate a typical
software-development environment (e.g., editing, compiling, and various
UNIX utilities). The scripts are generated from a predetermined mix of
commands [Gaede 1981; 1982]. The reported metric is scripts/hour as a
function of the script concurrency. As expected, the overall results are that
Soft Updates is very close in performance to No Order (always within 3%)
and that both significantly outperform Conventional (by 6X with no script
concurrency and by more than 8X with script concurrency). Throughput
decreases with concurrency for Conventional because of locality-ruining
competition for its bottleneck resource, the disk. For No Order and Soft
Updates, on the other hand, throughput increases with the addition of
concurrency, because the portion of CPU unused by a lone script during its
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Fig. 6. Total number of disk writes for the create microbenchmark, as a function of file size.
The values are averages of 25 runs, and all coefficients of variation are below 0.13.
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few synchronous disk requests (mainly reads) can be used by concurrent
scripts. As script concurrency increases (e.g., 10 and beyond), context
switching and memory pressure slowly reduce performance for all three
schemes.


Postmark. Table I compares the three implementations using a file
system benchmark called Postmark [Katcher 1997]. Postmark was de-
signed to measure file system performance for the ephemeral small-file
workloads seen in environments such as electronic mail, netnews, and
Web-based commerce. Postmark creates a pool of random text files of
varying sizes, and then measures the time required to execute a specified
number of transactions. Each transaction, randomly selected, consists of
two of four actions: create a file of a random length (within bounds), delete
a file, read a file in its entirety, or append data to an existing file.
Comparative results from the benchmark reportedly match the experiences
of Internet Service Providers [Katcher 1997]. Our experiments use the
default benchmark settings: 30,000 transactions, equal bias across actions,
file sizes between 512 bytes and 16KB, initial pool of 1000 files and 10
directories. The overall results again match expectations: Soft Updates
performance is within 3% of No Order, and both outperform Conventional
by 3.7X. Soft Updates outperforms No Order by 3% because it pushes
deletion activity to the background.
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Fig. 7. Sdet results, in scripts per hour, for three script concurrency values. Each value is an
average of 5 runs, and the coefficients of variation are all below 0.085.


Table I. Postmark Results, in File System “Transactions per Second.” The values are
averages of 5 runs, and the standard deviations are given in parentheses.


File System Transactions
Configuration per Second


No Order 165 (2.4)
Soft Updates 170 (3.0)
Conventional 45.4 (1.1)
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Central Mail Service. To show that the benchmark results correlate well
with reality, we compare the performance of a machine running as the
central mail server for Berkeley Software Design, Inc. run with and
without soft updates (i.e., Conventional and Soft Updates). The administra-
tor was obviously unwilling to run it in No Order mode, since this is a
production machine and because people will not tolerate loss of their mail.
The hardware is roughly equivalent to our experimental system except that
the mail spool is striped across three disks. Statistics were gathered for 30
days of nonweekend operation in each mode. Table II compares the average
number of disk writes for a nonweekend 24-hour period.


The normal file system averaged over 40 writes per second with a ratio of
synchronous to asynchronous writes of 1:1. With soft updates, the write
rate dropped to 12 per second, and the ratio of synchronous to asynchro-
nous writes dropped to 1:8. For this real-world application, soft updates
requires 70% fewer writes, which triples the mail handling capacity of the
machine. While we do not have data on the relative email loads of the mail
server during the two measurement periods, we were told by the system
administrators that going back to Conventional after the month with Soft
Updates was not an option—the email load had grown over the experimen-
tal period to a point where the server could not keep up without soft
updates. In addition, these data were collected before the write-back tuning
described in Section 3.5, which could be expected to further reduce the
write activity.


4.4 File System Recovery Time


Table III compares the file system recovery times of Soft Updates and
Conventional for empty and 76% full file systems. No Order uses the same
recovery mechanism (fsck) as Conventional, but often cannot fully recover
to a consistent state.


For FreeBSD’s default FFS on our experimental platform, the fsck utility
executes in 5 seconds for an empty file system and requires 2.5 minutes or
more for a file system that is 76% full. With soft updates, on the other
hand, the same file systems can be mounted after a system failure in 0.35
seconds, regardless of how full they are. This includes the time necessary to
read and modify the superblock, read all cylinder group blocks, recompute
the auxiliary free space/inode counts, and initialize the various in-memory
structures. Only the recomputation step is unique to the soft updates
implementation.


Table II. Average Number of Disk Writes Observed for a Nonweekend 24-Hour Period on a
Central Mail Server


File System
Configuration


Disk Writes


Sync Async


Conventional 1,877,794 1,613,465
Soft Updates 118,102 946,519
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To verify that soft updates correctly protects metadata integrity, we
simulated unpredictable system failures by hitting the “halt button” at
random points during benchmark execution. In 25 trials, we found no
inconsistencies other than unclaimed free space. While not conclusive,
these results give us some confidence in the implementation. For compari-
son purposes, we repeated this experiment for the other two implementa-
tions. For both Conventional and No Order, the on-disk file system state
required off-line assistance before it could be safely used after 96% of our
trials. In addition, after 30% of our trials with No Order, there were
unresolvable inconsistencies (e.g., disk blocks pointed to by more than one
file). This last datum demonstrates the need for update sequencing.


