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1. INTRODUCTION


A serverless network file system distributes storage, cache, and control over
cooperating workstations. This approach contrasts with traditional file sys-
tems such as Netware [Major et al. 1994], NFS [Sandberg et al. 19851,
Andrew [Howard et al. 1988], and Sprite [Nelson et al. 1988] where a central
server machine stores all data and satisfies all client cache misses. Such a
central server is both a performance and reliability bottleneck. A serverless
system, on the other hand, distributes control processing and data storage to
achieve scalable high performance, migrates the responsibilities of failed
components to the remaining machines to provide high availability, and
scales gracefully to simplify system management.


Three factors motivate our work on serverless network file systems: the
opportunity provided by fast switched LANs, the expanding demands of
users, and the fundamental limitations of central server systems.


The recent introduction of switched local area networks such as ATM or
Myrinet [Boden et al. 1995] enables serverlessness by providing aggregate
bandwidth that scales with the number of machines on the network. In
contrast, shared-media networks such as Ethernet or FDDI allow only one
client or server to transmit at a time. In addition, the move toward low-latency
network interfaces [Basu et al. 1995; von Eicken 1992] enables closer cooper-
ation between machines than has been possible in the past. The result is that
a LAN can be used as an 1/0 backplane, harnessing physically distributed
processors, memory, and disks into a single system.


Next-generation networks not only enable serverlessness; they require it by
allowing applications to place increasing demands on the file system. The
1/0 demands of traditional applications have been increasing over time
[Baker et al. 1991]; new applications enabled by fast networks—such as
multimedia, process migration, and parallel processing—will further pres-
sure file systems to provide increased performance. For instance, continuous-
media workloads will increase file system demands; even a few workstations
simultaneously running video applications would swamp a traditional central
server [Rashid 1994]. Coordinated Networks of Workstations (NOWS) allow
users to migrate jobs among many machines and permit networked worksta-
tions to run parallel jobs [Anderson et al. 1995; Douglas and Ousterhout
199 1; Litzkow and Solomon 1992]. By increasing the peak processing power
available to users, NOWS increase peak demands on the file system [Cypher
et al. 1993].


Unfortunately, current centralized file system designs fundamentally limit
performance and availability since all read misses and all disk writes go
through the central server. To address such performance limitations, users
resort to costly schemes to try to scale these fundamentally unscalable file
systems. Some installations rely on specialized server machines configured
with multiple processors, 1/0 channels, and 1/0 processors. Alas, such
machines cost significantly more than desktop workstations for a given
amount of computing or 1/0 capacity. Many installations also attempt to
achieve scalability by distributing a file system among multiple servers by
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partitioning the directm-y tree across multiple mount points, This approach


only moderately improves scalability because its coarse distribution often
results in hot spots when the partitioning allocates heavily used files and
directory trees to a single server [Wolf 1989]. It is also expensive, since it
requires the (human) system manager to effectively become part of the file
system moving users, volumes, and disks among servers to balance load.
Finally, Andrew [Howard et al. 1988] attempts to improve scalability by
caching data on client disks. Although this made sense on an Ethernet, on
today’s fast LANs fetching data from local disk can be an order of magnitude
slower than from server memory or remote striped disk.


Similarly, a central server represents a single point of failure, requiring
server replication [Birrell et al. 1993; Kazar 1989; Kistler and Satya-
narayanan 1992; Liskov et al, 1991; Popek et al. 1990; Walker et al, 1983] for
high availability. Replication increases the cost and complexity of central
servers and can increase latency on writes since the system must replicate
data al multiple servers.


In contrast t.o central server designs, our objective is to build a truly
distributed network file system—one with no central bottleneck. We have
designed and implemented xFS, a prototype serverless network file system,
to invc’stigate this goal. xFS illustrates serverless design principles in three
ways. First, xFS dynamically distributes control processing across the system
on a per-file granularity by utilizing a new serverless management scheme.
Second. xFS distributes its data storage across storage server disks by
implemtlnting a software RAID [Chen et al. 1994; Patterson et al. 1988] using


log-based network striping similar to Zebra’s [Hartman and Ousterhout
1995], Finally, xFS eliminates central server caching by taking advantage of
cooperative caching [Dahlin et al. 1994b; Leff et al. 1991] to harvest portions
of client memory as a large, global file cache.


This article makes two sets of contributions. First, xFS synthesizes a
number of recent innovations that, taken together, provide a basis for server-
Iess file system design. xFS relies on previous work in areas such as scalable
cache consistency (DASH [Lenoski et al. 1990] and Alewife [Chaiken et al.
1991 i ), cooperative caching, disk striping (RAID and Zebra), and log-struc-
tured file systems (Sprite LFS [Rosenblum and Ousterhout 1992] and BSD
I,FS [Seltzer et al. 1993]). Second, in addition to borrowing techniques
developed in other projects, we have refined them to work well in our
serverless system. For instance, we have transformed DASH’s scalable cache
consistency approach into a more general, distributed control system that is
also fault tolerant. We have also improved upon Zebra to eliminate bottle-
necks in its design hy using distributed management, parallel cleaning, and
subsets of storage servers called stripe groups. Finally, we have actually
implemented cooperative caching, building on prior simulation results.


The primary limitation of our serverless approach is that it is only appro-
priate in a restricted environment-–among machines that communicate over
a fast network and that trust one another’s kernels to enforce security.
However, we expect such environments to be common in the future. For
instance, NOW systems already provide high-speed networking and tmst to
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run parallel and distributed jobs. Similarly, xFS could be used within a group
or department where fast LANs connect machines and where uniform system
administration and physical building security allow machines to trust one
another. A file system based on serverless principles would also be appro-
priate for “scalable server” architectures currently being researched [Kubi-
atowicz and Agarwal 1993; Kuskin et al. 1994]. Untrusted clients can also
benefit from the scalable, reliable, and cost-effective file service provided by a
core of xFS machines via a more restrictive protocol such as NFS.


We have built a prototype that demonstrates most of xFS’ key features,
including distributed management, cooperative caching, and network disk
striping with parity and multiple groups. As Section 7 details, however,
several pieces of implementation remain to be done; most notably, we must
still implement the cleaner and much of the recovery and dynamic reconfigu-
ration code. The results in this article should thus be viewed as evidence that
the serverless approach is promising, not as “proof’ that it will succeed. We
present both simulation results of the xFS design and a few preliminary
measurements of the prototype. Because the prototype is largely untuned, a
single xFS client’s performance is slightly worse than that of a single NFS
client; we are currently working to improve single-client performance to allow
one xFS client to significantly outperform one NFS client by reading from or
writing to the network-striped disks at its full network bandwidth. Nonethe-
less, the prototype does demonstrate remarkable scalability. For instance, in
a 32-node xFS system with 32 clients, each client receives nearly as much
read or write bandwidth as it would see if it were the only active client.


The rest of this article discusses these issues in more detail. Section 2
provides an overview of recent research results exploited in the xFS design.
Section 3 explains how xFS distributes its data, metadata, and control.
Section 4 describes xFS distributed log cleaner. Section 5 outlines xFS’
approach to high availability, and Section 6 addresses the issue of security
and describes how xFS could be used in a mixed security environment. We
describe our prototype in Section 7, including initial performance measure-
ments. Section 8 describes related work, and Section 9 summarizes our
conclusions.


2. BACKGROUND


xFS builds upon several recent and ongoing research efforts to achieve our
goal of distributing all aspects of file service across the network. xFS’ network
disk storage exploits the high performance and availability of Redundant
Arrays of Inexpensive Disks (RAIDs). We organize this storage in a log
structure as in the Sprite and BSD Log-structured File Systems (LFS),
largely because Zebra demonstrated how to exploit the synergy between
RAID and LFS to provide high-performance, reliable writes to disks that are
distributed across a network. To distribute control across the network, xFS
draws inspiration from several multiprocessor cache consistency designs.
Finally, since xFS has evolved from our initial proposal [Wang and Anderson
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1993], we describe the relationship of the design presented here to
versions of the xFS design.


2.1 RAID


45


previous


xFS exploits RAID-style disk striping to provide high performance and highly
available disk storage [Chen et al. 1994; Patterson et al. 1988]. A RAID
partitions a stripe of data into N – 1 data blocks and a parity block—the
exclusive-OR of the corresponding bits of the data blocks. It stores each data
and parity block on a different disk. The parallelism of a RAID’s multiple
disks provides high bandwidth, while its parity provides fault tolerance-it
can reconstruct the contents of a failed disk by taking the exclusive-OR of the
remaining data blocks and the parity blocks. xFS uses single-parity disk
striping to achieve the same benefits; in the future we plan to cope with
multiple workstation or disk failures using multiple-parity blocks [Blaum
et al. 1994],


RAIDs suffer from two limitations. First, the overhead of parity manage-
ment can hurt performance for small writes; if the system does not simulta-
neously overwrite all N – 1 blocks of a stripe, it must first read the old parity
and some of the old data from the disks to compute the new parity. Unfortu-
nately, small writes are common in many environments [Baker et aI. 1991],
and larger caches increase the percentage of writes in disk workload mixes
over time. We expect cooperative caching—using workstation memory as a
global cache—to further this workload trend. A second drawback of commer-
cially available hardware RAID systems is that they are significantly more
expensive than non-RAID commodity disks because the commercial RAIDs
add special-purpose hardware to compute parity.


2.2 LFS


xFS implements log-structured storage based on the Sprite and BSD LFS
prototypes [Rosenblum and Ousterhout 1992; Seltzer et al. 1993] because this
approach provides high-performance writes, simple recovery, and a flexible
method to locate file data stored on disk. LFS addresses the RAID small-write
problem by buffering writes in memory and then committing them to disk in
large, contiguous, fixed-sized groups called log segments; it threads these
segments on disk to create a logical append-only log of file system modifica-
tions. When used with a RAID, each segment of the log spans a RAID stripe
and is committed as a unit to avoid the need to recompute parity. LFS also
simplifies failure recovery because all recent modifications are located near
the end of the log.


Although log-based storage simplifies writes, it potentially complicates
reads because any block could be located anywhere in the log, depending on
when it was written. LFS’ solution to this problem provides a general
mechanism to handle location-independent data storage. LFS uses per-file
inodes, similar to those of the Fast File System (FFS) [McKusick et al. 1984],
to store pointers to the system’s data blocks. However, where FFS’ inodes
reside in fixed locations, LFS’ inodes move to the end of the log each time
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they are modified. When LFS writes a file’s data block, moving it to the end of
the log, it updates the file’s inode to point to the new location of the data
block; it then writes the modified inode to the end of the log as well. LFS
locates the mobile inodes by adding a level of indirection, called an irnap. The
imap contains the current log pointers to the system’s inodes; LFS stores the
imap in memory and periodically checkpoints it to disk.


These checkpoints form a basis for LFS’ efllcient recovery procedure. After
a crash, LFS reads the last checkpoint in the log and then rolls forward,
reading the later segments in the log to find the new location of inodes that
were written since the last checkpoint. When recovery completes, the imap
contains pointers to all of the system’s inodes, and the inodes contain pointers
to all of the data blocks.


