

Implementing Fault-Tolerant Services Using the State Machine
Approach: A Tutorial

FRED B. SCHNEIDER

Department of Computer Science, Cornell University, Ithaca, New York 14853

The state machine approach is a general method for implementing fault-tolerant services
in distributed systems. This paper reviews the approach and describes protocols for two
different failure models-Byzantine and fail stop. System reconfiguration techniques for
removing faulty components and integrating repaired components are also discussed.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:

Distributed Systems--network operating systems; D.2.10 [Software Engineering]:

Design-methodologies; D.4.5 [Operating Systems]: Reliability-fault tolerance; D.4.7
[Operating Systems]: Organization and Design-interactioe systems, real-time systems

General Terms: Algorithms, Design, Reliability

Additional Key Words and Phrases: Client-server, distributed services, state machine
approach

INTRODUCTION

Distributed software is often structured in
terms of clients and services. Each service
comprises one or more sewers and exports
operations that clients invoke by making
requests. Although using a single, central-
ized, server is the simplest way to imple-
ment a service, the resulting service can
only be as fault tolerant as the processor
executing that server. If this level of fault
tolerance is unacceptable, then multiple
servers that fail independently must be
used. Usually, replicas of a single server are
executed on separate processors of a dis-
tributed system, and protocols are used to
coordinate client interactions with these
replicas. The physical and electrical isola-
tion of processors in a distributed system
ensures that server failures are indepen-

service by replicating servers and coordi-
nating client interactions with server rep-
licas.’ The approach also provides a
framework for understanding and design-
ing replication management protocols.
Many protocols that involve replication of
data or software-be it for masking failures
or simply to facilitate cooperation without
centralized control-can be derived using
the state machine approach. Although few
of these protocols actually were obtained in
this manner, viewing them in terms of state
machines helps in understanding how and
why they work.

This paper is a tutorial on the state ma-
chine approach. It describes the approach
and its implementation for two represent-
ative environments. Small examples suffice
to illustrate the points. However, the

dent, as required.
The state machine approach is a general

method for implementing a fault-tolerant
’ The term “state machine” is a poor one, but, never-
theless, is the one used in the literature.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1990 ACM 0360-0300/90/1200-0299 $01.50

ACM Computing Surveys, Vol. 22, No. 4, December 1990

300 l F. B. Schneider

CONTENTS

INTRODUCTION
1. STATE MACHINES
2. FAULT TOLERANCE
3. FAULT-TOLERANT STATE MACHINES

3.1 Agreement
3.2 Order and Stability

4. TOLERATING FAULTY OUTPUT DEVICES
4.1 Outputs Used Outside the System
4.2 Outputs Used Inside the System

5. TOLERATING FAULTY CLIENTS
5.1 Replicating the Client
5.2 Defensive Programming

6. USING TIME TO MAKE REQUESTS
7. RECONFIGURATION

7.1 Managing the Configuration
7.2 Integrating a Repaired Object

8. RELATED WORK
ACKNOWLEDGMENTS
REFERENCES

approach has been successfully applied to
larger examples; some of these are men-
tioned in Section 8. Section 1 describes how
a system can be viewed in terms of a state
machine, clients, and output devices. Cop-
ing with failures is the subject of Sections
2 to 5. An important class of optimiza-
tions-based on the use of time-is dis-
cussed in Section 6. Section 7 describes
dynamic reconfiguration. The history of
the approach and related work are dis-
cussed in Section 8.

1. STATE MACHINES

Services, servers, and most programming
language structures for supporting modu-
larity define state machines. A state ma-
chine consists of state variables, which
encode its state, and commands, which
transform its state. Each command is im-
plemented by a deterministic program; ex-
ecution of the command is atomic with
respect to other commands and modifies
the state variables and/or produces some
output. A client of the state machine makes
a request to execute a command. The re-
quest names a state machine, names the
command to be performed, and contains
any information needed by the command.

Output from request processing can be to
an actuator (e.g., in a process-control sys-
tem), to some other peripheral device (e.g.,
a disk or terminal), or to clients awaiting
responses from prior requests.

In this tutorial, we will describe a state
machine simply by listing its state variables
and commands. As an example, state ma-
chine memory of Figure 1 implements a
time-varying mapping from locations to
values. A read command permits a client to
determine the value currently associated
with a location, and a write command as-
sociates a new value with a location.

For generality, our descriptions of state
machines deliberately do not specify how
command invocation is implemented. Com-
mands might be implemented in any of the
following ways:

l Using a collection of procedures that
share data and are invoked by a call, as
in a monitor.

l Using a single process that awaits mes-
sages containing requests and performs
the actions they specify, as in a server.

l Using a collection of interrupt handlers,
in which case a request is made by caus-
ing an interrupt, as in an operating sys-
tem kernel. (Disabling interrupts permits
each command to be executed to comple-
tion before the next is started.)

For example, the state machine of Figure 2
implements commands to ensure that at ail
times at most one client has been granted
access to some resource. In it, xoy denotes
the result of appending y to the end of list
X, head(x) denotes the first element of list
x, and tail(x) denotes the list obtained by
deleting the first element of list X. This
state machine would probably be imple-
mented as part of the supervisor-call han-
dler of an operating system kernel.

Requests are processed by a state ma-
chine one at a time, in an order that is
consistent with potential causality. There-
fore, clients of a state machine can make
the following assumptions about the order
in which requests are processed:

01: Requests issued by a single client
to a given state machine sm are

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Implementing Fault-Tolerant Services l 301

memory: state-machine
var store: array[O . . n] of word

read: command(loc: 0. n)
send store[loc] to client
end read;

write: command(loc:O n, u&e: word)
store[loc] := ualue
end write

end memory

Figure 1. A memory.

mutex: state-machine
var tser : client-id init @;

waiting:list of client-id init +;

acquire: command
if user = + + send OK to client;

user := client

0 user # 4 + waiting := waiting O client
fi
end acquire

release: command
if waiting = 4 + user := 9
13 waiting # + ---f send OK to headcwaiting);

user := head(ruaiting);

fi
end release

end mutex

waiting := tail(waiting)

Figure 2. A resource allocator.

processed by sm in the order they
were issued.

02: If the fact that request r was made to
a state machine sm by client c could
have caused a request r ’ to be made
by a client c’ to sm, then sm processes
r before r’.

Note that due to communications network
delays, 01 and 02 do not imply that a state
machine will process requests in the order
made or in the order received.

