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Abstract


Weak corrrrecdvi~, in the form of intermittent, low-bandwidth, or expensive networks is a fact of life in mobile computing.


In this paper, we describe how the Coda File System has evolved to exploit such networks. The underlying theme of this


evolution has been the systematic introduction of adaptivity to eliminate hidden assumptions about strong connectivity.


Many aspects of the system, including communication, cache validation, update propagation and cache miss handling have


been modified. As a result, Coda is able to provide good performance even when network bandwidth varies over four orders


of magnitude — from modem speeds to LAN speeds: “


1. Introduction


For the forseeable future, mobde clients will encounter a wide


range of network characteristics in the course of their journeys.


Cheap, reliable, high-performance connectivity via wired or


wireless media will be limited to a few oases in a vast desert of


poor connectivity. Mobile clients must therefore be able to use


networks with rather unpleasant characteristics: intermittence,


low bandwidth, high latency, or high expense. We refer to


connectivity with one or more of these properties as weak


connectivity. In contrast, typical LAN environments have none of


these shortcomings and thus offer strong connectivi~.


In this paper, we report on our work toward exploiting weak


connectivity in the Coda File System. Our mechanisms preserve


usability even at network speeds as low as 1.2 Kb/s. At a typical


modem speed of 9.6 Kb/s, performance on a family of


benchmarks is only about 2% slower than at 10 Mb/s. When a


client reconnects to a network, synchronization of state with a


server typically takes only about 25% longer at 9.6 Kb/s than at


10 Mb/s. To make better use of a network, Coda may solicit


advice from the user. But it preserves usability by limiting the


frequency of such interactions.


Since disconnected operation [13] represents an initial step


toward supporting mobility, we begin by reviewing its strengths


and weaknesses. We then describe a set of adaptive mechamsms


that overcome these weaknesses by exploiting weak connectivity.


Next, we evaluate these mechanisms through controlled


experiments and empirical observations, Finally, we discuss


related work and close with a summary of the main ideas.
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2. Starting Point: Disconnected Operation


2.1. Benefits and Limitations


Disconnected operation is a mode of operation in which a client


continues to use data in its cache during temporary network or


server failures. It can be viewed as the extreme case of werikly-


connected operation — the mobile client is effectively using a


network of zero bandwidth and infinite latency.


The ability to operate disconnected can be useful even when


connectivity is available. For example, disconnected operation


can extend battery life by avoiding wireless transmission and


reception. It can reduce network charges, an important feature


when rates are high. It allows radio silence to be maintained, a


vital capability in military applications. And, of course, it is a


viable fallback position when network characteristics degrade


beyond usability.


But disconnected operation is not a panacea. A disconnected


client suffers from many limitations:


● Updates are not visible to other clients.


. Cache misses may impede progress.


● Updates are at risk due to theft, loss or damage.


● Update confiicts become more likely.


● Exhaustion of cache space is a concern.


Our goal is to alleviate these limitations by exploiting weak


connectivity. How successful we are depends on the quality of


the network. With a very weak connection, a user is little better


off than when disconnected; as network quality improves, the


limitations decrease in severity and eventually vanish.


To attain this goal, we have implemented a series of


modifications to Coda. Since Coda has been extensively


described in the literature [13, 25, 26], we provide only a brief


review here.


2.2. Implementation in Coda


Coda preserves the model of security, scalability, and Unix


compatibility of AFS [5], and achieves high availability through


the use of two complementary mechanisms. One mechanism is


disconnected operation. The other mechanism is server


replication, which we do not discuss further in this paper because


it is incidental to our focus on mobility.
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A small collection of trusted Coda servers exports a location-


transparent Unix file name space to a much larger collection of


untrusted clients. These clients are assumed to be general-


purpose computers rather than limited-function dewces such as


InfoPads [28] and ParcTabs [29]. Files aregrouped into vdwrre.r,


each forming a partial subtree of the name space and typically


containing the files of one user or project. On each client, a


user-level process, Venus, manages a file cache on the local disk.


It is Venus that bears the brunt of disconnected operation.


As described by Kistler [13], Venus operates in one of three


states: hoarding, emulating, and reintegrating. It is normally in


the hoarding state, preserving cache coherence via callbacks [5].


Upon disconnection, Venus enters the emulating state and begins


logging updates inaclient modtfilog(CML). Inthisstate, Venus


performs log optinrizations to improve performance and reduce


resource usage, Upon reconnection, Venus enters the


reintegrating state, synchronizes its cache with servers, propagates


updates from the CML, and returns to the hoarding state. Since


consistency is based on optimistic replica control, update conflicts


may occur upon reintegration, The system ensures their detection


and confinement, and provides mechanisms to help users recover


from them [14].


In anticipation of disconnection, users may Iroard data in the


cache by providing a prioritized list of files in a per-client hoard


database (HDB). Venus combines HDBinformation with LRU


information to implement a cache management policy addressing


both performance and availability concerns. Periodically, Venus


walks the cache to ensure that the highest


present, and consistent with the servers.


explicitly request a hoard walk at any time.


3. Design Rationale and Overview


3.1. Strategy


priority items are


A user may also


Wechose anincremental approach to extending Coda, relying


on usage experience and measurements at each stage. The


underlying theme of this evolution was the identification of


hidden assumptions about strong connectivity, and their


systematic elimination through the introduction of adaptivity.


Our design is based on four guiding principles:


● Don ‘t punish strongly-connected clients.
Itis unacceptable to degrade the performance of strongly-


connected clients on account of weakly-connected clients.


This precludes useofabroad range of cache write-back


schemes in which a weakly-connected client must be
contacted for token revocation or data propagation before


other clients can proceed.


●Don’tnaake life worse than when disconnected.
While a minor performance penalty may be an acceptable
price for the benefits of weakly-connected operation, a
user is unlikely to tolerate substantial performance


degradation.


● Do it in the background t~you can,
Network delays in the foreground affect a user more


acutely than those in the background. As bandwidth


decreases, network usage should be moved into the


background whenever possible. The effect of this strategy


is to replace intolerable performance delays by a


degradation of availability or consistency — lesser evils


in many situations.
.