Another important aspect of LFS is its log cleaner that creates free disk
space for new log segments using a form of generational garbage collection.
When the system overwrites a block, it adds the new version of the block to
the newest log segment, creating a “hole” in the segment where the data used
to reside. The cleaner coalesces old, partially empty segments into a smaller
number of full segments to create contiguous space in which to store new
segments.


The overhead associated with log cleaning is the primary drawback of LFS.
Although Rosenblum’s original measurements found relatively low cleaner
overheads, even a small overhead can make the cleaner a bottleneck in a
distributed environment. Furthermore, some workloads, such as transaction
processing, incur larger cleaning overheads [Seltzer et al. 1993; 1995].


2.3 Zebra


Zebra [Hartman and Ousterhout 1995] provides a way to combine LFS and
RAID so that both work well in a distributed environment. Zebra uses a
software RAID on commodity hardware (workstation, disks, and networks) to
address RAID’s cost disadvantage, and LFS batched writes provide efficient
access to a network RAID. Furthermore, the reliability of both LFS and RAID
makes it feasible to distribute data storage across a network.


LFS’ solution to the small-write problem is particularly important for
Zebra’s network striping since reading old data to recalculate RAID parity
would be a network operation for Zebra. As Figure 1 illustrates, each Zebra
client coalesces its writes into a private per-client log. It commits the log to
the disks using fixed-sized log segments, each made up of several log frag-
ments that it sends to different storage server disks over the LAN. Log-based
striping allows clients to efficiently calculate parity fragments entirely as a
local operation and then store them on an additional storage server to provide
high data availability.


Zebra’s log-structured architecture significantly simplifies its failure recov-
ery. Like LFS, Zebra provides efllcient recovery using checkpoint and roll
forward. To roll the log forward, Zebra relies on deltas stored in the log. Each
delta describes a modification to a file system block, including the ID of the
modified block and pointers to the old and new versions of the block, to allow
the system to replay the modification during recovery. Deltas greatly simplifi
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Fig. 1, Log-based striping used by Zebra and xFS. Each client writes its new file data into a
private append-only log and stripes this log across the storage servers. Clients compute parity for
segments, not for individual files.


recovery by providing an atomic commit for actions that modify state located
on multiple machines: each delta encapsulates a set of changes to file system


state that must occur as a unit.
Although Zebra points the way toward serverlessness, several factors limit


Zebra’s scalability. First, a single file manager tracks where clients store
data blocks in the log; the manager also handles cache consistency opera-
tions. Second, Zebra, like LFS, relies on a single cleaner to create empty
segments. Finally, Zebra stripes each segment to all of the system’s storage
servers, limiting the maximum number of storage servers that Zebra can use
efficiently.


2.4 Multiprocessor Cache Consistency


Network file systems resemble multiprocessors in that both provide a uni-
form view of storage across the system, requiring both to track where blocks
are cached. This information allows them to maintain cache consistency by
invalidating stale cached copies. Multiprocessors such as DASH [Lenoski
et al. 1990] and Alewife [Chaiken et al. 1991] scalably distribute this task by
dividing the system’s physical memory evenly among processors; each proces-
sor manages the cache consistency state for its own physical memory loca-
tions.l


1In the context of scalable multiprocessor consistency, this state is referred to as a directory. We
avoid this terminology to prevent confhsion with file system directories that provide a hierarchi-
cal organization of file names.
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Unfortunately, the fixed mapping from physical memory addresses to
consistency managers makes this approach unsuitable for file systems. Our
goal is graceful recovery and load rebalancing whenever the number of
machines in xFS changes; such reconfiguration occurs when a machine
crashes or when a new machine joins xFS. Furthermore, as we show in
Section 3.2.4, by directly controlling which machines manage which data, we
can improve locality and reduce network communication.


2.5 Previous xFS Work


The design of xFS has evolved considerably since our original proposal
[Dahlin et al. 1994a; Wang and Anderson 1993]. The original design stored all
system data in client disk caches and managed cache consistency using a
hierarchy of metadata servers rooted at a central server. Our new implemen-
tation eliminates client disk caching in favor of network striping to take
advantage of high-speed, switched LANs. We still believe that the aggressive
caching of the earlier design would work well under different technology
assumptions; in particular, its efficient use of the network makes it well
suited for both wireless and wide-area network use. Moreover, our new
design eliminates the central management server in favor of a distributed
metadata manager to provide better scalability, locality, and availability.


We have also previously examined cooperative caching—using client mem-
ory as a global file cache—via simulation [Dahlin et al. 1994b] and therefore
focus only on the issues raised by integrating cooperative caching with the
rest of the serverless system.


3. SERVERLESS FILE SERVICE


The RAID, LFS, Zebra, and multiprocessor cache consistency work discussed
in the previous section leaves three basic problems unsolved. First, we need
scalable, distributed metadata and cache consistency management, along
with enough flexibility to reconfigure responsibilities dynamically after fail-
ures. Second, the system must provide a scalable way to subset storage
servers into groups to provide efficient storage. Finally, a log-based system
must provide scalable log cleaning.


This section describes the xFS design as it relates to the first two problems.
Section 3.1 provides an overview of how xFS distributes its key data struc-
tures. Section 3.2 then provides examples of how the system as a whole
functions for several important operations. This entire section disregards
several important details necessary to make the design practical; in particu-
lar, we defer discussion of log cleaning, recovery from failures, and security
until Sections 4 through 6.


3.1 Metadata and Data Distribution


The xFS design philosophy can be summed up with the phrase, “anything,
anywhere.” All data, metadata, and control can be located anywhere in the
system and can be dynamically migrated during operation. We exploit this
location independence to improve performance by taking advantage of all of
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the system’s resources—CPUs, DRAM, and disks—to distribute load and
increase locality. Furthermore, we use location independence to provide high
availability by allowing any machine to take over the responsibilities of a
failed component after recovering its state from the redundant log-structured
storage system.


In a typical centralized system, the central server has four main tasks:


(1) The server stores all of the system’s data blocks on its local disks.


(2) The server manages disk location metadata that indicates where on disk
the system has stored each data block.


(3) The server maintains a central cache of data blocks in its memory to
satisfy some client misses without accessing its disks.


(4) The server manages cache consistency metadata that lists which clients
in the system are caching each block. It uses this metadata to invalidate
stale data in client caches.2


The xFS system performs the same tasks, but it builds on the ideas
discussed in Section 2 to distribute this work over all of the machines in the
system. To provide scalable control of disk metadata and cache consistency
state, xFS splits management among metadata managers similar to multi-
processor consistency managers. Unlike multiprocessor managers, xFS man-
agers can alter the mapping from files to managers. Similarly, to provide
scalable disk storage, xFS uses log-based network striping inspired by Zebra,
but it dynamically clusters disks into stripe groups to allow the system to


scale to large numbers of storage servers. Finally, xFS replaces the server
cache with cooperative caching that forwards data among client caches under
the control of the managers. In xFS, four types of entities—the clients,
storage servers, and managers already mentioned, and the cleaners discussed
in Section 4—cooperate to provide file service as Figure 2 illustrates.


The key challenge for xFS is locating data and metadata in this dynami-
cally changing, completely distributed system. The rest of this subsection
examines four key maps used for this purpose: the manager map, the imap,
file directories, and the stripe group map. The manager map allows clients to
determine which manager to contact for a file, and the imap allows each
manager to locate where its files are stored in the on-disk log. File directories
serve the same purpose in xFS as in a standard UNIX file system, providing
a mapping from a human-readable name to a metadata locator called an
index number. Finally, the stripe group map provides mappings from seg-
ment identifiers embedded in disk log addresses to the set of physical
machines storing the segments. The rest of this subsection discusses these
four data structures before giving an example of their use in file reads and
writes. For reference, Table I provides a summary of these and other key xFS


z Note that the NFS server does not keep caches consistent. Instead NFS relies on clients tQ
verify that a block is current before using it. We rejected that approach because it sometimes
allows clients to observe stale data when a client tries to read what another client recently wrote.
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Fig. 2. Two simple xFS installations. In the first, each machine acts as a client, storage server,
cleaner, and manager, while in the second each node only performs some of those roles. The
freedom to configure the system is not complete; managers and cleaners access storage using the
client interface, so all machines acting as managers or cleaners must also be clients.


data structures. Figure 3 in Section 3.2.1. illustrates how these components
work together.


3.1.1 The Manager Map. xFS distributes management responsibilities
according to a globally replicated manager map. A client uses this mapping to
locate a file’s manager from the file’s index number by extracting some of the
index number’s bits and using them as an index into the manager map. The
map itself is simply a table that indicates which physical machines manage
which groups of index numbers at any given time.


This indirection allows xFS to adapt when managers enter or leave the
system; the map can also act as a coarse-grained load-balancing mechanism
to split the work of overloaded managers. Where distributed multiprocessor
cache consistency relies on a fixed mapping from physical addresses to
managers, xFS can change the mapping from index number to manager by
changing the manager map.


To support reconfiguration, the manager map should have at least an order
of magnitude more entries than there are managers. This rule of thumb
allows the system to balance load by assigning roughly equal portions of the
map to each manager. When a new machine joins the system, xFS can modi~
the manager map to assign some of the index number space to the new
manager by having the original managers send the corresponding parts of
their manager state to the new manager. Section 5 describes how the system
reconfigures manager maps. Note that the prototype has not yet implemented
this dynamic reconfiguration of manager maps.


xFS globally replicates the manager map to all of the managers and all of
the clients in the system. This replication allows managers to know their
responsibilities, and it allows clients to contact the correct manager directly
—with the same number of network hops as a system with a centralized
manager. We feel it is reasonable to distribute the manager map globally
because it is relatively small (even with hundreds of machines, the map
would be only tens of kilobytes in size) and because it changes only to correct
a load imbalance or when a machine enters or leaves the system.
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Table I. Summary of Key xFS Data Structures


DataStructure Purpose Lacation Section
Manager Map


Imap


Index Node


Index Number


File Directory


Disk hg Address


Stripe Group Map


Cache Consistency State


Segment Utilization State


S-Files


I-File


Deltas


Maps file’s index number+ manager.


Maps file’s index number+ disk log addressof file’s
index node.


Maps file offset - disk log address of data block.


Key used to locate metadatafor a file.


Maps file’s name - file’s index number.


Key used to locate blocks on storageserver disks.
Includesa stripegroup identifier, segmentID,
and offset within segment.


Maps disk log address+ list of storage servers.


Listsclients caching or holding the write token
of each block.


Utilization, modification time of segments.


Ondisk cleaner statefor cleaner communication
and recovery.


Gn disk copy of imap used for recovery.


Log modifications for recovery roll-forward.


Globally repliuted.


Splitamong managers.


In ondisk log at storageservers.


File directory.


In ondisk log at storageservers.


Index nodes and the imap.


Globally replicated.


Splitamong managers.


Splitamong clients.


In ondisk log at storageservers.


In ondisk log at storageservers.


In ondisk log at storageservers.