To keep our presentation independent of
the interprocess communication mecha-
nism used to transmit requests to state
machines, we will program client requests
as tuples of the form

(state-machine.command, arguments)

and postulate that any results from pro-
cessing a request are returned using mes-

sages. For example, a client might execute

(memory.write, 100, 16.2);
(memory.read, 100);
receive v from memory

to set the value of location 100 to 16.2,
request the value of location 100, and await
that value, setting v to it upon receipt.

The defining characteristic of a state ma-
chine is not its syntax but that it specifies
a deterministic computation that reads a
stream of requests and processes each, oc-
casionally producing output:

Semantic Characterization of a State
Machine. Outputs of a state machine are
completely determined by the sequence of
requests it processes, independent of time
and any other activity in a system.

Not all collections of commands neces-
sarily satisfy this characterization. Con-
sider the following program to solve a
simple process-control problem in which an
actuator is adjusted repeatedly based on the
value of a sensor. Periodically, a client
reads a sensor, communicates the value
read to state machine pc, and delays ap-
proximately D seconds:

monitor:
process

do true -+ val := sensor;
(pc.adjust, val);
delay D

od
end monitor

State machine pc adjusts an actuator based
on past adjustments saved in state variable
q, the sensor reading, and a control function
F:

pc: state-machine
var q:real;

adjust:
command(sensor-val: real)
q := F(q, sensor-val);
send q to actuator
end adjust

end pc

Although it is tempting to structure pc
as a single command that loops-reading
from the sensor, evaluating F, and writing
to actuator-if the value of the sensor is

ACM Computing Surveys, Vol. 22. No. 4, December 1990

302 l F. B. Schneider

time varying, then the result would not
satisfy the semantic characterization given
above and therefore would not be a state
machine. This is because values sent to
actuator (the output of the state machine)
would not depend solely on the requests
made to the state machine but would, in
addition, depend on the execution speed of
the loop. In the structure used above, this
problem has been avoided by moving the
loop into monitor.

In practice, having to structure a system
in terms of state machines and clients does
not constitute a real restriction. Anything
that can be structured in terms of proce-
dures and procedure calls can also be struc-
tured using state machines and clients-a
state machine implements the procedure,
and requests implement the procedure
calls. In fact, state machines permit more
flexibility in system structure than is usu-
ally available with procedure calls. With
state machines, a client making a request
is not delayed until that request is proc-
essed, and the output of a request can be
sent someplace other than to the client
making the request. We have not yet en-
countered an application that could not be
programmed cleanly in terms of state ma-
chines and clients.

2. FAULT TOLERANCE

Before turning to the implementation of
fault-tolerant state machines, we must in-
troduce some terminology concerning fail-
ures. A component is considered faulty once
its behavior is no longer consistent with its
specification. In this paper, we consider two
representative classes of faulty behavior:

Byzantine Failures. The component
can exhibit arbitrary and malicious behav-
ior, perhaps involving collusion with other
faulty components [Lamport et al. 19821.

Byzantine failures is the weakest possible
assumption that could be made about the
effects of a failure. Since a design based on
assumptions about the behavior of faulty
components runs the risk of failing if these
assumptions are not satisfied, it is prudent
that life-critical systems tolerate Byzantine
failures. For most applications, however, it
suffices to assume fail-stop failures.

A system consisting of a set of distinct
components is t fault tolerant if it satisfies
its specification provided that no more than
t of those components become faulty during
some interval of interest.’ Fault-tolerance
traditionally has been specified in terms of
mean time between failures (MTBF), prob-
ability of failure over a given interval, and
other statistical measures [Siewiorek and
Swarz 19821. Although it is clear that such
characterizations are important to the
users of a system, there are advantages in
describing fault tolerance of a system in
terms of the maximum number of compo-
nent failures that can be tolerated over
some interval of interest. Asserting that a
system is t fault tolerant makes explicit the
assumptions required for correct operation;
MTBF and other statistical measures do
not. Moreover, t fault tolerance is unrelated
to the reliability of the components that
make up the system and therefore is a
measure of the fault tolerance supported by
the system architecture, in contrast to fault
tolerance achieved simply by using reliable
components. MTBF and other statistical
reliability measures of a t fault-tolerant
system can be derived from statistical reli-
ability measures for the components used
in constructing that system-in particular,
the probability that there will be t or more
failures during the operating interval of’
interest. Thus, t is typically chosen based
on statistical measures of component reli-
ability.

Fail-stop Failures. In response to a fail-
ure, the component changes to a state that 3. FAULT-TOLERANT STATE MACHINES

permits other components to detect that A t fault-tolerant version of a state machine
a failure has occurred and then stops can be implemented by replicating that
[Schneider 19841.

Byzantine failures can be the most disrup-
tive, and there is anecdotal evidence that

2 A t fault-tolerant system might continue to operate
correctly if more than t failures occur, but correct

such failures do occur in practice. Allowing operation cannot be guaranteed.

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Implementing Fault-Tolerant Services 303

state machine and running a replica on
each of the processors in a distributed sys-
tem. Provided each replica being run by a
nonfaulty processor starts in the same ini-
tial state and executes the same requests in
the same order, then each will do the same
thing and produce the same output. Thus,
if we assume that each failure can affect at
most one processor, hence one state ma-
chine replica, then by combining the output
of the state machine replicas of this ensem-
ble, we can obtain the output for the t fault-
tolerant state machine.

When processors can experience Byzan-
tine failures, an ensemble implementing a
t fault-tolerant state machine must have at
least 2t + 1 replicas, and the output of the
ensemble is the output produced by the
majority of the replicas. This is because
with 2t + 1 replicas, the majority of the
outputs remain correct even after as many
as t failures. If processors experience only
fail-stop failures, then an ensemble con-
taining t + 1 replicas suffices, and the out-
put of the ensemble can be the output
produced by any of its members. This is
because only correct outputs are produced
by fail-stop processors, and after t failures
one nonfaulty replica will remain among
the t + 1 replicas.

The key, then, for implementing a t fault-
tolerant state machine is to ensure the
following:

Replica Coordination. All replicas re-
ceive and process the same sequence of
requests.

This can be decomposed into two require-
ments concerning dissemination of re-
quests to replicas in an ensemble.

Agreement. Every nonfaulty state ma-
chine replica receives every request.
Order. Every nonfaulty state machine
replica processes the requests it receives in
the same relative order.