● When in doubt, seek user advice,


As connectiwty weakens, the higher performance penalty


for suboptimal decisions increases the value of user


advice. Users also make mistakes, of course, but they
tend to be more forgiving if they perceive themselves


responsible. The system should perform better if the user


gives good advice, but should be able to function unaided.


More generally, we were strongly influenced by two classic


prmcipies of system design: favoring simplicity over unwarranted


generahty [15], and respecting the end-to-end argument when


layering functionality [24].


3.2. Evolution


We began by modifying Coda’s RPC and bulk transfer


protocols to function over a serial-line 1P (SLIP) connection [23].


These modifications were necessary because the protocols had


been originally designed for good LAN performance. Once they


functioned robustly down to 1.2 Kb/s, we had a rehable means of


reintegrating and servicing cntlcal cache misses from any location


with a phone connection. Performance was atrocious because


Venus used the SLIP connection like a LAN. But users were


grateful for even this limited functionahty, because the alternative


would have been a significant commute to connect to a high-


speed network.


Phone reintegration turned out to be much slower than even the


most pessimistic of our estimates, The culprit was the vahdatlon


of cache state on the first hoard walk after reconnection. Our


solution raises the granularity at which cache coherence is


maintained. In most cases, this renders the time for validation


imperceptible even at modem speeds.


Next, we reduced update propagation delays by allowing a user


to be loglcally disconnected while remainmg physically


connected. In this mode of use, Venus logged updates in the


CML but continued to service cache misses. It was the user’s


responsibility to periodically uutiate reintegration. Cache misses


hurt performance, but there were few of them if the user had done


a good Job of hoarding.


Our next step was to eliminate manual triggering of


reintegration when weakly connected. Since this removed user


control over an important component of network usage, we had to


be confident that a completely automated strategy could perform


well even on very slow networks. This indeed proved possible,


using a technique called trickle reintegration.


The last phase of our work was to substantially improve the


handling of cache misses when weakly connected. Exammatlon


of misses showed that they varied widely m Importance and


cause. We did not see a way of automating the handling of all


misses while preserving usability, So we decided to handle a


subset of the misses transparently, and to provide users with a


means of influencing the handling of the rest.


144







As a result of this evolution, Coda is now able to effectively


exploit networks of low bandwidth and intermittent connectivity.


Venus and the transport protocols transparently adapt to


variations in network bandwidth spanning nearly four orders of


magnitude — from a few Kb/s to 10 Mb/s. From a performance


perspective, the user is well insulated from this variation.


Network quality manifests itself mainly in the promptness with


which updates are propagated, and in the degree of transparency


with which cache misses are handled.


4. Detailed Design and Implementation


We provide more detail on four aspects of our system:


● Transport protocol refinements.


● Rapid cache validation.


● Trickle reintegration.


● User-assisted miss handling.


Although rapid cache validation has been described in detail an


earlier paper [18], we provide a brief summary here for


completeness. We also augment our earlier evaluation with


measurements from the deployed system. The other three aspects


of Coda are described here for the first time.


4.1, Transport Protocol Refinements


Coda uses the RPC2 remote procedure call mechanism [27],


which performs efficient transfer of file contents through a


specialized streaming protocol called SFTP. Both RPC2 and


SFTP are implemented on top of UDP. We made two major


changes to them for slow networks.


One change addressed the isolation between RPC2 and SITP.


While this isolation made for clean code separation, it generated


duplicate keepalive traffic. In addition, Venus generated its own


higher-level keepalive traffic. Our fix was to share keepalive


information between RPC2 and SFIT’, and to export this


information to Venus.


The other change was to modify RPC2 and SITP to monitor


network speed by estimating round trip times (R77’) using an


adaptation of the timestamp echoing technique proposed by


Jacobson [10]. The RTT estimates are used to dynamically adapt


the retransmission parameters of RPC2 and SFI’P. Our strategy is


broadly consistent with Jacobson’s recommendations for TCP [8].


With these changes, RPC2 and SFTP perform well over a wide


range of network speeds. Figure 1 compares the performance of


SFTP and TCP over three different networks: an Ethernet, a


WaveLan wireless network, and a modem over a phone line. In


almost all cases, SFTP’s performance exceeds that of TCP.


Opportunities abound for further improvement to the transport


protocols. For example, we could perform header compression as


in TCP [9], and enhance the SLIP driver to prioritize traffic as


described by Huston and Honeyman [7]. We could also enhance


SFTP to ship file differences rather than full contents. But we


have deliberately tried to minimize efforts at the transport level.


I I Nominal I Receive I Send
Protocol Network Speed (Kb/s) (Kb/s)


TCP


SFTP


Ethernet


WaveLan


Modem


Ethernet


WaveLan


Modem +


10 Mb/s 1824 (64)


2 Mb/s 568 (136)


9.6 Kb/s 6.8 (0.06)


10 Mb/s 1952 (104)


2 Mb/s 1152 (64)


9.6 Kbls 6.6 (0.02)


2400 (224)


760 (80)


6.4 (0.04)


2744 (96)


1168 (48)


6.9 (o.o2)


This table compares the observed throughputs of TCP and S~P.


The data was obtained by timnrg the disk-to-disk transfer of a


lMB file between a DECpc 425SL laptop client and a DEC


5000/200 server on an isolated network. Both client and server


were running Mach 2.6. Each result IS the mean of five trials.


Numbers in parentheses are standard deviations.


Figure 1: Transport Protocol Performance


As the rest of this paper shows, mechanisms at higher levels of


the system offer major benefits for weakly-connected operation.


Additional transport level improvements may enhance those


mechanisms, but cannot replace them.


4.2. Rapid Cache Validation


Coda’s original technique for cache coherence while connected


was based on callbacks [5, 25]. In this technique, a server


remembers that a client has cached an object’, and promises to


notify it when the object is updated by another client. This


promise is a callback, and the invalidation message is a callback


break. When a callback break is received, the client discards the


cached copy and refetches it on demand or at the next hoard walk.


When a client is disconnected, it can no longer rely on


callbacks. Upon reconnection, it must validate all cached objects


before use to detect updates at the server.