Manager Checkpoints Record managerstatefor recovery. In ondisk log at storageservers.


3.1,1


3.1.2


3.1.2


3.1.3


3.1.3


3.1.4


3.1.4


3.2.1
3.2.3


4


4


5


5


5


This table summarizesthe purposeof the key xFS datastructures. The location column indicateswhere thesestructuresare located in
xFS, and the Section column indicateswhere in thisarticle the structureis described.
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The manager of a file controls two sets of information about it: cache
consistency state and disk location metadata. Together, these structures
allow the manager to locate all copies of the file’s blocks. The manager can
thus forward client read requests to where the block is stored, and it can
invalidate stale data when clients write a block. For each block, the cache
consistency state lists the clients caching the block or the client that has
write ownership of it. The next subsection describes the disk metadata.


3.1.2 The Imap. Managers track not only where file blocks are cached but


also where in the on-disk log they are stored. xFS uses the LFS imap to
encapsulate disk location metadata; each file’s index number has an entry in
the imap that points to that file’s disk metadata in the log. To make LFS’
imap scale, xFS distributes the imap among managers according to the
manager map so that managers handle the imap entries and cache consis-
tency state of the same tiles.


The disk stirage for each file can be thought of as a tree whose root is the
imap entry for the file’s index number and whose leaves are the data blocks.
A file’s imap entry contains the log address of the file’s index node. xFS index
nodes, like those of LFS and FFS, contain the disk addresses of the file’s data
blocks; for large files the index node can also contain log addresses of indirect
blocks that contain more data block addresses, double indirect blocks that
contain addresses of indirect blocks, and so on.


3.1.3 File Directories and Index Numbers. xFS uses the data structures
described above to locate a file’s manager given the file’s index number. To
determine the file’s index number, xFS, like FFS and LFS, uses file directo-
ries that contain mappings from file names to index numbers. xFS stores


directories in regular files, allowing a client to learn an index number by
reading a directory.


In xFS, the index number listed in a directory determines a file’s manager.
When a file is created, we choose its index number so that the file’s manager
is on the same machine as the client that creates the file. Section 3.2.4
describes simulation results of the effectiveness of this policy in reducing
network communication.


3.1.4 The Stripe Group Map. Like Zebra, xFS bases its storage subsystem
on simple storage servers to which clients write log fkagments. To improve
performance and availability when using large numbers of storage servers,
rather than stripe each segment over all storage servers in the system, xFS
implements stripe groups as have been proposed for large RAIDs [Chen et al.
1994]. Each stripe group includes a separate subset of the system’s storage
servers, and clients write each segment across a stripe group rather than
across all of the system’s storage servers. xFS uses a globally replicated stripe
group map to direct reads and writes to the appropriate storage servers as
the system configuration changes. Like the manager map, xFS globally
replicates the stripe group map because it is small and seldom changes. The
current version of the prototype implements reads and writes from multiple
stripe groups, but it does not dynamically modi& the group map.
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Stripe groups are essential to support large numbers of’ storage servers for
at least four reasons. First, without stripe groups, clients would stripe each of
their segments over all of the disks in the system. This organization would
require clients to send small, inefficient fragments to each of the many
storage servers or to buffer enormous amounts of data per segment so that
they could write large fragments to each storage server. Second, stripe groups
match the aggregate bandwidth of the groups’ disks to the network band-
width of a client, using both resources efficiently; while one client writes at
its full network bandwidth to one stripe group, another client can do the
same with a different group. Third, by limiting segment size, stripe groups
make cleaning more efficient, This eftlciency arises because when cleaners
extract segments’ live data, they can skip completely empty segments, but
they must read partially full segments in their entirety; large segments
linger in the partially full state longer than small segments, significantly
increasing cleaning costs. Finally, stripe groups greatly improve availability.
Because each group stores its own parity, the system can survive multiple
server failures if they happen to strike different groups; in a large system
with random failures this is the most likely case. The cost for this improved
availability is a marginal reduction in disk storage and effective bandwidth
because the system dedicates one parity server per group rather than one for
the entire system.


The stripe group map provides several pieces of information about each
group: the group’s ID, the members of the group, and whether the group is
current or obsolete; we describe the distinction between current and obsolete
groups below. When a client writes a segment to a group, it includes the
stripe group’s ID in the segment’s identifier and uses the map’s list of storage
servers to send the data to the correct machines. Later, when it or another
client wants to read that segment, it uses the identifier and the stripe group
map to locate the storage servers to contact for the data or parity.


xFS distinguishes between current and obsolete groups to support reconfig-
uration. When a storage server enters or leaves the system, xFS changes the
map so that each active storage server belongs to exactly one current stripe
group. If this reconfiguration changes the membership of a particular group,
xFS does not delete the group’s old map entry. Instead, it marks that entry as
“obsolete.” Clients write only to current stripe groups, but they may read
from either current or obsolete stripe groups. By leaving the obsolete entries
in the map, xFS allows clients to read data previously written to the groups
without first transferring the data from obsolete groups to current groups.
Over time, the cleaner will move data from obsolete groups to current groups
[Hartman and Ousterhout 1995]. When the cleaner removes the last block of
live data from an obsolete group, xFS deletes its entry from the stripe group
map.


3.2 System Operation


This section describes how xFS uses the various maps we described in the
previous section. We first describe how reads, writes, and cache consistency
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work and then present simulation results examining the issue of locality in
the assignment of files to managers.


3.2.1 Reads and Caching. Figure 3 illustrates how xFS reads a block
given a file name and an offset within that file. Although the figure is
complex, the complexity in the architecture is designed to provide good
performance with fast LANs. On today’s fast LANs, fetching a block out of
local memory is much faster than fetching it from remote memory, which, in
turn, is much faster than fetching it from disk.


To open a file, the client first reads the file’s parent directory (labeled 1 in
the diagram) to determine its index number. Note that the parent directory
is, itself, a data file that must be read using the procedure described here. As
with FFS, xFS breaks this recursion at the rooti, the kernel learns the index
number of the root when it mounts the file system.


As the top left path in the figure indicates, the client first checks its local
UNIX block cache for the block (2a); if the block is present, the request is
done. Otherwise it follows the lower path to fetch the data over the network.
xFS first uses the manager map to locate the correct manager for the index
number (2b) and then sends the request to the manager. If the manager is
not colocated with the client, this message requires a network hop.


The manager then tries to satisfy the request by fetching the data fi-om
some other client’s cache. The manager checks its cache consistency state


(3a), and, if possible, forwards the request to a client caching the data. That
client reads the block from its UNIX block cache and forwards the data
directly to the client that originated the request. The manager also adds the
new client to its list of clients caching the block.


If no other client can supply the data from memory, the manager routes the
read request to disk by first examining the imap to locate the block’s index
node (3b). The manager may find the index node in its local cache (4a), or it
may have to read the index node from disk. If the manager has to read the
index node from disk, it uses the index node’s disk log address and the stripe
group map (4b) to determine which storage server to contact. The manager
then requests the index block from the storage server, who then reads the
block from its disk and sends it back to the manager (5). The manager then
uses the index node (6) to identi~ the log address of the data block. (We have
not shown a detail: if the file is large, the manager may have to read several
levels of indirect blocks to find the data block’s address; the manager follows
the same procedure in reading indirect blocks as in reading the index node.)


The manager uses the data block’s log address and the stripe group map


(7) ta send the request to the storage server keeping the block. The storage
server reads the data from its disk (8) and sends the data directly to the
client that originally asked for it.


One important design decision was to cache index nodes at managers but
not at clients. Although caching index nodes at clients would allow them to
read many blocks from storage servers without sending a request through the
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manager for each block, doing so has three significant drawbacks. First, by
reading blocks from disk without first contacting the manager, clients would
lose the opportunity to use cooperative caching to avoid disk accesses. Second,
although clients could sometimes read a data block directly, they would still
need to notify the manager of the fact that they now cache the block so that
the manager knows to invalidate the block if it is modified. Finally, our
approach simplifies the design by eliminating client caching and cache consis-
tency for index nodes—only the manager handling an index number directly
accesses its index node.


3.2.2 Writts. Clients buffer writes in their local memory until committed
to a stripe group of storage servers. Because xFS uses a log-based file system,
every write changes the disk address of the modified block. Therefore, after a
client commits a segment to a storage server, the client notifies the modified
blocks’ managers; the managers then update their index nodes and imaps
and periodically log these changes to stable storage. As with Zebra, xFS does
not need to commit both index nodes and their data blocks “simultaneously”
because the client’s log includes deltas that allows reconstruction of the
manager’s data structures in the event of a client or manager crash. We
discuss deltas in more detail in Section 5.1.


As in BSD LFS [Seltzer et al. 1993], each manager caches its portion of the
imap in memory and stores it on disk in a special file called the ifile. The
system treats the ifile like any other file with one exception: the ifile has no
index nodes. Instead, the system locates the blocks of the ifile using manager
checkpoints described in Section 5.1.


3.2.3 Cache Consistency. xFS utilizes a token-based cache consistency
scheme similar to Sprite [Nelson et al. 1988] and Andrew [Howard et al.
1988] except that xFS manages consistency on a per-block rather than
per-file basis. Before a client modifies a block, it must acquire write owner-
ship of that block. The client sends a message to the block’s manager. The
manager then invalidates any other cached copies of the block, updates its
cache consistency information tQ indicate the new owner, and replies to the
client, giving permission to write. Once a client owns a block, the client may
write the block repeatedly without having to ask the manager for ownership
each time. The client maintains write ownership until some other client reads
or writes the data, at which point the manager revokes ownership, forcing the
client to stop writing the block, flush any changes to stable storage, and
forward the data to the new client.


xFS managers use the same state for both cache consistency and coopera-
tive caching. The list of clients caching each block allows managers to
invalidate stale cached copies in the first case and to forward read requests to
clients with valid cached copies in the second.


3.2.4 Management Distribution Policies. xFS tries to assign files used by
a client to a manager colocated on that machine. This section presents a
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simulation study that examines policies for assigning files to managers. We
show that collocating a file’s management with the client that creates that file
can significantly improve locality, reducing the number of network hops
needed to satisfy client requests by over 40!Z0 compared to a centralized
manager.


The xFS prototype uses a policy we call First Writer. When a client creates
a file, xFS chooses an index number that assigns the file’s management to the
manager colocated with that client, For comparison, we also simulated a
Centralized policy that uses a single, centralized manager that is not colo-
cated with any of the clients.


We examined management policies by simulating xFS’ behavior under a
seven-day trace of 236 clients’ NFS accesses to an Auspex file server in the
Berkeley Computer Science Division [Dahlin et al. 1994a]. We warmed the
simulated caches through the first day of the trace and gathered statistics
through the rest. Since we would expect other workloads to yield different
results, evaluating a wider range of workloads remains important work.


The simulator counts the network messages necessary to satisfy client
requests, assuming that each client has 16MB of local cache and that there is
a manager colocated with each client, but that storage servers are always
remote.