Notice that Agreement governs the behav-
ior of a client in interacting with state
machine replicas and that Order governs
the behavior of a state machine replica with
respect to requests from various clients.
Thus, although Replica Coordination could

be partitioned in other ways, the Agree-
ment-order partitioning is a natural choice
because it corresponds to the existing sep-
aration of the client from the state machine
replicas.

Implementations of Agreement and Or-
der are discussed in Sections 3.1 and 3.2.
These implementations make no assump-
tions about clients or commands. Although
this generality is useful, knowledge of com-
mands allows Replica Coordination, hence
Agreement and Order, to be weakened and
thus allows cheaper protocols to be used for
managing the replicas in an ensemble. Ex-
amples of two common weakenings follow.

First, Agreement can be relaxed for read-
only requests when fail-stop processors are
being assumed. When processors are fail
stop, a request r whose processing does not
modify state variables need only be sent to
a single nonfaulty state machine replica.
This is because the response from this rep-
lica is-by definition-guaranteed to be
correct and because r changes no state vari-
ables, the state of the replica that processes
r will remain identical to the states of rep-
licas that do not.

Second, Order can be relaxed for requests
that commute. Two requests r and r’ com-
mute in a state machine sm if the sequence
of outputs and final state of sm that would
result from processing r followed by r ’ is
the same as would result from processing
r’ followed by r. An example of a state
machine where Order can be relaxed
appears in Figure 3. State machine tally
determines which from among a set of al-
ternatives receives at least MAJ votes and
sends this choice to SYSTEM. If clients
cannot vote more than once and the num-
ber of clients Cno satisfies 2MAJ > Cno,
then every request commutes with every
other. Thus, implementing Order would be
unnecessary-different replicas of the state
machine will produce the ‘same outputs
even if they process requests in different
orders. On the other hand, if clients can
vote more than once or 2MAJ 5 Cno, then
reordering requests might change the out-
come of the election.

Theories for constructing state machine
ensembles that do not satisfy Replica Co-
ordination are proposed in Aizikowitz

ACM Computing Surveys, Vol. 22, No. 4, December 1990

304 l F. B. Schneider

tally: state-machine
var uotes: array[candidate] of integer init 0

cast-uote: command(choice:candidate)
uotes[choice] := uotes[choice] + 1;
if uotes[choice] 2 MAJ -+ send choice to

SYSTEM;
halt

0 uotes[choice] < MAJ + skip
fi
end cast-vote

end tally

Figure 3. Election.

[19891 and Mancini and Pappalardo [19881.
Both theories are based on proving that an
ensemble of state machines implements
the same specification as a single replica
does. The approach taken in Aizikowitz
[l989] uses temporal logic descriptions of
state sequences, whereas the approach in
Mancini and Pappalardo 19881 uses an al-
gebra of action sequences. A detailed de-
scription of this work is beyond the scope
of this tutorial.

3.1 Agreement

The Agreement requirement can be satis-
fied by using any protocol that allows a
designated processor, called the transmit-
ter, to disseminate a value to some other
processors in such a way that

The Order requirement can be satisfied by
assigning unique identifiers to requests and
having state machine replicas process re-
quests according to a total ordering relation
on these unique identifiers. This is equiva-
lent to requiring the following, where a
request is defined to be stable at smi once
no request from a correct client and bearing
a lower unique identifier can be subse-
quently delivered to state machine replica
sm,:

Order Implementation. A replica next
processes the stable request with the small-
est unique identifier.

ICl: All nonfaulty processors agree on the
same value.

IC2: If the transmitter is nonfaulty, then
all nonfaulty processors use its value
as the one on which they agree.

Protocols to establish ICl and IC2 have
received considerable attention in the lit-
erature and are sometimes called Byzantine
Agreement protocols, reliable broadcast pro-
tocols, or simply agreement protocols. The
hard part in designing such protocols is
coping with a transmitter that fails part
way through an execution. See Strong and
Dolev [19831 for protocols that can tolerate
Byzantine processor failures and Schneider
et al. [1984] for a (significantly cheaper)
protocol that can tolerate (only) fail-stop
processor failures.

Further refinement of Order Implemen-
tation requires selecting a method for as-
signing unique identifiers to requests and
devising a stability test for that assignment
method. Note that any method for assign-
ing unique identifiers is constrained by 01
and 02 of Section 1, which imply that if
request ri could have caused request rj to be
made then uid (r;) < uid(rj) holds, where
uid(r) is the unique identifier assigned to a
request r.

In the sections that follow, we give three
refinements of the Order Implementation.
Two are based on the use of clocks; a third
uses an ordering defined by the replicas of
the ensemble.

3.2.1 Using Logical Clocks

If requests are distributed to all state A logical clock [Lamport 1978a] is a map-
machine replicas by using a protocol that ping T from events to the integers. T(e),

ACM Computing Surveys, Vol. 22, No. 4, December 1990

satisfies ICl and IC2, then the Agreement
requirement is satisfied. Either the client
can serve as the transmitter or the client
can send its request to a single state ma-
chine replica and let that replica serve as
the transmitter. When the client does not
itself serve as the transmitter, however, the
client must ensure that its request is not
lost or corrupted by the transmitter before
the request is disseminated to the state
machine replicas. One way to monitor for
such corruption is by having the client be
among the processors that receive the re-
quest from the transmitter.

3.2 Order and Stability

Imple mmenting Fault-Tolerant Services

the “time” assigned to an event e by logical
clock T, is an integer such thatlfor any two
distjnct events e and e’, either T(e) < T(e’)
or T(e) > Te’), and if e might beIrespon-
sible for causing e’ then T(e) < T(e’). It
is a simple matter to implement logical
clocks in a distributed system. Associated
with each process p is a counter T,. In
addition, a timestamp is included in each
message sent by p. This timestamp is the
value of T, when that messages is sent. T,
is updated according to the following:

LCl: pP is incremented after each event

1 2 4
P

4 7

1 2 3 4

Figure 4. Logical clock example.

at p.
LC2: Upon receipt of a message -with

timestamp T, process p resets T,:

Pp := max(PP, 7) + 1.

The value of p(e) for an event e that occurs
at processor p is constructed by appending
a fixed-length bit string-that uniquely iden-
tifies p to the value of T, when e occurs.