4.2.1. Raising the Granularity of Cache Coherence


Our sohrtion preserves the correctness of the original callback


scheme, while dramatically reducing reconnection latency. It is


based upon the observation that, in most cases, the vast majority


of cached objects are still valid upon reconnection. The essence


of our solution is for clients to track server state at multiple levels


of granulari~. Our current implementation uses only two levels:


entire volume and individual object. We have not yet found the


need to support additional levels.


A server now mamtains version stamps for each of its volumes,


in addition to stamps on individual objects. When an object is


updated, the server increments the version stamp of the object and


that of its containing volume. A client caches volume version


stamps at the end of a hoard walk. Since all cached objects are


known to be valid at this point, mutual consistency of volume and


object state is achieved at minimal cost.


When connectivity is restored, the chent presents these volume


stamps for validation. If a volume stamp is still vahd, so is every


object cached from that volume. In this case, validation of all


‘For brewty, we use “obJect” to mean a file, dmectory, or symbolic hnk
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those objects has been achieved with a single RPC. We batch


multiple volume validation requests in a single RPC for even


faster validation. If a volume stamp is not valid, nothing can be


assumed; each cached object from that volume must be validated


individually. But even in this case, performance is no worse than


in the original scheme.


4.2.2. Volume Callbacks


When a client obtains (or validates) a volume version stamp, a


server establishes a volume callback as a side effect. This is in


addition to (or instead of) callbacks on individual objects. The


server must break a client’s volume callback when another client


updates any object in that volume. Once broken, a volume


callback is reacquired only on the next hoard walk. In the


interim, the client must rely on object callbacks, if present, or


obtain them on demand.


Thus, volume callbacks improve speed of validation at the cost


of precision of invalidation. This is an excellent performance


tradeoff for typical Unix workloads [2, 19, 22]. Performance may


be poorer with other workloads, but Coda’s original cache


coherence guarantees are still preserved.


4.3. Trickle Reintegration


Trickle reintegration is a mechanism that propagates updates to


servers asynchronously, while minimally impacting foreground


activity. Its purpose is to relieve users of the need to perform


manual reintegration. The challenge is to meet this goal while


remaining unobtrusive.


4.3.1. Relationship to Write-Back Caching


Trickle reintegration is conceptually similar to write-back


caching, as used in systems such as Sprite [20] and Echo [16].


Both techniques strive to improve client performance by deferring


the propagation of updates to servers. But they are sufficiently


different in their details that it is appropriate to view them as


distinct mechanisms.


First, write-back caching preserves strict Unix write-sharing


semantics, since it is typically intended for use in strongly-


connected environments. In contrast, trickle reintegration has the


opportunity to trade off consistency for performance because its


users have already accepted the lower consistency offered by


optimistic replication.


Second, the focus of write-back caching is minimizing file


system latency; reducing network traffic is only an incidental


concern. In contrast, reducing traffic is a prime concern of trickle


reintegration because network bandwidth is precious.


Third, write-back caching schemes maintain their caches in


volatile memory. Their need to bound damage due to a software


crash typically limits the maximum delay before update


propagation to some tens of seconds or a few minutes. In


contrast, local persistence of updates on a Coda client is assured


by the CML. Trickle reintegration can therefore defer


propagation for many minutes or hours, bounded only by


concerns of theft, loss, or disk damage.


4.3.2. Structural Modifications


Supporting trickle reintegration required major modifications to


the structure of Venus. Reintegration was originally a transient


state through which Venus passed en route to the hoarding state.


Since reintegration is now an ongoing background process, the


transient state has been replaced by a stable one called the write


disconnected state. Figure 2 shows the new states of Venus and


the main transitions between them.


(nHoarding


This figure shows the states of Venus, as modified to handle


weak connectivity. The state Iabelled “Write Disconnected”


replaces the reintegrating state in our original design In this


state, Venus relies on trickle reintegration to propagate changes


to servers. The transition from the emulating to the wrrte


disconnected state occurs on any connection, regardless of


strength. All outstanding updates are reintegrated before the


transition to the hoarding state occurs


Figure 2: Venus States and Transitions


As in our original design, Venus is in the hoarding state when


strongly connected, and m the emulating state when disconnected.


When weakly connected, lt M in the write disconnected state. In


this state, Venus’ behavior is a blend of its connected and


disconnected mode behaviors. Updates are logged, as when


disconnected; they are propagated to servers via trickle


reintegration. Cache misses are serviced, as when connected; but


some misses may require user intervention. Cache coherence is


maintained as explained earlier in Section 4.2.2.


A user can force a full reintegration at any time that she 1sin the


write disconnected state. This might be valuable, for example, if


she wishes to terminate a long distance phone call or realizes that


she is about to move out of range of wireless communication. It


is also valuable if she wishes to ensure that recent updates have


been propagated to a server before notifying a collaborator via


telephone, e-mad, or other out-of-band mechanism.


Our desire to avoid penalizing strongly-connected clients


lrnphes that a weakly-connected client cannot prevent them from


updating an object awaiting reintegration. This situation results in


a callback break for that object on the weakly-connected client.


Consistent with our optimistic philosophy, we ignore the callback


break and proceed as usual. When reintegration of the object is


eventually attempted, it may be resolved successfully or may fail.


In the latter case, the conflict becomes visible to the user just as if


it had occured after a disconnected session. The existing Coda


mechanisms for conflict resolution [14] are then applied.
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4.3.3. Preserving the Effectiveness of Log Optimizations


Early trace-driven simulations of Coda indicated that log


optimizations were the key to reducing the volume of


reintegration data [26]. Measurements of Coda in actual use


confirm this prediction [21 ].


Applying log optimizations is conceptually simple. Except for


store records, a CML record contains all the information


needed to replay the corresponding update at the server. For a


store record, the file data resides in the local file system.


Before a log record is appended to the CML, Venus checks if it


cancels or overrides the effect of earlier records. For example,


consider the create of a file, followed by a store. If they are


followed by an unlink, all three CML records and the data


associated with the store can be eliminated.


Trickle reintegration reduces the effectiveness of log


optimizations, because records are propagated to the server earlier


than when disconnected. Thus they have less opportunity to be


eliminated at the client. A good design must balance two factors.