Two artifacts of the trace affect the simulation. First, because the trace was
gathered by snooping the network, it does not include reads that resulted in
local cache hits. By omitting requests that resulted in local hits, the trace
inflates the average number of network hops needed to satisfy a read request.
Because we simulate larger caches than those of the traced system, this
factor does not alter the total number of network requests for each policy
[Smith 19’771,which is the relative metric we use for comparing policies.


The second limitation of the trace is that its finite length does not allow us
to determine a file’s “First Writer” with certainty for references to tiles
created before the beginning of the trace. For files that are read or deleted in
the trace before being written, we assign management to random managers
at the start of the trace; when and if such a file is written for the first time in
the trace, we move its management to the first writer. Because write sharing
is rare—960/o of all block overwrites or deletes are by the block’s previous
writer—we believe this heuristic will yield results close to a true “First
Writer” policy for writes, although it will give pessimistic locality results for
“cold-start” read misses that it assigns to random managers.


Figure 4 shows the impact of the policies on locality. The First Writer
policy reduces the total number of network hops needed to satisfy client
requests by 43$Z. Most of the difference comes from improving write locality;
the algorithm does little to improve locality for reads, and deletes account for
only a small fraction of the system’s network traffic.


Figure 5 illustrates the average number of network messages to satisfy a
read block request, write block request, or delete file request. The communi-
cation for a read block request includes all of the network hops indicated in
Figure 3. Despite the large number of network hops that can be incurred by
some requests, the average per request is quite low. Seventy-five percent of
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Fig. 5. Average number of network messages needed to satis~ a read block, write block, or
delete file request under the Centralized and First Writer policies. The Hops Per Write column
does not include a charge for writing the segment containing blosk writes to disk because the
segment write is asynchronous to the block write request and because the large segment
amortizes the per-block write cost. ‘Note that the number of hops per read would be even lower if
the trace included all local hits in the traced system.


read request.a in the trace were satisfied by the local cache; as noted earlier,
the local hit rate would be even higher if the trace included local hits in the
traced system. An average local read miss costs 2.9 hops under the First
Writer policy; a local miss normally requires three hops (the client asks the
manager; the manager forwards the request; and the storage server or client
supplies the data), but 12% of the time it can avoid one hop because the
manager is colocat.ed with the client making the request or the client supply-
ing the data. Under both the Centralized and First Writer policies, a read
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miss will occasionally incur a few additional hops to read an index node or
indirect block from a storage server.


Writes benefit more dramatically from locality. Of the 55% of write re-


quests that required the client to contact the manager to establish write
ownership, the manager was colocated with the client 90Yc of the time. When


a manager had to invalidate stale cached data, the cache being invalidated
was local one-third of the time. Finally, when clients flushed data to disk,
they informed the manager of the data’s new storage location, a local opera-
tion 90?l of the time.


Deletes, though rare, also benefit from locality: 68% of file delete requests
went to a local manager, and 89~o of the clients notified to stop caching
deleted files were local to the manager.


In the future, we plan to examine other policies for assigning managers.
For instance, we plan to investigate modiffing directories to permit xFS to
dynamically change a file’s index number and thus its manager after it has
been created. This capability would allow fine-g-rained load balancing on a
per-file rather than a per-manager map entry basis, and it would permit xFS
to improve locality by switching managers when a different machine repeat-
edly accesses a file.


Another optimization that we plan to investigate is to assign multiple
managers to different portions of the same file to balance load and provide
locality for parallel workloads.


4. CLEANING


When a log-structured file system such as xFS writes data by appending
complete segments to its logs, it often invalidates blocks in old segments,
leaving “holes” that contain no data. LFS uses a log cleaner to coalesce live
data from old segments into a smaller number of new segments, creating
completely empty segments that can be used for future full segment writes.
Since the cleaner must create empty segments at least as quickly as the
system writes new segments, a single, sequential cleaner would be a bottle-
neck in a distributed system such as xFS. Our design therefore provides a
distributed cleaner.


An LFS cleaner, whether centralized or distributed, has three main tasks.
First, the system must keep utilization status about old segments-how
many “holes” they contain and how recently these holes appeared—to make
wise decisions about which segments to clean [Rosenblum and Ousterhout
1992]. Second, the system must examine this bookkeeping information to
select segments to clean. Third, the cleaner reads the live blocks from old log
segments and writes those blocks to new segments.


The rest of this section describes how xFS distributes cleaning. We first
describe how xFS tracks segment utilizations, then how we identify subsets
of segments to examine and clean, and finally, how we coordinate the parallel
cleaners to keep the file system consistent. Because the prototype does not
yet implement the distributed cleaner, this section includes the key simula-
tion results motivating our design.
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4.1 Distributing Utilization Status


xFS assigns the burden of maintaining each segment’s utilization status to
the client that wrote the segment. This approach provides parallelism by
distributing the bookkeeping, and it provides good locality; because clients
seldom write-share data [Baker et al. 1991; Blaze 1993; Kistler and Satya-
narayanan 1992] a client’s writes usually affect only local segments’ utiliza-
tion status.


We simulated this policy to examine how well it reduced the overhead of
maintaining utilization information. For input to the simulator, we used the
Auspex trace described in Section 3.2.4, but since caching is not an issue, we
gather statistics for the full seven-day trace (rather than using some of that
time to warm caches).


Figure 6 shows the results of the simulation. The bars summarize the
network communication necessary to monitor segment state under three
policies: Centralized Pessimistic, Centralized Optimistic, and Distributed.
Under the Centralized Pessimistic policy, clients notify a centralized, remote
cleaner every time they modify an existing block. The Centralized Optimistic
policy also uses a cleaner that is remote from the clients, but clients do not
have to send messages when they modify blocks that are still in their local
write buffers. The results for this policy are optimistic because the simulator
assumes that blocks survive in clients’ write buffers for 30 seconds or until
overwritten, whichever is sooner; this assumption allows the simulated sys-
tem to avoid communication more often than a real system since it does not
account for segments that are written to disk early due to syncs [Baker et al.
1992]. (Unfortunately, syncs are not visible in our Auspex traces.) Finally,
under the Distributed policy, each client tracks the status of blocks that it
writes so that it needs no network messages when modi&ing a block for
which it was the last writer.


During the seven days of the trace, of the one million blocks written by
clients and then later overwritten or deleted, 33% were modified within 30
seconds by the same client and therefore required no network communication
under the Centralized Optimistic policy. However, the Distributed scheme
does much better, reducing communication by a factor of 18 for this workload
compared to even the Centralized Optimistic policy.


4.2 Distributing Cleaning


Clients store their segment utilization information in s-#iles. We implement
s-files as normal xFS files to facilitate recovery and sharing of s-files by
different machines in the system.


Each s-file contains segment utilization information for segments written
by one client to one stripe group: clients write their s-files into per-client
directories, and they write separate s-files in their directories for segments
stored to different stripe groups.


A leader in each stripe group initiates cleaning when the number of free
segments in that group falls below a low-water mark or when the group is
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Fig. 6. Simulated network communication between clients and cleaner, Each bar shows the
fraction of all blocks modified or deleted in the trace, based on the time and client that modified
the block. Blocks can be modified by a different client than originally wrote the data, by the same
client within 30 seconds of the previous write, or by the same client after more than 30 seconds
have passed. The Centralized Pessimistic policy assumes every modification requires network
traffic. The Centralized Optimistic scheme avoids network communication when the same client
modifies a block it wrote within the previous 30 seconds, while the Distributed scheme avoids
communication whenever a block is modified by its previous writer,


idle. The group leader decides which cleaners should clean the stripe group’s
segments. It sends each of those cleaners part of the list of s-files that contain
utilization information for the group. By giving each cleaner a different
subset of the s-files, xFS specifies subsets of segments that can be cleaned in
parallel.


A simple policy would be to assign each client to clean its own segments. An
attractive alternative is to assign cleaning responsibilities to idle machines.
xFS would do this by assigning s-files from active machines to the cleaners
running on idle ones.


4.3 Coordinating Cleaners


Like BSD LFS and Zebra, xFS uses optimistic concurrency control to resolve
conflicts between cleaner updates and normal file system writes. Cleaners do
not lock files that are being cleaned, nor do they invoke cache consistency
actions. Instead, cleaners just copy the blocks from the blocks’ old segments
to their new segments, optimistically assuming that the blocks are not in the
process of being updated somewhere else. If there is a conflict because a client
is writing a block as it is cleaned, the manager will ensure that the client
update takes precedence over the cleaner’s update. Although our algorithm
for distributing cleaning responsibilities never simultaneously asks multiple
cleaners to clean the same segment, the same mechanism could be used to
allow less strict (e.g., probabilistic) divisions of labor by resolving conflicts
between cleaners.
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5. RECOVERY AND RECONFIGURATION


Availability is a key challenge for a distributed system such as xFS. Because
xFS distributes the file system across many machines, it must be able to
continue operation when some of the machines fail. To meet this challenge,
xFS builds on Zebra’s recovery mechanisms, the keystone of which is redun-
dant, log-stmctured storage. The redundancy provided by a software RAID
makes the system’s logs highly available, and the log-structured storage
allows the system to quickly recover a consistent view of its data and
metadata through LFS checkpoint recovery and roll-forward.


LFS provides fast recovery by scanning the end of its log to first read a
checkpoint and then roll forward, and Zebra demonstrates how to extend LFS
recovery to a distributed system in which multiple clients are logging data
concurrently. xFS addresses two additional problems. First, xFS regenerates
the manager map and stripe group map using a distributed consensus
algorithm. Second, xFS recovers manager metadata from multiple managers’
logs, a process that xFS makes scalable by distributing checkpoint writes and
recovery to the managers and by distributing roll-forward to the clients.


The prototype implements only a limited subset of xFS recovery functional-
ity—storage servers recover their local state after a crash; they automatically
reconstruct data from parity when one storage server in a group fails; and
clients write deltas into their logs to support manager recovery. However, we
have not implemented manager checkpoint writes, checkpoint recovery reads,
or delta reads for roll-forward. The current prototype also fails to recover
cleaner state and cache consistency state, and it does not yet implement the
consensus algorithm needed to dynamically reconfigure manager maps and
stripe group maps. This section outlines our recovery design and explains
why we expect it to provide scalable recovery for the system. However, given
the complexity of the recovery problem and the early state of our implementa-
tion, continued research will be needed to filly understand scalable recovery.


5.1 Data Structure Recovery


Table H lists the data structures that storage servers, managers, and clean-
ers recover after a crash. For a systemwide reboot or widespread crash,
recovery proceeds from storage servers, to managers, and then to cleaners
because later levels depend on earlier ones. Because recovery depends on the
logs stored on the storage servers, xFS will be unable to continue if multiple
storage servers from a single stripe group are unreachable due to machine or
network failures. We plan to investigate using multiple parity fragments to
allow recovery when there are multiple failures within a stripe group [Blaum
et al. 1994]. Less widespread changes to xFS membership-such as when an
authorized machine asks to join the system, when a machine notifies the
system that it is withdrawing, or when a machine cannot be contacted
because of a crash or network failure—trigger similar reconfiguration steps.
For instance, if a single manager crashes, the system skips the steps to
recover the storage servers, going directly to generate a new manager map
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Table H. Data Structures Restored During Recovery


DataStructure Recovered From
Storage Server Log Segments Local DataStructures


StripeGroup Map Consensus


Manager Manager Map Consensus
Disk Location Metadata Checkpoint and Roll-Forward
Cache Consistency Metadata Poll Clients


Cleaner Segment Utilization S-Files


Recovery occurs in the order listedfrom top to bottom because lower datastructures
dependon higherones.


that assigns the failed manager’s duties to a new manager; the new manager
then recovers the failed manager’s disk metadata from the storage server logs
using checkpoint and roll-forward, and it recovers its cache consistency state
by polling clients.