Figure 4 illustrates the use of this scheme
for implementing logical clocks in a system
of three processors, p, q, and r. Events are
depicted by dots, and an arrow is drawn
between events e and e’ if e might be re-
sponsible for causing event e’. For example,
an arrow between events in different pro-
cesses starts from the event corresponding
to the sending of a message and ends at the
event corresponding tolthe receipt of that
message. The value of T,(e) for each event
e is written above that event.

ment. The case in which relative speeds
of nonfaulty processors and messages is
bounded is equivalent to assuming that
they have synchronized real-time clocks
and will be considered shortly. This leaves
the case in which fail-stop failures are pos-
sible and a process or message can be
delayed for an arbitrary length of time
without being considered faulty. Thus, we
now turn to devising a stability test for that
environment.

By attaching sequence numbers to the
messages between every pair of processors,
it is trivial to ensure the following property
holds of communications channels:

FIFO Channels. Messages between a pair
of processors are delivered in the order sent.

For fail-stop processors, we can also assume
the following:

If f(e) is used as the unique identifier
associated with a request whose issuance
corresponds to event e, the result is a total
ordering on the unique identifiers that sat-
isfies 01 and 02. Thus, a logical clock can
be used as the basis of an Order Implemen-
tation if we can formulate a way to deter-
mine when a request is stable at a state
machine replica.

Failure Detection Assumption. A pro-
cessor p detects that a fail-stop processor q
has failed only after p has received the last
message sent to p by q.

The Failure Detection Assumption is con-
sistent with FIFO Channels, since the
failure event for a fail-stop processor nec-
essarily happens after the last message sent
by the processor and, therefore, should be
received after all other messages.

It is pointless to implement a stability
test in a system in which Byzantine failures
are possible and a processor or message can
be delayed for an arbitrary length of time
without being considered faulty. This is
because no deterministic protocol can im-
plement agreement under these conditions
[Fischer et al. 851.” Since it is impossible to
satisfy the Agreement requirement, there is
no point in satisfying the Order require-

Under these two assumptions, the follow-
ing stability test can be used:

Logical Clock Stability Test Tolerat-
ing Fail-stop Failures. Every client

3 The result of Fischer et al. [1985] is actually stronger
than this. It states that ICl and IC2 cannot be
achieved by a deterministic protocol in an asynchron-
ous system with a single processor that fails in an
even less restrictive manner-by simply halting.

305

ACM Computing Surveys, Vol. 22, No. 4, December 1990

306 l F. B. Schneider

periodically makes some-possibly null- occurs. We can use T,(e) followed by a
request to the state machine. A request fixed-length bit string that uniquely iden-
is stable at replica am; if a request with tifies p as the unique identifier associated
larger timestamp has been received by srn; with a request made as event e by a client
from every client running on a nonfaulty running on a processor p. To ensure that
processor. 03 and 02 (of Section 1) hold for unique

To see why this stability test works, we
show that once a request r is stable at ami,
no request with smaller unique identifier
(timestamp) will be received. First, con-
sider clients that ami does not detect as
being faulty. Because logical clocks are used
to generate unique identifiers, any request
made by a client c must have a larger unique
identifier than was assigned to any previous
request made by c. Therefore, from the
FIFO Channels assumption, we conclude
that once a request from a nonfaulty client
c is received by emi, no request from c with
a smaller unique identifier than uid (r) can
be received by am;. This means that once
requests with larger unique identifiers than
uid (r) have been received from every non-
faulty client, it is not possible to receive a
request with a smaller unique identifier
than uid(r) from these clients. Next, for a
client c that ami detects as faulty, the Fail-
ure Detection Assumption implies that no
request from c will be received by ami. Thus,
once a request r is stable at ami, no request
with a smaller timestamp can be received
from a client-faulty or nonfaulty.

3.2.2 Synchronized Real-Time Clocks

A second way to produce unique request
identifiers satisfying 01 and 02 is by us-
ing approxirnately synchronized real-time
clocks.4 Define T,(e) to be the value of the
real-time clock at processor p when event e

4 A number of protocols to achieve clock synchroni-
zation while toleratine Bvzantine failures have been

identifiers generated in this manner, two
restrictions are required. 01 follows pro-
vided no client makes two or more requests
between successive clock ticks. Thus, if
processor clocks have a resolution of R
seconds, then each client can make at most
one request every R seconds. 02 follows
provided the degree of clock synchroniza-
tion is better than the minimum message
delivery time. In particular, if clocks on
different processors are synchronized to
within 6 seconds, then it must take more
than 6 seconds for a message from one
client to reach another. Otherwise, 02
would be violated because a request r made
by the one client could have a unique iden-
tifier that was smaller than a request r’
made by another, even though r was caused
by a message sent after r’ was made.

When unique request identifiers are ob-
tained from synchronized real-time clocks,
a stability test can be implemented by ex-
ploiting these clocks and the bounds on
message delivery delays. Define A to be
constant such that a request r with unique
identifier uid (r) will be received by every
correct processor no later than time uid(r)
+ A according to the local clock at the
receiving processor. Such a A must exist if
requests are disseminated using a protocol
that employs a fixed number of rounds, like
the ones cited above for establishing ICl
and IC2.” By definition, once the clock on
a processor p reaches time 7, p cannot sub-
sequently receive a request r such that
uid(r) c 7 - A. Therefore, we have the
following stability test:

proposed [Halpern et al. i984; Lamport and Melliar-
Smith 19841. See Schneider [1986] for a survey. The Real-time Clock Stability Test Toler-
protocols all require that known bounds exist for the ating Byzantine Failures I. A request r
execution speed and clock rates of nonfaulty proces- is stable at a state machine replica sm,
sors and for message delivery delays along nonfaulty
communications links. In practice, these requirements
do not constitute a restriction. Clock synchronization 5 In general, A will be a function of the variance in
achieved by the protocols is proportional to the vari- message delivery delay, the maximum message deliv-
ante in message delivery delay, making it possible to ery delay, and the degree of clock synchronization. See
satisfy the restriction-necessary to ensure 02-that Cristian et al. [1985] for a detailed derivation for A in
message delivery delay exceeds clock synchronization. a variety of environments.

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Implementing Fault-Tolerant Services 307

being executed by processor p if the local
clock at p reads T and uid(r) < T - A.