On the one hand, records should spend enough time in the CML


for optimizations to be effective. On the other hand, updates


should be propagated to servers with reasonable promptness. At


very low bandwidths, the first concern is dominant since


reduction of data volume is paramount. As bandwidth increases,


the concerns become comparable in importance. When strongly


connected, prompt propagation is the dominant concern.


Our solution, illustrated in Figure 3, uses a simple technique


based on aging. A record is not eligible for reintegration until it


has spent a minimal amount of time in the CML. This amount of


time, called the aging window, (A), establishes a limit on the


effectiveness of log optimization,


Older than A 1


I ~j/n~ . . . . . . . . . . . . . . ..-


Reintegration
Barrier


This figure depicts a typical CML scenario while weakly


connected. A is the aging window. The shaded records in this


figure are being reintegrated. They are protected from concurrent


activity at the client by the reintegration barrier. For store


records, the corresponding file data is locked; if contention


occurs later, a shadow copy is created and the lock released.


Figure 3: CML During Trickle Reintegration


Since the CML is maintained in temporal order, the aging


window partitions log records into two groups: those older than A,


and those younger than A. Only the former group is eligible for


reintegration. At the beginning of reintegration, a logical divider


called the reintegration barrier is placed in the CML. During


reintegration, which may take a while on a slow network, the


portion of the CML to the left of the reintegration barrier is


frozen. Only records to the right are examined for optimization.


If reintegration is successful, the barrier and all records to its


left are removed. If a network or server failure causes


reintegration to be aborted, the barrier as well as any records


rendered superfluous by new updates are removed. Our


implementation of reintegration is atomic, ensuring that a failure


leaves behind no server state that would hinder a future retry.


Until the next reintegration attempt, all records in the CML are


again eligible for optimization.


Discovery of records old enough for reintegration is done by a


periodic daemon. Once the daemon finds CML records ripe for


reintegration, it notifies a separate thread to do the actual work.


4.3.4. Selecting an Aging Window


What should the value of A be? To answer this question, we


conducted a study using file reference traces gathered from


workstations in our environment [19]. We chose five week-long


traces (used in an earlier analysis [26]) in which there were


extended periods of sustained high levels of user activity.


The traces were used as input to a Venus simulator. This


simulator is the actual Venus code, modified to accept requests


from a trace instead of the operating system. The output of the


simulator inchtdes the state of the CML at the end of the trace,


and data on cancelled CML records. Our analysis includes all


references from the traces, whether to the local file system, AFS,


Coda, or NFS.
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The X axis of this graph shows the aging window (A) on a


logarithmic state. Only CML records of age A or less are subject


to optimization. Each curve corresponds to a different trace, and


a point on a curve is the ratio of two quantities. The numerator is
the amount of data saved by optimizations for the value of A at


that point. The denominator is the savings when A is four hours


(14,400 seconds). The vahre of the denominator is 84 MB for
ives, 817 MB for corrcord, 40 MB for lzolst, 152 MB for
messiaen, and 44 MB for purcell.


Figure 4: Effect of Aging on Optimizations


Figure 4 presents the results of our analysis. For each trace, this


graph shows the impact of the aging window on the effectiveness


of log optimizations. The results have been normalized with


respect to a maximum aging window of four hours. We chose


this period because it represents half a typical working day, and is


a reasonable upper bound on the amount of work loss a user


might be willing to tolerate.
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The graph shows that there is considerable variation across


traces. Values of A below 300 seconds barely yield an


effectiveness of 30~o on some traces, but they yield nearly 80%


on others. For effectiveness above 80’ZOon all traces, A must be


nearly one hour. Since 600 seconds yields nearly 50%


effectiveness on all traces, we have chosen it as the default value


of A. This value can easily be changed by the user.


4.3.5. Reducing the Impact of Reintegration


Reintegrating all records older than A in one chunk could


saturate a slow network for an extended period. The performance


of a concurrent high priority network event, such as the servicing


of a cache miss, could then be severely degraded. To avoid this


problem, we have made reintegration chunk size adaptive,


The choice of a chunk size, (Q, must strike a balance between


two factors affecting performance. A large chunk size is more


appropriate at high bandwidths because it amortizes the fixed


costs of reintegration (such as transaction commitment at the


server) over many log records. A small chunk size is better at low


bandwidths because it reduces the maximum time of network


contention. We have chosen a default value of 30 seconds for this


time. This corresponds to C being 36 KB at 9.6 Kb/s, 240 KB at


64 Kb/s, and 7.7 MB at 2 Mb/s.


Before initiating reintegration, we estimate C for the current


bandwidth. We then select a maximal prefix of CML records


whose age is greater than A and whose sizes sum to C or less.


Most records are small, except for store records, whose sizes


include that of the corresponding file data. In the limit, we select


at least one record even if its size is larger than C. This prefix is


the chunk for reintegration. The reintegration barrier is placed


after it, and reintegration proceeds as described in Section 4.3.3.


This procedure is repeated a chunk at a time, deferring between


chunks to high priority network use, until all records older than A


have been reintegrated.


With this procedure, the size of a chunk can be larger than C


only when it consists of a single store record for a large file. In


this case, we transfer the file as a series of fragments of size C or


less, If a failure occurs, file transfer is resumed after the last


successful fragment. Atomicity is preserved in spite of


fragmentation because the server does not logically attempt


reintegration until it has received the entire fde. Note that this is


the reverse of the procedure at strong connectivity, where the


server verifies the logical soundness of updates before fetching


file contents. The change in order reflects a change in the more


likely cause of reintegration failure in the two scenarios.


We are considering a refinement that would allow a user to


force immediate reintegration of updates to a specific directory or


subtree, without waiting for propagation of other updates.


Implementing this would require computing the precedence


relationships between records, and ensuring that a record is not


reintegrated before its antecedents, This computation is not


necessary at present because the CML and every possible chunk


are already in temporal order, which implies precedence order.


We are awaiting usage experience to decide whether the benefits


of this refinement merit its implementation cost.


4.4. Seeking User Advice


When weakly connected, the performance impact of cache


misses is often too large to ignore. For example, a cache miss on


a 1 MB file at 10 Mb/s can usually be serviced in a few seconds.


At 9.6 Kb/s, the same miss causes a delay of nearly 20 minutes!