5.1.1 Storage Server Recovery. The segments stored on storage server
disks contain the logs needed to recover the rest of xFS’ data structures, so
the storage servers initiate recovery by restoring their internal data struc-
tures. When a storage server recovers, it regenerates its mapping of xFS
fragment IDs to the fragments’ physical disk addresses, rebuilds its map of
its local free disk space, and verifies checksums for fragments that it stored
near the time of the crash. Each storage server recovers this information
independently from a private checkpoint, so this stage can proceed in parallel
across all storage servers.


Storage servers next regenerate their stripe group map. First, the storage
servers use a distributed consensus algorithm [Cristian 1991; Ricciardi and
Birman 1991; Schroeder et al. 1991] to determine group membership and to
elect a group leader. Each storage server then sends the leader a list of stripe
groups for which it stores segments, and the leader combines these lists to
form a list of groups where fragments are already stored (the obsolete stripe
groups). The leader then assigns each active storage server ti a current stripe
group and distributes the resulting stripe group map to the storage servers.


5.1.2 Manager Recovery. Once the storage servers have recovered, the
managers can recover their manager map, disk location metadata, and cache
consistency metadata. Manager map recovery uses a consensus algorithm as
described above for stripe group recovery. Cache consistency recovery relies
on server-driven polling [Baker 1994; Nelson et al. 1988]: a recovering
manager contacts the clients, and each client returns a list of the blocks that
it is caching or for which it has write ownership from that manager’s portion
of the index number space.


The remainder of this subsection describes how managers and clients work
together to recover the managers’ disk location metadata—the distributed
imap and index nodes that provide pointers to the data blocks on disk. Like
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LFS and Zebra, xFS recovers this data using a checkpoint and roll-forward
mechanism. xFS distributes this disk metadata recovery to managers and
clients so that each manager and client log written before the crash is
assigned to one manager or client to read during recovery. Each manager
reads the log containing the checkpoint for its portion of the index number


space, and where possible, clients read the same logs that they wrote before
the crash. This delegation occurs as part of the consensus process that
generates the manager map.


The goal of manager checkpoints is to help managers recover their imaps
from the logs. As Section 3.2.2 described, managers store copies of their imaps
in files called ifiles. To help recover the imaps from the ifiles, managers
periodically write checkpoints that contain lists of pointers to the disk storage
locations of the ifiles’ blocks. Because each checkpoint corresponds to the
state of the ifile when the checkpoint is written, it also includes the positions


of the clients’ logs reflected by the checkpoint. Thus, once a manager reads a
checkpoint during recovery, it knows the storage locations of the blocks of the
ifile as they existed at the time of the checkpoint, and it knows where in the
client logs to start reading to learn about more recent modifications. The
main difference between xFS and Zebra or BSD LFS is that xFS has multiple
managers, so each xFS manager writes its own checkpoint for its part of the
index number space.


During recovery, managers read their checkpoints independently and in


parallel. Each manager locates its checkpoint by first querying storage servers
to locate the newest segment written to its log before the crash and then
reading backward in the log until it finds the segment with the most recent
checkpoint. Next, managers use this checkpoint to recover their portions of
the imap. Although the managers’ checkpoints were written at different times
and therefore do not reflect a globally consistent view of the file system, the
next phase of recovery, roll-forward, brings all of the managers’ disk location
metadata to a consistent state corresponding to the end of the clients’ logs.


To account for changes that had not reached the managers’ checkpoints,
the system uses roll-forward, where clients use the deltas stored in their logs
to replay actions that occurred later than the checkpoints. To initiate roll-for-
ward, the managers use the log position information from their checkpoints
to advise the clients of the earliest segments to scan. Each client locates the
tail of its log by querying storage servers, and then it reads the log backward
to locate the earliest segment needed by any manager. Each client then reads
forward in its log, using the manager map to send the deltas to the appropri-
ate managers. Managers use the deltas to update their imaps and index
nodes as they do during normal operation; version numbers in the deltas


allow managers to chronologically order different clients’ modifications t.o the
same files [Hartman and Ousterhout 1995].


5.1.3 Cleaner Recovery. Clients checkpoint the segment utilization infor-
mation needed by cleaners in standard xFS files, called s-files. Because these
checkpoints are stored in standard files, they are automatically recovered by
the storage server and manager phases of recovery. However, the s-files may
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not reflect the most recent changes to segment utilizations at the time of the
crash, so s-file recovery also includes a roll-forward phase. Each client rolls
forward the utilization state of the segments tracked in its s-files by asking


the other clients for summaries of their modifications to those segments that


are more recent than the s-file checkpoint. To avoid scanning their logs twice,
clients gather this segment utilization summary information during the
roll-forward phase for manager metadata.


5.2 Scalability of Recovery


Even with the parallelism provided by xFS’ approach to manager recovery,
future work will be needed to evaluate its scalability. Our design is based on
the observation that, while the procedures described above can require
O(N z) communications steps (where N refers to the number of clients,
managers, or storage servers), each phase can proceed in parallel across N
machines.


For instance, to locate the tails of the systems logs, each manager and
client queries each storage server group to locate the end of its log. While this
can require a total of 0(l?2 ) messages, each manager or client only needs to
contact N storage server groups, and all of the managers and clients can
proceed in parallel, provided that they take steps to avoid having many
machines simultaneously contact the same storage server [Baker 1994]; we
plan to use randomization to accomplish this goal, Similar considerations
apply to the phases where managers read their checkpoints, clients roll
forward, and managers query clients for their cache consistency state.


6. SECURITY


xFS, as described, is appropriate for a restricted environment-among ma-
chines that communicate over a fast network and that tmst one another’s
kernels to enforce security. xFS managers, storage servers, clients, and
cleaners must run on secure machines using the protocols we have described
so far. However, xFS can support less trusted clients using different protocols
that require no more trust than traditional client protocols, albeit at some
cost to performance. Our current implementation allows unmodified UNIX
clients to mount a remote xFS partition using the standard NFS protocol.


Like other file systems, xFS trusts the kernel to enforce a firewall between
untrusted user processes and kernel subsystems such as xFS. The xFS
storage servers, managers, and clients can then enforce standard file system
security semantics. For instance, xFS storage servers only store fragments
supplied by authorized clients; xFS managers only grant read and write
tokens to authorized clients; xFS clients only allow user processes with
appropriate credentials and permissions to access file system data.


We expect this level of trust to exist within many settings. For instance,
xFS could be used within a group or department’s administrative domain,
where all machines are administered the same way and therefore trust one
another. Similarly, xFS would be appropriate within a NOW where users
already trust remote nodes to run migrated processes on their behalf. Even in
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Fig. 7. Am xFS core acting as a scalable file server for unmodified NFS!clients.


environment that do not trust all desktop machines, xFS could still be used
within a trusted core of desktop machines and servers, among physically
secure compute servers and file servers in a machine room, or within one of
the parallel server architectures now being researched [Kubiatowicz and
Agarwal 1993; Kuskin et al. 1994]. In these cases, the xFS core could still
provide scalable, reliable, and cost-effective file service to less trusted fringe
clients running more restrictive protocols. The downside is that the core
system cannot exploit the untrusted CPUS, memories, and disks located in
the fkinge.


Client trust is a concern for xFS because xFS ties its clients more inti-
mately to the rest of the system than do traditional protocols. This close
association improves performance, but it may increase the opportunity for
mischievous clients to interfere with the system. In either xFS or a tradi-
tional system, a compromised client can endanger data accessed by a user on
that machine. However, a damaged xFS client can do wider harm by writing
bad logs or by supplying incorrect data via cooperative caching. In the future
we plan to examine techniques to guard against unauthorized log entries and
ta use encryption-based techniques to safeguard cooperative caching.


Our current prototype allows unmodified UNIX fi-inge clients to access xFS
core machines using the NFS protocol as Figure 7 illustrates. To do this, any
xFS client in the core exports the xFS file system via NFS, and an NFS client
employs the same procedures it would use to mount a standard NFS partition
from the xFS client. The xFS core client then acts as an NFS server for the
NFS client, providing high pefiormance by employing the remaining xFS core
machines to satisfi any requesti not satisfied by its local cache. Multiple NFS
clients can utilize the xFS core as a scalable file server by having different
NFS clients mount the xFS file system using different xFS clients to avoid
bottlenecks. Because xFS provides single-machine sharing semantics, it ap-
pears to the NFS clients that they are mounting the same file system from
the same server. The NFS clients also benefit from xFS high availability,
since they can mount the file system using any available xFS client. Of
course, a key to good NFS server performance is to efficiently implement
synchronous writes; our prototype does not yet exploit the nonvolatile RAM
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optimization found in most commercial NFS servers [Baker et al. 1992], so for
best performance, NFS clients should mount these partitions using the
“unsafe” option to allow xFS to buffer writes in memory.


7. xFS PROTOTYPE


This section describes the state of the xFS prototype as of August, 1995, and
presents preliminary performance results measured on a 32-node cluster of
SPARCStation 10’s and 20’s. Although these results are preliminary and
although we expect future tuning to significantly improve absolute perfor-
mance, they suggest that xFS has achieved its goal of scalability. For in-
stance, in one of our microbenchmarks 32 clients achieved an aggregate
large-file write bandwidth of 13.9MB/second, close to a linear speedup
compared to a single client’s 0.6MB/second bandwidth. Our other tests
indicated similar speedups for reads and small-file writes.


The prototype implementation consists of four main pieces. First, we
implemented a small amount of code as a loadable module for the Solaris
kernel, This code provides xFS’ interface to the Solaris v-node layer and
accesses the kernel buffer cache. We implemented the remaining three pieces
of xFS as daemons outside of the kernel address space to facilitate debugging
[Howard et al. 1988]. If the xFS kernel module cannot satisfi a request using
the buffer cache, then it sends the request to the client daemon. The client
daemons provide the rest of xFS’ functionality by accessing the manager
daemons and the storage server daemons over the network.


The rest of this section summarizes the state of the prototype, describes our
test environment, and presents our results.