One disadvantage of this stability test is
that it forces the state machine to lag be-
hind its clients by A, where A is propor-
tional to the worst-case message delivery
delay. This disadvantage can be avoided.
Due to property 01 of the total ordering
on request identifiers, if communications
channels satisfy FIFO Channels, then a
state machine replica that has received a
request r from a client c can subsequently
receive from c only requests with unique
identifiers greater than uid(r). Thus, a re-
quest r is also stable at a state machine
replica provided a request with a larger
unique identifier has been received from
every client.

Real-time Clock Stability Test Toler-
ating Byzantine Failures II. A request
r is stable at a state machine replica smi if
a request with a larger unique identifier has
been received from every client.

This second stability test is never passed if
a (faulty) processor refuses to make re-
quests. However, by combining the first
and second test so that a request is consid-
ered stable when it satisfies either test, a
stability test results that lags clients by A
only when faulty processors or network de-
lays force it. Such a combined test is dis-
cussed in [Gopal et al. 19901.

3.2.3 Using Replica-Generated Identifiers

In the previous two refinements of the Or-
der Implementation, clients determine the
order in which requests are processed-the
unique identifier uid(r) for a request r is
assigned by the client making that request.
In the following refinement of the Order
Implementation, the state machine replicas
determine this order. Unique identifiers are
computed in two phases. In the first phase,
which can be part of the agreement protocol
used to satisfy the Agreement requirement,
state machine replicas propose candidate
unique identifiers for a request. Then, in
the second phase, one of these candidates
is selected and it becomes the unique iden-
tifier for that request.

The advantage of this approach to com-
puting unique identifiers is that communi-
cation between all processors in the system
is not necessary. When logical clocks or
synchronized real-time clocks are used in
computing unique request identifiers, all
processors hosting clients or state machine
replicas must communicate. In the case
of logical clocks, this communication is
needed in order for requests to become sta-
ble; in the case of synchronized real-time
clocks, this communication is needed in
order to keep the clocks synchronized.6 In
the replica-generated identifier approach of
this section, the only communication re-
quired is among processors running the
client and state machine replicas.

By constraining the possible candidates
proposed in phase 1 for a request’s unique
identifier, it is possible to obtain a simple
stability test. To describe this stability test,
some terminology is required. We say that
a state machine replica sm; has seen a re-
quest r once sm, has received r and pro-
posed a candidate unique identifier for r.
We say that sm; has accepted r once that
replica knows the ultimate choice of unique
identifier for r. Define cuid (smi, r) to be
the candidate unique identifier proposed by
replica srn; for request r. Two constraints
that lead to a simple stability test are:

UIDl: cuid(smi, r) I uid(r).
UIDB: If a request r’ is seen by replica

sm.; after r has been accepted by
smi then uid(r) < cuid(smi, r’).

If these constraints hold throughout exe-
cution, then the following test can be used
to determine whether a request is stable at
a state machine replica:

Replica-Generated Identifiers Stabil-
ity Test. A request r that has been ac-
cepted by smi is stable provided there is no

6 This communications cost argument illustrates an
advantage of having a client forward its request to a
single state machine replica that then serves as the
transmitter for disseminating the request. In effect,
that state machine replica becomes the client of the
state machine, and so communication need only in-
volve those processors running state machine replicas.

ACM Computing Surveys, Vol. 22, No. 4, December 1990

308 l F. B. Schneider

request r’ that has (i) been seen by am;, (ii)
not been accepted by ami, and (iii) for which
cuid(smi, r’) I uid(r) holds.

To prove that this stability test works,
we must show that once an accepted re-
quest r is deemed stable at sm,, no request
with a smaller unique identifier will be sub-
sequently accepted at sm;. Let r be a request
that, according to the Replica-Generated
Identifiers Stability Test, is stable at rep-
lica smi. Due to UIDB, for any request r’
that has not been seen by sm;, uid(r) <
cuid(smi, r’) holds. Thus, by transitivity
using UIDl, uid(r) c uid(r’) holds, and we
conclude that r ’ cannot have a smaller
unique identifier than r. Now consider the
case in which request r ’ has been seen but
not accepted by ami and-because the sta-
bility test for r is satisfied--Ad(r) c
cuid(sm;, r’) holds. Due to UIDl, we con-
clude that uid (r) < uid (r ‘) holds and,
therefore, r ’ does not have a smaller unique
identifier than r. Thus, we have shown that
once a request r satisfies the Replica-
Generated Identifiers Stability Test at ami,
any request r’ that is accepted by smi will
satisfy uid (r) < uid (r ’), as desired.

Unlike clock-generated unique identi-
fiers for requests, replica-generated ones do
not necessarily satisfy 01 and 02 of Section
1. Without further restrictions, it is possi-
ble for a client to make a request r, send a
message to another client causing request
r’ to be issued, yet have uid(r’) < uid(r).
However, 01 and 02 will hold provided that
once a client starts disseminating a request
to the state machine replicas, the client
performs no other communication until
every state machine replica has accepted
that request. To see why this works, con-
sider a request r being made by some client
and suppose some request r ’ was influenced
by r. The delay ensures that r is accepted
by every state machine replica smj before
r ’ is seen. Thus, from UID2 we conclude
uid(r) c cuid(smi, r ‘) and, by transi-
tivity with UIDl, that uid(r) < uid(r’), as
required.

To complete this Order Implementation,
we have only to devise protocols for com-
puting unique identifiers and candidate

unique identifiers such that:

l UIDl and UID2 are satisfied.
l r # r’ a uid(r) # uid(r’).
l Every request that is seen

(1)
(2)

eventually becomes accepted. (3)

One simple solution for a system of fail-
stop processors is the following:

Replica-generated Unique Identifiers.
In a system with N clients, each state ma-
chine replica smi maintains two variables:

SEENi is the largest cuid (smi, r) assigned
to any request r so far seen by ami, and
ACCEPT, is the largest uid(r) assigned to
any request r so far accepted by sm,.

Upon receipt of a request r, each replica
sm, computes

cuid(smi, r) :=

max(1 SEEN,], [ACCEPTij)

+ 1 + i/N. (4)

(Notice, this means that all candidate
unique identifiers are themselves unique.)
The replica then disseminates (using an
agreement protocol) cuid(smi, r) to all
other replicas and awaits receipt of a can-
didate unique identifier for r from every
nonfaulty replica, participating in the
agreement protocol for that value as well.
Let NF be the set of replicas from which
candidate unique identifiers were received.
Finally, the replica computes

uid(r) := .~z;~ (cuid(smj, r)) (5)
I

and accepts r.