From a user’s perspective, this lack of performance


transparency can overshadow the functional transparency of


caching. The problem is especially annoying because cache miss


handling, unlike trickle reintegration, N a foreground activity. In


most cases, a user would rather be told that a large file is missing


than be forced to wait for it to be fetched over a weak connection.


But there are also situations where a file is so critical that a user


is willing to suffer considerable delay. We refer to the maximum


time that a user is willing to wait for a particular file as her


patience ~hre.rhok! for that file. The need for user input arises


because Venus has to find out how critical a missing object is.


Since the hoarding mechanism already provided a means of


factoring user estimates of importance into cache management, it


was the natural focal point of our efforts. Our extensions of this


mechanism for weak connectivity are in two parts: an interactive


facility to help augment the hoard database (HDB), and another to


control the amount of data fetched during hoard walks. Together


these changes have the effect of moving many cache miss delays


into the background.


4.4.1. Handling Misses


When a miss occurs, Venus estimates its service time from the


current network bandwidth and the object’s size (as given by its


status information). If the object’s status information is not


already cached, Venus obtains it from the server. The delay for


this is acceptable even on slow networks because status


information is only about 100 bytes long.


The estimated service time is then compared with the patience


threshold. If the service time is below the threshold, Venus


transparently services the miss. If the threshold is exceeded,


Venus returns a cache miss error and records the miss.


4,4.2, Augmenting the Hoard Database


At any time, a user can ask Venus to show her all the misses


that have occured since the previous such request. Venus displays


each miss along with contextual information, as shown in Figure


5. The user can then select objects to be added to the HDB. This


action does not immediately fetch the object; that is deferred until


a future hoard walk. Hoard walks occur once every 10 minutes,


or by explicit user request.


4.4.3, Controlling Hoard Walks


A hoard walk is executed in two phases. In the first phase,


called the status walk, Venus obtains status information for


missing objects and determines which objects, if any, should be


fetched. Because of volume callbacks, the status walk usually


involves little network traffic. During the second phase, called


the data walk, Venus fetches the contents of objects selected by


the status walk. Even if there are only a few large objects to be


fetched, this phase can be a substantial source of network traffic.
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This screen shows the name of each missing object and the


program thatreferenced it. Toaddan object tothe HDB, the user


clicks the button to its right. A pop-up form (not shown here)


allows the user to specify the hoard priority of the object and


other related information.


Figure5: Augmenting the Hoard Database


By introducing an interactive phase between the status and data


walks, we allow users to limit the volume of data fetched in the


data walk. Each object whose estimated service timeis below the


user’s patience threshold is pre-approved for fetching. The


fetching of other objects must be explicitly approved by the user.
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I


Object Name Friority Cost (s) Fetch? Stop Asking?


/coda/project/code/alpha/src/venus/fsoO.c 20 46~ d;
/code/mist/emacs/i386_mactVbin/emac$ 600 611 El EIJ


Lk
Totaf Expected Fetch ~me (s) = 65


J
TotaJ Number of Ohiects to be Fetched = 4 i


Cache Space (KB) Aftsr Watk PJloc’d= 50000 Occ’d = 8301 Avtil. 41699
I


CancelI DoneI I


This screen enables the user to suppress fetching of objects


selectively during a hoard wrdk. The priority and estimated


service time of each object are shown. The user approves the


fetch of an object by clicking on its “Fetch” button. By clicking


on its “Stop Asking” button, she can prevent the prompt and fetch


for that object until strongly connected. The cache state that


would result from the data walk is shown at the bottom of the


screen. This information is updated as the user clicks on “Fetch”


buttons.


Figure 6: Controlling the Data Walk


Figure 6 shows an example of the screen displayed by Venus


between the status and data walks. If no input is provided by the


user within a certain time, the screen disappears and all the listed


objects are fetched. This handles the case where the client is


running unattended.


4.4.4. Modelling User Patience


Our goal in modelling user patience is to improve usability by


reducing the frequency of user interaction. In those cases where


we can predict a user’s response with reasonable confidence, we


can avoid the corresponding interactions. As mentioned earlier, a


user’s patience threshold, (~), depends on how important she


perceives an object to be: for a very important object, she is


probably willing to wait many minutes.


Since user perception of importance is the notion captured by


the hoard priority, (P), of an object, we posit that ~ should be a


function of P. At present, we are not aware of any data that could


be the scientific basis for establishing the form of this


relationship. Hence we use a function based solely on intuition,


but have structured the implementation to make it easy to


substitute a better alternative.


We conjecture that patience is similar to other human processes


such as vision, whose sensitivity is logarithmic [3]. This suggests


a relationship of the form ~ = rx + ~e”@, where ~ and y are scaling


parameters and u represents a lower bound on patience. Even if


an object is unimportant, the user prefers to tolerate a delay of a


rather than dealing with a cache miss. We chose parameter


settings based on their ability to yield plausible patience values


for files commonly found in the hoard profiles of Coda users.


The values we chose were et = 2 seconds, ~ = 1, y = 0.01.


Figure 7 illustrates the resulting model of user patience. Rather


than expressing ~ in terms of seconds, we have converted it into


the size of the largest file that can be fetched in that time at a


given bandwidth. For example, 60 seconds at a bandwidth of 64


Kb/s yields a maximum file size of 480KB, Each curve in Figure


7 shows ~ as a function of P for a given bandwidth. In the region


below this curve, cache misses are transparently handled and


pre-approval is granted during hoard walks.
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Each curve in this graph expresses patience threshold, (z), in
terms of file size. Superimposed on these curves are points


representing tiles of various sizes hoarded at priorities 100.500,


and 900. At 9,6 Kb/s, only the tiles at priority 900 and the 1KB


tile at priority 500 are below T. At 64 Kb/s, the lMB tile at


priority 500 is also below T. At 2Mb/s, all files except the 4MB


and 8MB files at priorit y 100 are below ~.