4.5 Soft Updates versus Write-Ahead Logging


While we have shown that soft updates can sequence metadata updates
with near-zero impact on performance, it remains unknown how write-
ahead logging compares to the performance bound of No Order. Here, we
provide a partial answer to this question by evaluating a version of
FreeBSD FFS modified to use prototype write-ahead logging software. The
results indicate that the extra disk I/O required for write-ahead logging
degrades end-to-end performance by 4–19% for the Sdet and Postmark
benchmarks. A more complete evaluation of logging implementations (e.g.,
synchronous versus asynchronous logging, same disk versus separate disk
logging) and their performance relative to soft updates can be found in
Seltzer et al. [2000].


Logging-FFS augments FreeBSD FFS with support for write-ahead log-
ging by linking logging code into the same hooks used for the soft updates
integration. Most of these hooks call back into the logging code to describe a
metadata update, which is then recorded in the log. The log is stored in a
preallocated file that is maintained as a circular buffer and is about 1% of
the file system size. To track dependencies between log entries and file
system blocks, each cached block’s buffer header identifies the first and last
log entries that describe updates to the corresponding block. Logging-FFS
uses the former value to incrementally reclaim log space as file system
blocks are written to the disk; checkpoints are only explicitly performed
when this mechanism does not provide free space, which is rare. Logging-
FFS uses the latter value to ensure that relevant log entries are written to
disk before dependent file system blocks. Logging-FFS aggressively uses a
delayed group commit approach to improve performance, but always cor-
rectly writes log entries to disk before the file system updates that they


Table III. File System Recovery Times after System Failures for Two Levels of Capacity
Utilization


File System
Configuration


Recovery Time


Empty 76% Full


Conventional 5 seconds 150 seconds
Soft Updates 0.35 seconds 0.35 seconds
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describe. Details of Logging-FFS’s implementation can be found in Seltzer
et al. [2000].


Sdet. Figure 8 compares the write-ahead logging implementation to the
previous three implementations using the Sdet benchmark. Because of its
aggressive use of delayed writes for both log and metadata updates,
Logging-FFS follows the same basic trends as No Order and Soft Updates,
including outperforming Conventional by 5.9–7.8X. However, the extra
disk I/O required for disk-based logging results in 4–19% performance
degradation relative to No Order and Soft Updates. The performance of
Logging-FFS drops with high script concurrencies (15 and 20), as the log
writes increasingly compete with foreground disk activity.


Postmark. Table IV compares the write-ahead logging implementation
to the previous three implementations using the Postmark benchmark. The
overall results again match expectations: Logging-FFS performance is 6%
lower than No Order, 9% lower than Soft Updates, and 3.4X that of
Conventional.


5. CONCLUSIONS


The use of synchronous writes and off-line crash-recovery assistance (e.g.,
the fsck utility) to protect metadata has been identified as a source of
performance, integrity, security, and availability problems for file systems
[Ousterhout 1990; McVoy and Kleiman 1991; Seltzer et al. 1993]. We have
developed a new mechanism, soft updates, that can be used to achieve
memory-based file system performance while providing stronger integrity
and security guarantees (e.g., allocation initialization) and higher avail-
ability (via shorter recovery times) than most disk-based file systems. In
our microbenchmark and system-level experiments, this translates into
performance improvements of 100–2000% for metadata-update-intensive
benchmarks and recovery time improvements of more than two orders of
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average of 5 runs, and the coefficients of variation are all below 0.085.
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magnitude. It also represents 4–19% higher system performance than
write-ahead logging.


While our experiments were performed in the context of UNIX systems,
the results are applicable to a much wider range of operating environ-
ments. Every file system, regardless of the operating system, must address
the issue of integrity maintenance. Some (e.g., MPE-XL, CMS, Windows
NT) use database techniques such as logging or shadow-paging. Others
(e.g., OS/2, VMS) rely on carefully ordered synchronous writes and could
directly use our results.


A number of issues arose as soft updates moved from the research lab
into the product-quality 4.4BSD operating system. As is often the case,
nonfocal operations like “fsync,” fsck, and unmount required some re-
thinking and resulted in additional code complexity. Despite these unex-
pected difficulties, our performance measurements do verify the results of
the early research. The original soft updates code is available in Ganger
and Patt [1995]. The 4.4BSD soft updates code is now available for
commercial use in Berkeley Software Design Inc.’s BSD/OS 4.0 and later
systems. It is available for noncommercial use in the freely available BSDs:
FreeBSD, NetBSD, and OpenBSD.
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