7.1 Prototype Status


The prototype implements most of xFS’ key features, including distributed
management, cooperative caching, and network disk striping with single
parity and multiple groups. We have not yet completed implementation of a
number of other features. The most glaring deficiencies are in crash recovery
and cleaning. Although we have implemented storage server recovery, includ-
ing automatic reconstruction of data from panty, we have not completed
implementation of manager state checkpoint and roll-forward; also, we have
not implemented the consensus algorithms necessary to calculate and dis-
tribute new manager maps and stripe group maps; the system currently
reads these mappings from a non-xFS file and cannot change them. Addition-
ally, we have yet to implement the distributed cleaner. As a result, xFS is
still best characterized as a research prototype, and the results in this article
should thus be viewed as evidence that the serverless approach is promising,
not as “proof’ that it will succeed.


7.2 Test Environment


For our testbed, we use a total of 32 machines: eight dual-processor SPARC-
Station 20’s, and 24 single-processor SPARCStation 10’s. Each of our ma-
chines has 64MB of physical memory. Uniprocessor 50 MHz SS-20’s and
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SS-10’S have SPECInt92 ratings of 74 and 65 and can copy large blocks of
data from memory to memory at 27MB/second and 20MB/second, respec-
tively.


We use the same hardware to compare xFS with two central-server archi-
tectures: NFS [Sandberg et al. 1985] and AFS (a commercial version of the
Andrew file system [Howard et al. 1988]). We use NFS as our baseline system
for practical reasons—NFS is mature, widely available, and well tuned,
allowing easy comparison and a good frame of reference—but its limitations
with respect to scalability are well known [Howard et al. 1988]. Since many
NFS installations have attacked NFS limitations by buying shared-memory
multiprocessor servers, we would like to compare xFS running on worksta-
tions to NFS running on a large multiprocessor server, but such a machine
was not available to us; our NFS server therefore runs on essentially the
same platform as the clients. We also compare xFS to AFS, a more scalable
central-server architecture. However, AFS achieves most of its scalability
compared to NFS by improving cache petiormance; ita scalability is only
modestly better compared to NFS for reads from server disk and for writes.


For our NFS and AFS tests, we use one of the SS-20’s as the server and the
remaining 31 machines as clients. For the xFS tests, all machines act as
storage servers, managers, and clients unless otherwise noted. For experi-
ments using fewer than 32 machines, we always include all of the SS-20’s
before starting to use the less powerful SS-10’S.


The xFS storage servers store data on a 256MB partition of a 1.lGB
Seagate-STl 1200N disk. These disks have an advertised average seek time of
5.4ms and rotate at 541 lRPM. We measured a 2.7MB/second peak band-
width to read from the raw disk device into memory. For all xFS tests, we use
a log fragment size of 64KB, and unless otherwise noted we use storage
server groups of eight machines—seven for data and one for parity; all xFS
tests include the overhead of parity computation. The AFS clients use a
100MB partition of the same disks for local disk caches.


The NFS and AFS central servers use a larger and somewhat faster disk
than the xFS storage servers, a 2. lGB DEC RZ 28-VA with a peak bandwidth
of 5MB/second from the raw partition into memory. These servers also use a
Prestoserve NVRAM card that acts as a buffer for disk writes [Baker et al.
1992]. We did not use an NVR&l btier for the xFS machines, but xFS’ log
buffer provides similar performance benefits.


A high-speed, switched Myrinet network [Boden et al. 1995] connects the
machines. Although each link of the physical network has a peak bandwidth
of 80MB/second, RPC and TCP\IP protocol overheads place a much lower
limit on the throughput actually achieved [Keeton et al. 1995]. The through-
put for fast networks such as the Myrinet depends heavily on the version and
patch level of the Solaris operating system used. For our xFS measurements,
we used a kernel that we compiled from the Solaris 2.4 source release. We
measured the TCP throughput to be 3.2MB/second for 8KB packets when
using this source release. For the NFS and AFS measurements, we used the
binary release of Solaris 2.4, augmented with the binary patches recom-
mended by Sun as of June 1, 1995. This release provides better network
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performance; our TCP test achieved a throughput of 8.4 MB/second for this
setup. Alas, we could not get sources for the patches, so our xFS measure-
ments are penalized with a slower effective network than NFS and AFS. RPC
overheads further reduce network performance for all three systems.


7.3 Performance Results


This section presents a set of preliminary performance results for xFS under
a set of microbenchmarks designed to stress file system scalability and under
an application-level benchmark.


These performance results are preliminary. As noted above, several signifi-
cant pieces of the xFS system—manager checkpoints and cleaning—remain


to be implemented. We do not expect these additions to significantly impact
the results for the benchmarks presented here. We do not expect checkpoints
to ever limit performance. However, thorough future investigation will be
needed to evaluate the impact of distributed cleaning under a wide range
workloads; other researchers have measured sequential cleaning overheads
from a few percent [Blackwell et al. 1995; Rosenblum and Ousterhout 1992]
to as much as 40”; [Seltzer et al. 1995], depending on the workload.


Also, the current prototype implementation suffers from three inefficien-
cies, all of which we will attack in the future.


(1) xFS is currently implemented as a set of user-level processes by redirect-
ing vnode layer calls. This hurts performance because each user/kernel
space crossing requires the kernel to schedule the user-level process and
copy data to or from the user process’ address space. To fix this limitation,
we are working to move xFS into the kernel. (Note that AFS shares this
handicap.)


(2) RPC and TCP/IP overheads severely limit xFS’ network performance. We
are porting xFS’ communications layer to Active Messages [von Eicken et
al. 1992] to address this issue.


(3) We have done little profiling and tuning. As we do so, we expect to find
and flx inefficiencies.


As a result, the absolute performance is much less than we expect for the
well-tuned xFS. As the implementation matures, we expect a single xFS
client to significantly outperform an NFS or AFS client by benefiting from
the bandwidth of multiple disks and from cooperative caching. Our eventual
performance goal is for a single xFS client to achieve read and write band-
widths near that of its maximum network throughput and for multiple clients
to realize an aggregate bandwidth approaching the system’s aggregate local
disk bandwidth.


The microbenchmark results presented here stress the scalability of xFS’
storage servers and managers. We examine read and write throughput for
large files and write performance for small files, but we do not examine
small-file read performance explicitly because the network is too slow to
provide an interesting evaluation of cooperative caching; we leave this evalu-
ation as future work. We also use Satyanarayanan’s Andrew benchmark
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Clients


Fig. 8. Aggregate disk write bandwidth. The x-axis indicates the number of clients simuk.ane-
ously writing private 10MB files, and the y-axis indicates the total throughput across all of the
active clients. xFS uses four groups of eight storage servers and 32 managers. NFS peak
throughput is 1.9MB/second with two clients; AFS is 1.3MB/second with 32 clients; and xFS is
13.9MB/second with 32 clients.


[Howard et al. 1988] assa simple evaluation of application-level performance.
In the fiture, we plan to compare the systems’ performance under more
demanding applications,


7.3.1 Scalability. Figures 8 through 10 illustrate the scalability of xFS
performance for large writes, large reads, and small writes. For each of these
tests, as the number of clients increases, so does xFS aggregate performance.
In contrast, just a few clients saturate NFS or AFS’ single server, limiting
peak throughput.


Figure 8 illustrates the performance of our disk write throughput test, in
which each client writes a large (1 OMB), private file and then invokes syne( )
to force the data to disk (some of the data stay in NVRAM in the case of NFS
and AFS.) A single xFS client is limited h 0.6MB/second, about one-third of
the 1.7MB/second throughput of a single NFS client; this difference is
largely due to the extra kernel crossings and associated data copies in the
user-level xFS implementation, as well aa high network protocol overheads. A
single AFS client achieves a bandwidth of 0.7 MB/second, limited by AFS’
kernel crossings and the overhead of writing data to both the local disk cache
and the server disk. Aa we increase the number of clients, NFS’ and AFS’
throughputs increase only modestly until the single, central server disk
bottlenecks both systems. The xFS configuration, in contrast, scales up to a
peak bandwidth of 13.9MB\second for 32 clients, and it appears that if we
had more clients available for our experiments, they could achieve even more
bandwidth from the 32 xFS storage servers and managers.


Figure 9 illustrates the performance of NFS, AFS, and xFS for large reads
from disk. For this test, each machine flushes its cache and then sequentially
reads a per-client 10MB file. Again, a single NFS or AFS client outperforms a
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Fig. 9. Aggregate disk read bandwidth, The x-axis indicates the number of clients simultane-
ously reading private 10MB files and the y-axis the total throughput across all active clients. xFS
uses four groups of eight storage servers and 32 managers. NFS peak throughput is 3. lMB/sec-
ond with two clients; AFS’ is 1.9MB/second with 12 clients; and xFS is 13,8MB/second with 32
clients


single xFS client. One NFS client can read at 2.8MB\second, and an AFS
client can read at l. OMB/second, while the current xFS implementation
limits one xFS client to 0.9MB\second. As is the case for writes, xFS exhibits
good scalability; 32 clients achieve a read throughput of 13.8MB/second. In
contrast, two clients saturate NFS at a peak throughput of 3. lMB\second,
and 12 clients saturate AFS’ central server disk at 1.9MB/second.


While Figure 9 shows disk read performance when data are not cached, all
three file systems achieve much better scalability when clients can read data
from their caches to avoid interacting with the server. All three systems allow
clients to cache data in local memory, providing scalable bandwidths of
20MB\second to 30MB\second per client when clients access working sets of
a few tens of megabytes. Furthermore, AFS provides a larger, though slower,
local disk cache at each client that provides scalable disk read bandwidth for
workloads whose working sets do not fit in memory; our 32-node AFS cluster
can achieve an aggregate disk bandwidth of nearly 40MB/second for such
workloads. This aggregate disk bandwidth is significantly larger than xFS’
maximum disk bandwidth for two reasons. First, as noted above, xFS is
largely untuned, and we expect the gap to shrink in the future. Second, xFS
transfers most of the data over the network, while AFS’ cache accesses are
local. Thus, there will be some workloads for which AFS’ disk caches achieve
a higher aggregate disk read bandwidth than xFS’ network storage. xFS’
network striping, however, provides better write performance and will, in the
future, provide better read performance for individual clients via striping.
Additionally, once we have ported cooperative caching to a faster network


protocol, accessing remote memory will be much faster than going to local
disk, and thus the clients’ large, aggregate memory cache will further reduce
the potential benefit from local disk caching.
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Fig. 10. Aggregate small-write performance. The x-axis indicates the number of clients, each
simultaneously creating 2048 lKB files. The y-axis is the average aggregate number of tile
creates per second during the benchmark mn, xFS uses four groups of eight storage servers and
32 managers. NFS achieves its peak throughput of 91 files per second with four clients; AFS
peaks at 87 files per second with four clients; and xFS scales up to 1122 files per second with 32
clients.


Figure 10 illustrates the petiormance when each client creates 2048 files
containing lKB of data per file. For this benchmark, xFS log-based architec-
ture overcomes the current implementation limitations to achieve approxi-
mate parity with NFS and AFS for a single client: one NFS, AFS, or xFS
client can create 51, 32, or 41 files per second, respectively. xFS also demon-
strates good scalability for this benchmark. Thirty-two xFS clients generate a
total of 1122 files per second, while NFS peak rate is 91 files per second with
four clients, and AFS’ peak is 87 files per second with four clients.