Figure 7: Patience Threshold versus Hoard Priority


The user patience model is the source of adaptivity in cache


miss. handling. It maintains usability at all bandwidths by


balancing two factors that intrude upon transparency. At very low


bandwidths, the delays in fetching large files annoy users more


than the need for interaction. As bandwidth rises, delays shrink


and interaction becomes more annoying. To preserve usability,


we handle more cases transparently. In the limit, at strong


connectivity, cache misses are fully transparent.
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5. Deployment Status


The mechanisms described in this paper are being deployed to a


user community of Coda developers and other computer science


researchers. We have over 40 user accounts, of which about 25


are used regularly. Many users run Coda on both their desktop


workstations and their laptops. We have a totaf of about 35 Coda


clients, evenly divided between workstations and laptops. These


clients access almost 4.0 GB of data stored on Coda servers.


The evolution described in Section 3.2 has spanned over two


years. Early usage experience with each mechanism was


invaluable in guiding further development. The transport protocol


extensions were implemented in early 1993, and incorporated into


the deployed system later that year. The rapid cache validation


mechanism was implemented in late 1993, and has been deployed


since early 1994. The trickle reintegration and user advice


mechanisms were implemented between 1994 and early 1995, and


have been released for general use.


6. Evaluation


6.1. Rapid Cache Validation
Two questions best characterize our evaluation of Coda’s rapid


cache validation mechanism:


● Under ideal conditions, how much do volume callbacks


improve cache validation time?


● In practice, how close are conditions to ideal?


The first question was discussed in detail in an earlier


paper [18]. Hence, we only present a brief summary of the key


results. More recently, we have addressed the second question,


and present the detailed results here.


6.1.1. Performance Under Ideal Conditions


For a given set of cached objects, the time for validation is


minimal when two conditions hold. First, at disconnection,


volume callbacks must exist for all cached objects. Second, while


disconnected, the volumes containing these objects must not be


updated at the server. Then, upon reconnection, communication


is needed only to verify volume version stamps. Fresh volume


callbacks are acquired as a side effect, at no additional cost.


Under these conditions, the primary determinants of


performance are network bandwidth and the composition of cache


contents. We conducted experiments to measure validation time


as a function of these two variables. To study variation due to


cache composition, we used the hoard profiles of five typical


Coda users. To Yary bandwidth, we used a network emulator.


Figure 8 shows that for all users, and at all bandwidths, volume


callbacks reduce cache validation time. The reduction is modest


at high bandwidths, but becomes substantial as bandwidth


decreases. At 9,6 Kb/s, the improvement is dramatic, typically


taking only about zs~. longer than at 10 Mb/s.


~
Object Callbacks = Black+ Gray


This figure compares the time for validation using object and


volume callbacks. Cache contents were determined by the hoard


profiles of five Coda users. The network speeds correspond to


the nominal speeds of Ethernet (E, 10 Mb/s), WaveLan (W, 2


Mb/s), ISDN (I, 64 Kb/s), and Modem (M, 9.6 Kb/s). The client


and server were DECstation 5000/200s running Mach 2.6.


Bandwidth was varied using an emulator on Ethernet.


Figure 8: Validation Time Under Ideal Conditions


6.1.2. Conditions Observed in Practice


There are two ways in which a Coda client in actual use may


find conditions less than ideal. First, a client may not possess


volume stamps for some objects at disconnection. If frequent,


this event would indicate that our strategy of waiting for a hoard


walk to acquire volume callbacks is not aggressive enough.


Second, a volume stamp may prove to be stale when presented for


validation. This would mean that the volume was updated on the


server while the client was disconnected. If frequent, this event


would indicate that acquiring volume stamps is futile, because it


rarely speeds up validation. It could also be symptomatic of a


volume being too large a granularity for cache coherence, for


reasons analogous to false sharing in virtual memory systems with


too large a page size.


To understand how serious these concerns are, we instrumented


Coda clients to record cache validation statistics. Figure 9


presents data gathered from 26 clients. The data shows that our


fears were baseless. On average, clients found themselves


without a volume stamp only in 3% of the cases. The data on


successful validations is even more reassuring. Most success


rates were over 9’7~0, and each successful validation saved


roughly 53 individual validations.


6.2. Trickle Reintegration


How much is a typical user’s update activity slowed when


weakly connected? This is the question most germane to trickle


reintegration, because the answer will reveal how effectively


foreground activity is insulated from update propagation over


slow networks.


The simplest way to answer this question would be to run a


standard file system benchmark on a write-disconnected client


over a wide range of network speeds. The obvious candidate is


the Andrew benchmark [5] since it is compact, portable, and


widely used. Unfortunately, this benchmark is of limited value in


evaluating trickle reintegration.
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(b) Laptops


These tables present data collected for approximately four weeks


in July and August 1995 from 16 desktops and 10 laptops. The


first column indicates how often validation could not be
attempted because of a missing volume stamp. The last column


gives a per-client average of object vahdatlons saved by a


successful volume vahdation.


Figure9: Observed Volume Validation Statistics


First, the running time of the benchmark on current hardware N


very small, typically less than three minutes. This implies that no


updates would bepropagated totheserver during anentiremnof


the benchmark foranyreasonable aging window. Increasing the


total time by using multiple iterations is not satisfactory because


the benchmark is not idempotent. Second, although the


benchmark captures many aspects of typical user activity, it does


not exhibit overwrite cancellations. Hence; its file references are


only marginally affected by log optimizations. Third, the


benchmark involves no user think time, which we believe to be


atypical of mobile computing applications.


For these reasons, our evaluation of trickle reintegration is


based on trace replay, which is likely to be a much better


indicator of performance in real use.


6.2.1. Trace Replay: Experiment Design


The ultimate in realism would be to measure trickle


reintegration inactual use by mobile users. But this approach has


serious shortcomings. First, a human subject cannot be made to


repeat her behavior precisely enough for multiple runs of an


experiment. Second, many confounding factors make timing


results from actual use difficult to interpret. Third, such


experiments cannot be replicated at other sites or in the future.


To overcome these limitations, we have developed an


experimental methodology in which trace replay is used in lieu of


human subjects. Realism is preserved since the trace was


generated in actual use. Timing measurements are much less


ambiguous, since experimental control and replicability are easier


to achieve. Thetraces andthereplay software can reexported.


Note that a trace replay experiment differs from a trace-driven


simtrlation inthattraces arereplayed on alive system. Our replay


software [19] generates Unix system calls that are serviced by


Venus and the servers just as if they had been generated by a


human user. Theonly difference isthata single process performs


the replay, whereas the trace may have been generated by


multiple processes. It would be fairly simple toextend our replay


software to exactly emulate the original process structure.