We prove that this protocol satisfies
(l)-(3) as follows. UIDl follows from us-
ing assignment (5) to compute uid (r), and
UID2 follows from assignment (4) to
compute cuid(ami, r). To conclude that
(2) holds, we argue as follows. Because an
agreement protocol is used to disseminate
candidate unique identifiers, all replicas re-
ceive the same values from the same repli-
cas. Thus, all replicas will execute the same
assignment statement (5), and all will com-
pute the same value for uid(r). To establish

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Implementing Fault-Tolerant Services l 309

that these uid(r) values are unique for each
request, it suffices to observe that maxi-
mums of disjoint subsets of a collection of
unique values-the candidate unique iden-
tifiers-are also unique. Finally, to estab-
lish (3), that every request that is seen is
eventually accepted, we must prove that for
each replica smj, a replica sm; eventually
learns cuid(smj, r) or learns that sm, has
failed. This follows trivially from the use of
an agreement protocol to distribute the
cuid(smj, r) and the definition of a fail-
stop processor.

An optimization of our Replica-gener-
ated Unique Identifiers protocol is the basis
for the ABCAST protocol in the ISIS
Toolkit [Birman and Joseph 19871 devel-
oped at Cornell. In this optimization, can-
didate unique identifiers are returned to the
client instead of being disseminated to the
other state machine replicas. The client
then executes assignment (5) to compute
uid(r). Finally, an agreement protocol is
used by the client in disseminating uid (r)
to the state machine replicas. Some unique
replica takes over for the client if the client
fails.

It is possible to modify our Replica-
generated Unique Identifiers protocol for
use in systems where processors can exhibit
Byzantine failures, have synchronized real-
time clocks, and communications channels
have bounded message-delivery delays-
the same environment as was assumed for
using synchronized real-time clocks to gen-
erate unique identifiers. The following
changes are required. First, each replica sm,
uses timeouts so that ami cannot be forever
delayed waiting to receive and participate
in the agreement protocol for disseminating
a candidate unique identifier from a faulty
replica smj. Second, if ami does determine
that amj has timed out, ami disseminates
“smj timeout” to all replicas (by using an
agreement protocol). Finally, NF is the set
of replicas in the ensemble less any amj for
which “sm, timeout” has been received from
t + 1 or more replicas. Notice, Byzantine
failures that cause faulty replicas to pro-
pose candidate unique identifiers not pro-
duced by (4) do not cause difficulty. This is
because candidate unique identifiers that

are too small have no effect on the outcome
of (5) at nonfaulty replicas and those that
are too large will satisfy UIDl and UID2.

4. TOLERATING FAULTY OUTPUT DEVICES

It is not possible to implement a t fault-
tolerant system by using a single voter to
combine the outputs of an ensemble of state
machine replicas into one output. This is
because a single failure-of the voter-can
prevent the system from producing the cor-
rect output. Solutions to this problem de-
pend on whether the output of the state
machine implemented by the ensemble is
to be used within the system or outside the
system.

4.1 Outputs Used Outside the System

If the output of the state machine is sent
to an output device, then that device is
already a single component whose failure
cannot be tolerated. Thus, being able to
tolerate a faulty voter is not sufficient-the
system must also be able to tolerate a faulty
output device. The usual solution to this
problem is to replicate the output device
and voter. Each voter combines the output
of each state machine replica, producing a
signal that drives one output device. What-
ever reads the outputs of the system is
assumed to combine the outputs of the
replicated devices. This reader, which is not
considered part of the computing system,
implements the critical voter.

If output devices can exhibit Byzantine
failures, then by taking the output pro-
duced by the majority of the devices, 2t +
l-fold replication permits up to t faulty
output devices to be tolerated. For example,
a flap on an airplane wing might be de-
signed so that when the 2t + 1 actuators
that control it do not agree, the flap always
moves in the direction of the majority
(rather than twisting). If output devices
exhibit only fail-stop failures, then only
t + l-fold replication is necessary to toler-
ate t failures because any output produced
by a fail-stop output device can be assumed
correct. For example, video display termi-
nals usually present information with

ACM Computing Surveys, Vol. 22, No. 4, December 1990

310 l F. B. Schneider

enough redundancy so that they can be
treated as fail stop-failure detection is
implemented by the viewer. With such an
output device, a human user can look at
one of t + 1 devices, decide whether the
output is faulty, and only if it is faulty, look
at another, and so on.

4.2 Outputs Used Inside the System

If the output of the state machine is to a
client, then the client itself can combine
the outputs of state machine replicas in the
ensemble. Here, the voter-a part of the
client-is faulty exactly when the client is,
so the fact that an incorrect output is read
by the client due to a faulty voter is irrele-
vant. When Byzantine failures are possible,
the client waits until it has received t + 1
identical responses, each from a different
member of the ensemble, and takes that as
the response from the t fault-tolerant state
machine. When only fail-stop failures are
possible, the client can proceed as soon as
it has received a response from any member
of the ensemble, since any output produced
by a replica must be correct.

When the client is executed on the same
processor as one of the state machine rep-
licas, optimization of client-implemented
voting is possible.7 This is because correct-
ness of the processor implies that both the
state machine replica and client will be
correct. Therefore, the response produced
by the state machine replica running locally
can be used as that client’s response from
the t fault-tolerant state machine. And, if
the processor is faulty, we are entitled to
view the client as being faulty, so it does
not matter what state machine responses
the client receives. Summarizing, we have
the following:

Dependent-Failures Output Optimiza-
tion. If a client and a state machine replica
run on the same processor, then even when

‘Care must be exercised when analyzing the fault
tolerance of such a system because a single processor
failure can now cause two system components to fail.
Implicit in most of our discussions is that system
components fail independently. It is not always pos-
sible to transform a t fault-tolerant system in which
clients and state machine replicas have independent
failures to one in which they share processors.

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Byzantine failures are possible, the client
need not gather a maj0rit.y of responses to
its requests to the state machine. It can use
the single response produced locally.

5. TOLERATING FAULTY CLIENTS

Implementing a t fault-tolerant state ma-
chine is not sufficient for implementing a i
fault-tolerant system. Faults might result
in clients making requests that cause the
state machine to produce erroneous output
or that corrupt the state machine so that
subsequent requests from nonfaulty clients
are incorrectly processed. Therefore, in this
section we discuss various methods for in-
sulating the state machine from faults that
affect clients.