Figure 11 shows the average time for a client to complete the Andrew
benchmark as the number of clients varies for each file system. This bench-
mark was designed as a simple yardstick for comparing application-level
performance for common tasks such as copying, reading, and compiling files.
When one client is running the benchmark, NFS takes 64 seconds to run, and
AFS takes 61 seconds, while xFS requires somewhat more time—78 seconds.
xFS scalability, however, allows xFS to outperform the other systems for
larger numbers of clients. For instance, with 32 clients xFS takes 117 seconds
to complete the benchmark, while increased 1/0 time, particularly in the
copy phase of the benchmark, increases NFS time to 172 seconds and AFS
time to 210 seconds. A surprising result is that NFS outperforms AFS when
there are a large number of clients; this is because in-memory file caches
have grown dramatically since this comparison was first made [Howard et al.
1988], and the working set of the benchmark now fita in the NFS clients’
in-memory caches, reducing the benefit of AFS on-disk caches.


7.3.2 Storage Server Scalability. In the above measurements, we used a
32-node xFS system where all machines acted as clients, managers, and
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Fig. 11 Average time to complete the Andrew benchmark for NFS, AFS, and xFS as the
number of clients simultaneously executing the benchmark varies. The total height of the shaded
areas represents the total time to complete the benchmark; each shaded area represents the time
for one of the five phases of the benchmark: makeDir, copy, scanDir, readAll, and make For all
of the systems, the caches were flushed before running the benchmark.


storage servers and found that both bandwidth and small-write performance
scaled well. This section examines the impact of different storage server
organizations on that scalability. Figure 12 shows the large-write perfor-
mance as we vary the number of storage servers and as we change the stripe
group size.


Increasing the number of storage servers improves performance by spread-
ing the systems’ requests across more CPUS and disks. The increase in
bandwidth falls short of linear with the number of storage servers, however,
because client overheads are also a significant limitation on system band-
width.


Reducing the stripe group size from eight storage servers to four reduces
the system’s aggregate bandwidth by 87G to 227c for the different measure-
ments. We attribute most of this difference to the increased overhead of


panty. Reducing the stripe group size from eight to four reduces the fraction
of fragments that store data as opposed to parity. The additional overhead
reduces the available disk bandwidth by 1690 for the system using groups of
four servers.


7.3.3 Manager Scalability. Figure 13 shows the importance of distribut-
ing management among multiple managers to achieve both parallelism and
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Fig. 12. Large-write throughput as a function of the number of stmage servers in the system.
The x-axis indicates the total number of storage servers in the system and the y-axis the
aggregate bandwidth when 32 clients each write a 10MB file to disk. The solid line indicates
performance for stripe groups of eight storage servers (the default), and the dashed line shows
performance for groups of four storage servers.
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Fig. 13. Small-write performance as a function of the number of managers in the system and
manager locality policy. The x-axis indicates the number of managers. The y-axis is the average
aggregate number of file creates per second by 31 clients, each simultaneously creating 2048
small ( lKB) files. The two lines show the performance using the First Writer policy that
colocatas a file’s manager with the client that creates the file, and a Nonlocal policy that assigns
management b some other machine. Because of a hardware failure, we ran this experiment with
three groups of eight storage servers and 31 clients. The maximum point on the x-axis is 31
managers.


locality. It varies the number of managers handling metadata for 31 clients
running the small-write benchmark .3 This graph indicates that a single
manager is a significant bottleneck for this benchmark. Increasing the sys-


3 Due to a hardware failure, we ran this experiment with three groups of eight storage servers
and 31 clients.
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tern from one manager to two increases throughput by over 80’%, and a
system with four managers more than doubles throughput compared to a
single-manager system,


Continuing to increase the number of managers in the system continues to
improve performance under xFS’ First Writer policy. This policy assigns files
to managers running on the same machine as the clients that create the files;
Section 3.2.4 described this policy in more detail. The system with 31 man-
agers can create 45% more files per second than the system with four
managers under this policy. This improvement comes not from load distribu-
tion but from locality; when a larger fraction of the clients also host man-
agers, the algorithm is able to successfully colocate managers with the clients
accessing a file more often.


The Nonlocal Manager line illustrates what would happen without locality.
For this line, we altered the system’s management assignment policy to avoid
assigning files created by a client to the local manager. When the system has
four managers, throughput peaks for this algorithm because the managers
are no longer a significant bottleneck for this benchmark; larger numbers of
managers do not further improve performance.


8. RELATED WORK


Section 2 discussed a number of projects that provide an important basis for
xFS. This section describes several other efforts to build decentralized file
systems and then discusses the dynamic management hierarchies used in
some MPPs.


Several file systems, such as CFS [Pierce 1989], Bridge [Dibble and Scott
1989], and Vesta [Corbett et al. 1993], distribute data over multiple storage
servers to support parallel workloads; however, they lack mechanisms to
provide availability across component failures.


Other parallel systems have implemented redundant data storage intended
for restricted workloads consisting entirely of large files, where per-tile
striping is appropriate and where large-file accesses reduce stress on their
centralized manager architectures. For instance, Swift [Cabrera and Long
1991] and SFS [Lo Verso et al. 1993] provide redundant distributed data
storage for parallel environments, and Tiger [Rashid 1994] services multi-
media workloads.


TickerTAIP [Cao et al. 1993], SNS [Lee 1995], and AutoRAID [Wilkes et al.
1995] implement RAID-derived storage systems. These systems could provide
services similar to xFS’ storage servers, but they would require serverless
management to provide a scalable and highly available tile system interface
to augment their simpler disk block interfaces. In contrast with the log-based
striping approach taken by Zebra and xFS, TickerTAIPs RAID level 5
[Patterson et al. 1988] architecture makes calculating parity for small writes
expensive when disks are distributed over the network. SNS combats this
problem by using a RAID level 1 (mirrored) architecture, but this approach
approximately doubles the space overhead for storing redundant data.
AutoRAID addresses this dilemma by storing data that are actively being
written to a RAID level 1 and migrating inactive data to a RAID level 5.
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Several MPP designs have used dynamic hierarchies to avoid the fixed-home
approach used in traditional directory-based MPPs. The KSR1 [Rosti et al.
1993] machine, based on the DDM proposal [Hagersten et al. 1992], avoids
associating data with fixed-home nodes. Instead, data may be stared in any
cache, and a hierarchy of directories allows any node to locate any data by
searching successively higher and more globally complete directories. While
an early xFS study simulated the effect of a hierarchical approach to meta-
data for file systems [Dahlin et al. 1994a], we now instead support location
independence using a manager-map-based approach for three reasons. First,
our approach eliminates the “root” manager that must track all data; such a
root would bottleneck peflormance and reduce availability. Second, the man-
ager map allows a client to locate a file’s manager with at most one network
hop. Finally, the manager map approach can be integrated more readily with
the imap data structure that tracks disk location metadata.


9. CONCLUSIONS


Serverless file systems distribute file system server responsibilities across
large numbers of cooperating machines. This approach eliminates the central


server bottleneck inherent in today’s file system designs to provide improved
performance, scalability, and availability. Furthermore, serverless systems
are cost effective because their scalable architecture eliminates the special-
ized server hardware and convoluted system administration necessary to
achieve scalability under current file systems. The xFS prototype demon-
strates the viability of building such scalable systems, and its initial perfor-
mance results illustrate the potential of this approach.


ACKNOWLEDGMENTS


We owe several members of the Berkeley Communications Abstraction Layer
group-David Culler, Lok Liu, and Rich Martin-a large debt for helping us
to get the 32-node Myrinet network up. We also made use of a modified
version of Mendel Rosenblum’s LFS cleaner simulator. Eric Anderson, John
Hartman, Frans Kaashoek, John Ousterhout, the SOSP program committee,
and the anonymous SOSP and TOCS referees provided helpful comments on
earlier drafls of this article; their comments greatly improved both the
technical content and presentation of this work.


REFERENCES


ANDERSON,T., CULLER, D., PATTERSON, D., AND THE NOW TEAM. 1995. A case for NOW
(Networks of Workstations). IEEE Micro 15, 1 (Feb.), 54-64.


BARRR, M. 1994. Fast crash recovery in distributed tile systems. Ph.D. thesis, Univ. of Califor-
nia at Berkeley, Berkeley, Calif.


BAKER,M., As*I, S., DEPRIT,E., Ousmwow, J., ANDSELTZER,M. 1992. Non-volatile memory
for fast, reliable file systems. In ASPLOS-V (Sept.). ACM, New York, 10-22.


BAXER, M., I-Lwm&m, J., KUPFER, M., SHIRRIFF,K., ~ Ous’rmuiowr, J. 1991. Measurement
of a distributed file system. In Proceedings of the 13th Symposium on Opemting Systems
Principk-s (Oct.).ACM, New York, 198-212.


ACM Transactions on Computir Systems, Vol. 14, No. 1, February 1996.







Serverless Network File Systems . 77


BASCI,A., BIIIH, V., V(WELS, W.. AND v(JiNEK’KEN, T. 1995. U-Net: A user-level network
interface for parallel and distributed computing. In Proceedings of the 1.5thSymposium on
Operajing SLvstem.sPrinr~ple.s (Dec.), ACM, New York, 40-53.


E31RRELI,,A., HISGEN, A., J~RIAN, C,, MANN, T., ANDSWART,G. 1993. The Echo distributed tile
system. Tech. Rep. 111, Digital Equipment Corp., Systems Research Center, Palo Alto., Calif.


BLACKWEX,L,T., HARRIS,J., MWISIH.TZP,R,M. 1995, Heuristic cleaning algorithms in log-struc-
tured file systems. In Proceedings of the 199,5 Winter USEN’IX. USENIX Assoc., Berkeley,
Calif., 277-288.


BLAUM,M., BRADY,J., BR[)CK, J., ,mn M~NON, J, EVENODD: An optimal scheme for tolerating
double disk failures in RAID architectures. In Proceedings of the 21st International Sympo-
sium on Computer Architecture (Apr.). IEEE Computer Society Press, Los Alamitos, Calif,,
245-254.


BMW, M. 1993. Caching in large-scale distributed file systems. Ph, D. thesis, Princeton Univ.,
Princeton, NJ. Jan.


BCH)EN, N., COHEN, D , FELI)ERMAN, R., KULAWIK, A., SEITZ, C,, SEIzovI(’, J,, AXI) S(;, W. 1995.


Myrirwt A gigabit-per-second local-area network, IEEE Micro 1,5, 1 (Feb. ), 29-36.


CAMWL4, L. AN]) LOM;, D. 1991. Swift: A storage architecture for large objects. In Proceedings
of the 11th Symposium on Mass Storage Systems (Oct.). IEEE Cornputer Society Press, Las
Alamitos, Calif., 123-128.


(’A(), P., LIM, S., VENKAIAMMAN. S,, AND WILKES, J. 1993. The TickerTAIP parallel RAID
arch itecture, In Proceedings of the 20th International 1 Symposium on Computer Architect re
(May). IEEE Computer Society Press, Las Alamitos, Calif., 52-63.