How does one incorporate the effect of human think time in a


trace replay experiment? Since atraceis often used many months


or years after it was collected, the system on which it is replayed


may bemuchfaster than theonginal. But a faster system will not


speed up those delays in the trace that were caused by human


think time. Unfortunately, it is difficult to reliably distinguish


think time delays from system-limited delays in a trace.


Oursoh.rtion is to perform sensitivity analysis for think time,


using a parameter called think threshold, (k). This parameter


defines the smallest delay in the input trace that will be preserved


in the replay. When k is O, all delays are preserved; when it is


infinity, the trace is replayed as fast as possible.


We rejected both extremities as parameter values for our


experiments. At 1 = O, there is so much opportunity for


overlapping data transmission with think time that experiments


would be biased toomuch in favor oftrickle reintegration. At A=


infinity, the absence of think time makes the experiment as


unrealistic as the Andrew benchmark. In the light of these


considerations, we chose values of h equal to 1 second and 10


seconds for our experiments. These are plausible values for


typical think times during periods of high activity, and they are


not biased too far against or in favor of trickle reintegration.


Since log optimizations play such a critical role in trickle


reintegration, we also conducted a sensitivity analysis for this


factor. We divided the traces mentioned in Section 4.3.4 into


45-minute segments, selected segments with the highest activity


levels, and analyzed their susceptibility to logoptimizations. A


segment longer than45 minutes would have made the duration of


each experiment excessive, allowing us to explore only a few


parameter combinations.
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We define the compressibility of a trace segment as the ratio of


two quantities obtained when the segment is run through the


Venus simulator. Thenumerator istheamount ofdata optimized


out; the denominator is the length of the unoptimized CML.


Figure 10 shows the observed distribution of compressibility in


those trace segments with a final CML of 1MB or greater.


o 20 40 60 80 100
Compressibility f!%)


Figure lO: Compressibility of Trace Segments


The data shows that the compressibilities of roughly a third of


the segments are below 2070, while those of the remaining two-


thirds range from 40% to 100VO. For our experiments, we chose


one segment from each quartile of compressibility. The


characteristics of these segments are shown in Figure 11.


Trace No. of No. of Unopt. opt. COmpress-
Segnrent References Updates CML (KB) CML (KB) ibility


Purcell 51681 519 2864 2625 8’%
Hoist 61019 596 3402 2302 32%


Messiaen 38342 188 6996 2184 69%
Concord 160397 1273 34704 2247 94%


Each of these segments is45rninutes long. Since Coda uses the


open-close session semantics of AFS, individual read and


write operations are not included. Hence “Updates” in this


table only refers to operations such as close after write, and


mkdir, “References” includes, in addition, operations such as


close after read, stat, and lookup.


Figure 11: Segments Used in Trace Replay Experiments


6.2.2. Trace Replay: Results


Figure 12 presents the results of our trace replay experiments.


The same data is graphically illustrated in Figure 13. To ensure a


fair comparison, we forced Venus to remain write disconnected at


all bandwidths. We also deferred the beginning of measurements


until 10 minutes into each run, thus warming the CML for trickle


reintegration. The choice of 10 minutes corresponds to the largest


value of A used in our experiments.


Figures 12 and 13 cover 64 combinations of experimental


parameters: two aging windows (A = 300 and 600 seconds), two


think thresholds (L = 1 and 10 seconds), four trace


compressibilities (8, 32, 69, and 94~0), and four bandwidths (10


Mb/s, 2 Mb/s, 64 Kb/s, and 9.6 Kb/s).


These measurements confirm the effectiveness


reintegration over the entire experimental range.


of trickle


Bandwidth


varies over three orders of magnitude, yet elapsed time remains


almost unchanged. On average, performance is only about 2%


slower at 9.6 Kb/s than at 10 Mb/s. Even the worst case,


corresponding to the Ethernet and ISDN numbers for Concord in


Figure 12(d), is only 11% slower.


Trickle reintegration achieves insulation from network


bandwidth by decoupling updates from their propagation to


servers. Figure 14 illustrates this decoupling for one combination


of h and A. As bandwidth decreases, so does the amount of data


shipped. For example, in Figure 14(b), the data shipped decreases


from 2254 KB for Ethernet to 1536 KB for Modem. Since data


spends more time in the CML, there is greater opportunity for


optimization: 1067 KB versus 1081 KB. At the end of the


experiment, more data remains in the CML at lower bandwidths:


70KB versus 2289 KB.


7. Related Work


Effective use of low bandwidth networks has been widely


recognized as a vital capability for mobile computing [4, 11], but


only a few systems currently provide this functionality. Of these,


Little Work [6] is most closely related to our system.


Like Coda, Little Work provides transparent Unix file access to


disconnected and weakly-connected clients, and makes use of log


optimization. But, for reasons of upward compatibility, it makes


no changes to the AFS client-server interface. This constraint


hurts its ability to cope with intermittent connectivity. First, it


renders the use of large-granularity cache coherence infeasible.


Second, it weakens fault tolerance because transactional support


for reintegration cannot be added to the server.


Little Work supports partially connected operation [7], which is


analogous to Coda’s write disconnected state. But there are


important differences. First, users cannot influence the servicing


of cache misses in Little Work. Second, update propagation is


less adaptive than trickle reintegration in Coda. Third, much of


Little Work’s efforts to reduce and prioritize network traffic occur


in the SLIP driver. This is in contrast to Coda’s emphasis on the


higher levels of the system.


AirAccess 2.0 is a recent product that provides access to Novell


and other DOS file servers over low-bandwidth networks [1]. Its


implementation focuses on the lower levels, using techniques


such as data compression and differential file transfer. Like Little


Work, it preserves upward compatibility with existing servers and


therefore suffers from the same limitations. AirAccess has no


analog of trickle reintegration, nor does it allow users to influence


the handling of cache misses.