5.1 Replicating the Client

One way to avoid having faults affect a
client is by replicating the client and run-
ning each replica on hardware that fails
independently. This replication, however,
also requires changes to state machines
that handle requests from that client. This
is because after a client has been replicated
N-fold, any state machine it interacts with
receives N requests-one from each client
replica-when it formerly receives a single
request. Moreover, corresponding requests
from different client replicas will not nec-
essarily be identical. First, they will differ
in their unique identifiers. Second, unless
the original client is itself a state machine
and the methods of Section 3 are used to
coordinate the replicas, corresponding re-
quests from different replicas can also dif-
fer in their content. For example, if a client
makes requests based on the value of some
time-varying sensor, then its replicas will
each read their sensors at slightly differ-
ent times and, therefore, make different
requests.

We first consider modifications to a state
machine sm for the case in which requests
from different client replicas are known to
differ only in their unique identifiers. FOI
this case, modifications are needed for cop-
ing with receiving N requests instead of a
single one. These modifications involve
changing each command so that instead of
processing every request received, requests

Implementing Fault-Tolerant Services l 311

are buffered until enough’ have been re-
ceived; only then is the corresponding com-
mand performed (a single time). In effect,
a voter is being added to sm to control
invocation of its commands. Client repli-
cation can be made invisible to the designer
of a state machine by including such a voter
in the support software that receives re-
quests, tests for stability, and orders stable
requests by unique identifier.

Modifying the state machine for the case
in which requests from different client rep-
licas can also differ in their content typi-
cally requires exploiting knowledge of the
application. As before, the idea is to trans-
form multiple requests into a single one.
For example, in a t fault-tolerant system, if
2t + 1 different requests are received, each
containing the value of a sensor, then a
single request containing the median of
those values might be constructed and
processed by the state machine. (Given at
most t Byzantine faults, the median of
2t + 1 values is a reasonable one to use
because it is bounded from above and below
by a nonfaulty value.) A general method for
transforming multiple requests containing
sensor values into a single request is dis-
cussed in Marzullo [1989]. That method is
based on viewing a sensor value as an in-
terval that includes the actual value being
measured; a single interval (sensor) is com-
puted from a set of intervals by using a
fault-tolerant intersection algorithm.

5.2 Defensive Programming

Sometimes a client cannot be made fault
tolerant by using replication. In some cir-
cumstances, due to the unavailability of
sensors or processors, it simply might not
be possible to replicate the client. In other
circumstances, the application semantics
might not afford a reasonable way to trans-
form multiple requests from client replicas
into the single request needed by the state
machine. In all of these circumstances,
careful design of state machines can limit

‘If Byzantine failures are possible, then a t fault-
tolerant client requires 2t + l-fold replication and a
command is performed after t + 1 requests have been
received. If failures are restricted to fail stop, then
t + l-fold replication will suffice, and a command
can be performed after a single request has been
received.

the effects of requests from faulty clients.
For example, memory (Figure 1) permits
any client to write to any location. There-
fore, a faulty client can overwrite all
locations, destroying information. This
problem could be prevented by restricting
write requests from each client to only cer-
tain memory locations-the state machine
can enforce this.

Including tests in commands is another
way to design a state machine that cannot
be corrupted by requests from faulty
clients. For example, mutex as specified in
Figure 2, will execute a release command
made by any client-even one that does not
have access to the resource. Consequently,
a faulty client could issue such a request
and cause mutex to grant a second client
access to the resource before the first has
relinquished access. A better formulation
of mutex ignores release commands from
all but the client to which exclusive access
has been granted. This is implemented by
changing the release in mutex to

release :
command
if user # client -+ skip
0 waiting = @ A user = client -3

user := *
0 waiting # Q A user = client +

send OK to head (waiting);
user := head(waiting);
waiting := tail (waiting)

fi
end release

Sometimes, a faulty client not making a
request can be just as catastrophic as one
making an erroneous request. For example,
if a client of mutex failed and stopped while
it had exclusive access to the resource, then
no client could be granted access to the
resource. Of course, unless we are prepared
to bound the length of time that a correctly
functioning process can retain exclusive ac-
cess to the resource, there is little we can
do about this problem. This is because there
is no way for a state machine to distinguish
between a client that has stopped executing
because it has failed and one that is exe-
cuting very slowly. However, given an up-
per bound B on the interval between an
acquire and the following release, the ac-
quire command of mutex can automatically
schedule release on behalf of a client.

ACM Computing Surveys, Vol. 22, No. 4, December 1990

312 l F. B. Schneider

We use the notation

schedule (REQUEST) for +T

to specify scheduling (REQUEST) with a
unique identifier at least 7 greater than the
identifier on the request being processed.
Such a request is called a timeout request
and becomes stable at some time in the
future, according to the stability test being
used for client-generated requests. Unlike
requests from clients, requests that result
from executing schedule need not be dis-
tributed to all state machine replicas of the
ensemble. This is because each state ma-
chine replica will independently schedule
its own (identical) copy of the request.

We can now modify acquire so that a
release operation is automatically sched-
uled. In the code that follows, TIME is
assumed to be a function that evaluates to
the current time. Note that mutex might
now process two release commands on be-
half of a client that has acquired access
to the resource: one command from the
client itself and one generated by its
acquire request. The new state variable
time-granted, however, ensures that super-
fluous release commands are ignored. The
code is
acquire :

command
if user = @ +

send OK to client;
time-granted := TIME;
schedule

(mutextimeout, time-granted)
for + B

0 user # * + waiting := waiting 0 client
fi
end acquire

timeout:
command (when-granted: integer)
if when-granted #

time-granted + skip
0 waiting = 9 A when-granted =

time-granted -+ user := @
0 waiting # + A when-granted =

time-granted -+
send OK to head (waiting);
user := head(waiting);
time-granted := TIME;
waiting := tail(waiting)

fi
end timeout

6. USING TIME TO MAKE REQUESTS

A client need not explicitly send a message
to make a request. Not receiving a request
can trigger execution of a command-in
effect, allowing the passage of time to
transmit a request from client to state ma-
chine [Lamport 19841. Transmitting a re-
quest using time instead of messages can
be advantageous because protocols that im-
plement ICl and IC2 can be costly both in
total number of messages exchanged and in
delay. Unfortunately, using time to trans-
mit requests has only limited applicability
since the client cannot specify parameter
values.