CHAIKEX, D., KLIIIIATOWI(Z, J., ANI) A~ARWAL, A. 1991. LimitLESS directories: A scalable cache
coherence scheme. In ASPL.OS-IV Proceedings (Apr.), ACM, New York, 224-234.


C}mix. P., Lix, E,, GIBSON, G., RAT”, R., AND PATIWRSCN,D. 1994, RAID: High-performance,
reliable secondary storage. ACM Comput, Suru, 26, 2 (June), 145-188.


CORWXT, P., BAYLOR, S., ANI) FEJTE1.WN,D. 1993. Overview of the Vesta parallel file system.
(hmput. Arch. Neus 21, 5 (Dec.), 7-14.


CswsTL\S,F. 1991. Reaching agreement on processor group membership in synchronous dis-
tributed systems. Distrib. Comput. 4, 175-187.


CYPHER, R., Ho, A., K(PWT.4NTINHXNT, S., ANII MIXWNA P. 1993. Architectural requirements of
parallel scientific applications with explicit communication. [n Prm-eed~ngs of the 20th Interrsa -
tirma[ Symposium on Computer Architecture (May). IEEE Computer Society Press, Los Alami-
tos, (’alif., 2-13.


DAHLIN. M., MATHIW, C,. W.4N(;, R., ANDERSON, T., A?W PA’ITERSO?J, D. 1994a. A quantitative
analysis of cache policies for scalable network tile systems. In Proceedings of the 1994 ACM
SIGM.ETRICS Conference (May). ACM, New York, 150-160.


DAHI.IN, M., WANG. R., AWERSO~, T., Am PAnERSON, D. 1994b, Cooperative caching: Using
remote client memory to improve file system performance. In Proceedings of the Ist Sympo-
sium on Operating .Sy,stem.sDesign and Imp/emerrtation (Nov.), 276-280.


DIBBI,K, P. ANH Scwrr. M. 1989. The Bridge multiprocessor file system. Comput. Arch. News
17, 5 (Sept.), 32-39.


Doum.M, F. mo OUSTERHW.IT, J. 1991. Transparent process migration: Design alternatives
and the Sprite implementation. Srrfl/4. Pr-acf. 13xp. 21, 8 (July), 757-785


HA~I.XWWN, E., LANOJN,A., ANO HARIDI, S. 1992, DDM- A cache-only memory architecture.
IEEE Compu~. 25, 9 (Sept.), 45-54.


HARrMAN, J. AND OrST~RH(XrT, J. 1995. The Zebra striped network file system. ACM Trans.
Comput. Syst. 13, 3 (Aug.), 274310.


HOVVAfU),J., KMAR, M., MI+NEES, S., NICHOLS, D., SATYA~ARAYANA~, M., SIDEIIOTHAM, R., A?WI


Wwr, W. 1988. Scale and performance in a distributed tile system, ACM Trans. Comput.
Syst. 6, 1 (Feb.), 51 ,81.


KAZAR, M. 1989. Ubik: Replicated servers made easy. In Proceedings of the 2nd Workshop on
Workstation Operrrttng Systems (Sept.). IEEE Computer Society Press. LOS Alamitos, Calif.,
60-67


ACM Transactions on Computer Systems, Vol 14, No 1, February 1996







78 . Thomas E. Anderson et al.


KEETON, K., ANDERSON,T., ANDPATrERSON,D. 1995. ImgP quantified: The case for low-over-
head local area networks. In Proceedings of Hot Interconnects (Aug.). IEEE Computer Society
Press, Los Alamitos, Calif.


KISTLER, J. AND SATYANARAYANAN,M. 1992. Disconnected operation in the Coda file system.
ACM Trans. Comput. Syst. 10, 1 (Feb.), 3-25.


KUBIATOWICZ,J. ANDAGARWAL,A. 1993. Anatomy of a message in the Alewife multiprocessor.
In Proceedings of the 7th International Conference on Supercomputing (July). ACM, New York.


KUSKIN,J., OFELT, D., HEtNRICH,M., HEINLEIN,J., SIMONI, R., GHARACHORLCO,K., CHAPIN, J.,
N~HHLA, D., BAXTER,J., HOROWITZ,M., GUPTA,A., ROSENBLUM,M., ANDHENNESSY,J. 1994.
The Stanford FLASH multiprocessor. In Proceedings of the 21st International Symposium on
Computer Architecture (Apr.). IEEE Computer Society Press, Los Alamitos, Calif., 302-313.


LEE, E. 1995. Highly-available, scalable network storage. In Proceedings of COMPCON 95.
IEEE, New York.


LEFF,A., Yu, P., AND WOLF, J. 1991. Policies for efficient memory utilization in a remote
caching architecture. In Proceedings of the 1st International Conference on Parallel and
Distributed Information Systems (Dec.). IEEE Computer Society Press, Las Alamitos, Calif.,
198-207.


LENOSKI, K., LAUDON, J., GtWR+GHORLOO, K., GumA, A., mm HENNESSY, J. 1990. The
directory-based cache coherence protocol for the DASH multiprocessor. In Proceedings of the
17th International Symposium on Computer Architecture (May). IEEE Computer Society Press,
Las Alamitos, Calif., 148-159.


LISKOV, B., GHEMAWAT, S., GRUBER, R., JOHNSON, P., SHRIRA, L., AND WHJJAMS, M. 1991.
Replication in the Harp file system. In Proceedings of the 13th Symposium on Operating
Systems Principles (Oct.). ACM, New York, 226-238.


LITZKOW,M. ANDSOLOMON,M. 1992. Supporting checkpainting and process migration outaide
the UNIX kernel. In Proceedings of the Winter 1992 LWENIX (Jan.). USENIX Assoc., Berkeley,
Calif., 283-290.


h VEKRO,S., ISMAN,M., NANOPOULOS,A., NESHEIM,W,, MILNE, E., ANDWHEELER,R. 1993. sfs:
A parallel tile system for the CM-5. In Proceedings of the Sumnwr 1993 USENIX. USENIX
Assoc., Berkeley, Calif., 291-305.


MAJOR, D., MINSHALL, G., AND POWELL, K. 1994. An overview of the NetWare operating
system, In Proceedings of the 1994 Winter USENIX (Jan.). USENIX Assoc., Berkeley, Calif.,
355-372.


MCKUSICK, M., JoY, W., LEFFLER,S., ANDFABRY, R. 1984. A fast file system for UNIX. ACM
Trans. Comput. Syst. 2, 3 (Aug.), 181-197.


NELSON,M., WELCH, B., ANDOUSTERHOUT,J, 1988, Caching in the Sprite network file system.
ACM Trans. Comput. Syst. 6, 1 (Feb.), 134-154,


PATTERSON,D., GIBSON, G., AND KATZ, R. 1988. A case for redundant arrays of inexpensive
disks (RAID). [n the International Conference on Management of Data (June). ACM, New York,
109-116.


PIERCE, P. 1989. A concurrent file system for a highly parallel mass storage subsystem. In
Proceedings of the 4th Conference on Hypercubes, Concurrent Computers, and Applications.
Golden Gate Enterprises, Los Altos, Calif, 155-160,


POPEK,G,, GUY, R., PAGE)T., ANDHEtDEMANN,J. 1990. Replication in the Ficus distributed file
system. In Proceedings of the Workshop on the Management of Replicated Data (Nov.). IEEE
Computer Society Press, Los AlamitOs, Calif., 5-10.


RASHID,R. 1994. Microsoft’s Tiger media server. In The Ist Networks of Workstations Work-
shop Record (Oct.). Presented at ASPLOS 1994 Conference (San Jose, Calif.).


RtCCtARDI,A. AND B!RMAN, K. 1991. Using process groups to implement failure detection in
asynchronous environments. In Proceedings of the Ioth Symposium on Principles of Dis-
tributed Computing (Aug.). ACM, New York, 341–353.


ROSENBLUM,M. ANDOUSTERHOUT,J. 1992. The design and implementation of a log-structured
file system. ACM Trans. Comput. Syst. 10, 1 (Feb.), 26-52.


ROSTI,E., SMIRNI,E., WAGNER,T., APON, A., ANDDowDY, L. 1993. The KSR1: Experimentation
and modeling of Poststnre. In Proceedings of 1993 SIGMETRICS (June). ACM, New York,
74-85.


ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.







Serverless Network File Systems . 79


SANO~ERG, R., GOLDBERG, D., KLEIMAN, S., WALSH, D., ANDLYON, B. 1985. Design and imple-
mentation of the Sun network file system. In Proceedings of the Summer 1985 USENIX
(June). USENIX Aasoc, Berkeley, Calif., 119-130.


SCHROEDER, M., BIRRELL, A., BURROWS, M., MURRAY, H., NEEDHAM, R., RODEHEPFRR, T., SATTERTH-


WAITE, E,, AND THACKER, C. 1991. Autonet: A high-speed, self-configuring local area network
using point-to-Wint links, IEEE J. Set, Areas Cornmun. 9, 8 (Oct.), 1318– 1335.


SELTZER, M., BOSTIC, K., M(!Kus]cK, M., AND STAELIN, C. 1993. An implementation of a
log-structured file system for UNIX. In Proceedings of the 1993 Winter USENLY (Jan.),
USENIX Assoc., Berkeley, Calif., 307-326.


SELTZER, M., SMITH, K., BALAKRISHNAN, H., CHANG, J,, MCMAINS, S., AND PADMANABHAN, V, 1995.
File system logging versus clustering: A performance comparison. In Prweedi~s of the 1995
Winter USENIX (Jan.), USENIX Assoc., Berkeley, Calif.


SMITH,A. 1977. Two methods for the eflicient analysis of memory address trace data. IEEE
Trans. Sofiw. Eng. SE-3, 1 (Jan,), 94-101.


vet+ EJCK~N, T., CULLER, D., GOLDSTEIN,S., AND SCHAUSER,K. E. 1992. Active messages: A
mechanism for integrated communication and computation. In Proceedings of the 19th Inter-
national Symposium on Computer Architecture (May). IEEE Computer Society Press, Los
Alamitos, Calif., 256-266.


WALKER,B., POPEK,G., ENGLISH,R., KLINE, C,, ANOTHtEL, G. 1983. The LOCUS distributed
operating system. In Proceedings of the 5th Symposium on Operating Systems Principles (Oct.).
ACM, New York, 49-69.


WANG, R. ANO ANDERSON, T. 1993, xFS: A wide area mass storage tile system. In the 4th
Workshop on Workstation Operating Systems (Oct.). IEEE Computer Society Press, Los Alami-
tos, Calif., 71-78.


WILKES, .J., AND GOLDING, R., STAELIN, C., AND SULLIVAN, T. 1995. The HP AutoRAID hierarchi-
cal storage system. In Proceedings of the 15th Symposium on Operating Systems Principles
(Dec.). ACM, New York, 96-108.


WOLF, J. 1989. The placement optimization problem: A practical solution to the disk file
assignment problem. In Proceedings of the 1989 SIGMETRICS (May). ACM, New York, 1– 10.


Received September 1995; revised October 1995; accepted October 1995


ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.