From a broader perspective, application packages such as Lotus


Notes [12] and cc:Mail [17] allow use of low-bandwidth


networks. These systems differ from Coda in that support for


mobility is entirely the responsibility of the application. By


providing this support at the file system level, Coda obviates the


need to modify individual applications. Further, by mediating the


resource demands of concurrent applications, Coda can better


manage resources such as network bandwidth and cache space.
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(a) h = 1 second, A = 300 seconds


Hoist I 1026 (6)


Messiaen 1234 (2)
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Trace Ethernet
Segment 10 Mb/s


Purcell 2086 (28)


Hoist 2004 (13)


Messiaen 1949 (2)


Concord 2078 (49)


WaveLan
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2064 (6)


1984 (11)


1974 (8)


2051 (38)


ISDN
64 Kb/s


2026 (20)


1970 (11)


1969 (16)


2017 (39)


(b) k = 1 second, A = 600 seconds


mTrace Ethernet WaveLan
Segment 10 Mb/s 2 Mb/s


Purcell 1704 (9) 1658 (14)


Hoist 1060 (10) 1027 (8)


Messiaen 1234 (3) 1265 (13)


Concord 1258 (7) 1383 (27)


ISDN
64 Kbls


1664 (23)


1021 (8)


1263 (11)


1402 (3o)


Modem
9.6 Kbls


2031 (4)


2009 (17)


1986 (3)
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Modem
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1683 (16)


998 (3)


1279 (7)
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(c) h= 10 seconds, A = 300 seconds (d) L = 10 seconds, A = 600 seconds


This table presents the elapsed time, in seconds, of the trace replay experiments described in Section 6.2.1. The think threshold is l., and the


aging wind-ow is A. Each data point is the mean of five trials; figures in parentheses are standard deviations. The experiments were conducted


using a DEC PC425SL laptop client and a DECstation 5000/200 server, both with 32 MB of memory, and mnning Mach 2.6. The client and


server were isolated on a separate network. The Ethernet, WaveLars and Modem experiments used actual networks of the corresponding type.


The ISDN experiments were conducted on an Ethernet using a network emulator. Measurements began after a 10 minute warming period.


Figure 12: Performance of Trickle Reintegration on Trace Replay
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(b) L = 1 second, A = 600 seconds


(c) L = 10 seconds, A = 300 seconds (d) k = 10 seconds, A = 600 seconds


These graphs illustrate the data in Figure 12. Network speed is indicated by E (Ethernet), W (WaveLan), I (ISDN), or M (Modem)


Figure 13: Comparison of Trace Replay Times
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(a) Trace Segment = Purcell


Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)


Ethernet I 896 (o) I O (0) I 2270@) I 3022 (0, [


WaveLrm I 896 (o) I O (0) I 2270 (o) I 3022 (o) I


ISDN 896 (0) I o(o) I 2270 (0) I 3022 (0) I
Modem 896 (0) 1060 (0) 1309 (16) 3103 (o)


(c) Trace Segment = Messiaen


Network Begin CML End CML Shipped
Type (KB) (KB) (KB)


Ethernet 2133 (0) 70 (o) 2254 (0)


WaveLan 2133 (0) 70 (0) 2254 (0)


ISDN 2133 (0) 70 (o) 2252 (0)


Modem 2133 (0) 2289 [0) 1536 (68)


Optimized
(KB)


1067 (())


1067 (0)


1069 (0)


1081 (0)


I Network


I_...3L
Ethernet


WaveLan
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Modem


(b) Trace Segment = Hoist


=


legin CML End CML Shipped
(KB) (KB) (KB)


63 (0) 2103 (0) 2496 (())


63 (0) 2103 (0) 2496 (0)


63 (0) 2103 (()) 2407 (0)


63 (0) 2180 @) 1142 (46)


(d) Trace Segment = Concord


Optimized
(KB)


30209 (0)


30209 (0)


30291 (0)


32322 (0)


This table shows components of the data generated in the experiments of Figure 12(b). Results for other combinations of h and A are


comparable, The columns labelled “Begin-CML” and “End CML” give the Mount of data in the CML at the beginning and end of the


measurement period. This corresponds to the amount of data waiting to be propagated to the servers at those times. The column labelled


“Shipped” gives the amount of data actuatly transfemed over the network; “Optnnized” gwes the amount of data saved by optlmlzations.


It may appear at first glance that the sum of the “End CML’, “Shipped”, and “Optimized” cohrmns should equal the “Unopt. CML” column of


Figure 11 But this need not be true for the following reasons, First, optlmlzations that occur prror to the measurement period are not included m


“Optimized” Second, if an experiment ends while a large tile is being transferred as a series of fragments, the fragments already transferred are


counted both in the “End CML” and “Shipped” columns Third, log records are larger when shipped than m the CML


Figure 14: Data Generated During Trace Replay (1= 1 second, A = 600 seconds)


8. Conclusion


Adaptation is the key to mobility. Coda’s approach is best


characterized as application-transparent adaptation — Venus


bears full responsibility for coping with the demands of mobility.


Applications remain unchanged, preserving upward compatibility.


The quest for adaptivity has resulted in major changes to many


aspects of Coda, including communication, cache validation,


update propagation, and cache miss handling. In makmg these


changes, our preference has been to place functionality at higher


levels of Venus, with only the bare minimum at the lowest levels.


Consistent with the end-to-end argument, we believe that this is


the best approach to achieving good performance and usability m


mobile computing.


In its present form, Coda can use a wide range of


communication media relevant to mobile computing. Examples


include regular phone lines, cellular modems, wireless LANs,


ISDN lines, and cellular digital packet data (CDPD) links, But


Coda may require further modifications to use satellite networks,


which have enormous delay-bandwidth products, and cable TV


networks, whose bandwidth is asymmetric.


Our work so far has assumed that performance is the only


metric of cost, In practice, many networks used in mobile


computing cost real money. We therefore plan to explore


techniques by which Venus can electronically require about


network cost, and base its adaptation on both cost and quality. Of


course, full-scale deployment of this capability will require the


cooperation of network providers and regulatory agencies.


Weak connectivity is a fact of life in mobile computing. In this


paper, we have shown how such connectivity can be exploited to


benefit mobile users of a distributed file system. Our mechanisms


allow users to focus on their work, largely ignoring the vagaries


of network performance and reliability. While many further


improvements will undoubtedly be made, Coda in its present form


is already a potent and usable tool for exploiting weak


connectivity in mobile computing.
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