The use of time to transmit a request was
used in Section 5 when we revised the ac-
quire command of mutex to foil clients that
failed to release the resource. There, a re-
lease request was automatically scheduled
by acquire on behalf of a client being
granted the resource. A client transmits a
release request to mutex simply by permit-
ting B (logical clock or real-time clock) time
units to pass. It is only to increase utiliza-
tion of the shared resource that a client
might use messages to transmit a release
request to mutex before B time units have
passed.

A more dramatic example of using time
to transmit a request is illustrated in con-
nection with tally of Figure 3. Assume that

l all clients and state machine replicas
have (logical or real time) clocks synchro-
nized to within r,

and

l the election starts at time Strt and this
is known to all clients and state machine
replicas.

Using time, a client can cast a vote for a
default by doing nothing; only when a client
casts a vote different from its default do we
require that it actually transmits a request
message. Thus, we have:

Transmitting a Default Vote. If client
has not made a request by time Strt + I’,
then a request with that client’s default
vote has been made.

Notice that the default need not be fixed
nor even known at the time a vote is cast.

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Implementing Fault-Tolerant Services l 313

For example, the default vote could be “vote
for the first client that any client casts
a nondefault vote for.” In that case, the
entire election can be conducted as long
as one client casts a vote by using actual
messages.g

7. RECONFIGURATION

An ensemble of state machine replicas can
tolerate more than t faults if it is possible
to remove state machine replicas running
on faulty processors from the ensemble and
add replicas running on repaired proces-
sors. (A similar argument can be made for
being able to add and remove copies of
clients and output devices.) Let P(r) be the
total number of processors at time 7 that
are executing replicas of some state ma-
chine of interest, and let F(T) be the num-
ber of them that are faulty. In order for the
ensemble to produce the correct output, we
must have

Combining Condition: P(T) - F(7) >
Enuf for all 0 I 7, where

P(7)
-

Enuf = 2

1

if Byzantine failures
are possible.

0 if only fail-stop failures
are possible.

A processor failure may cause the Com-
bining Condition to be violated by increas-
ing F(T), thereby decreasing P(T) - F(T).
When Byzantine failures are possible, if a
faulty processor can be identified, then re-
moving it from the ensemble decreases
Enuf without further decreasing P(T) -
F(T); this can keep the Combining Condi-
tion from being violated. When only fail-
stop failures are possible, increasing the
number of nonfaulty processors-by add-
ing one that has been repaired-is the only
way to keep the Combining Condition from
being violated because increasing P(r) is
the only way to ensure that P(7) - F(T)
> 0 holds. Therefore, provided the follow-
ing conditions hold, it may be possible to
maintain the Combining Condition forever

’ Observe that if Byzantine failures are possible, then
a faulty client can be elected. Such problems are
always possible when voters do not have detailed
knowledge about the candidates in an election.

and thus tolerate an unbounded total num-
ber of faults over the life of the system:

Fl: If Byzantine failures are possible,
then state machine replicas being ex-
ecuted by faulty processors are iden-
tified and removed from the ensemble
before the Combining Condition is
violated by subsequent processor
failures.

F2: State machine replicas running on re-
paired processors are added to the
ensemble before the Combining Con-
dition is violated by subsequent pro-
cessor failures.

Fl and F2 constrain the rates at which
failures and repairs occur.

Removing faulty processors from an en-
semble of state machines can also improve
system performance. This is because the
number of messages that must be sent to
achieve agreement is usually proportional
to the number of state machine replicas
that must agree on the contents of a re-
quest. In addition, some protocols to im-
plement agreement execute in time propor-
tional to the number of processors that are
faulty. Removing faulty processors clearly
reduces both the message complexity and
time complexity of such protocols.

Adding or removing a client from the
system is simply a matter of changing the
state machine so that henceforth it re-
sponds to or ignores requests from that
client. Adding an output device is also
straightforward-the state machine starts
sending output to that device. Removing
an output device from a system is achieved
by disabling the device. This is done by
putting the device in a state that prevents
it from affecting the environment. For ex-
ample, a CRT terminal can be disabled by
turning off the brightness so that the screen
can no longer be read; a hydraulic actuator
controlling the flap on an airplane wing can
be disabled by opening a cutoff valve so
that the actuator exerts no pressure on that
control surface. As suggested by these ex-
amples, however, it is not always possible
to disable a faulty output device: Turning
off the brightness might have no effect on
the screen, and the cutoff valve might not
work. Thus, there are systems in which no

ACM Computing Surveys, Vol. 22, No. 4, December 1990

314 l F. B. Schneider

more than a total of t actuator faults can
be tolerated because faulty actuators can-
not be disabled.

The configuration of a system structured
in terms of a state machine and clients can
be described using three sets: the clients C,
t.he state machine replicas S, and the out-
put devices 0. 5’ is used by the agreement
protocol and therefore must be known to
clients and state machine replicas. It can
also be used by an output device to deter-
mine which send operations made by state
machine replicas should be ignored. C and
0 are used by state machine replicas to
determine from which clients requests
should be processed and to which devices
output should be sent. Therefore, C and
0 must be available to all state machine
replicas.

Two problems must be solved to support
changing the system configuration. First,
the values of C, S, and 0 must be available
when required. Second, whenever a client,
state machine replica, or output device is
added to the configuration, the state of that
element must be updated to reflect the
current state of the system. These prob-
lems are considered in the following two
sections.

7.1 Managing the Configuration

The configuration of a system can be man-
aged using the state machine in that sys-
tem. Sets C, S, and 0 are stored in state
variables and changed by commands. Each
configuration is valid for a collection of
requests-those requests r such that uid(r)
is in the range defined by two succes-
sive configuration-change requests. Thus,
whenever a client, state machine replica, or
output device performs an action connected
with processing r, it uses the configuration
that is valid for r. This means that a con-
figuration-change request must schedule
the new configuration for some point far
enough in the future so that clients, state
machine replicas, and output devices all
find out about the new configuration before
it actually comes into effect.

There are various ways to make config-
uration information available to the clients
and output devices of a system. (The infor-
mation is already available to the state

machine.) One is for clients and output
devices t.o query the state machine peri-
odically for information about relevant
pending configuration changes. Obviously,
communication costs for this scheme are
reduced if clients and output devices share
processors with state machine replicas. An-
other way to make configuration informa-
tion avai!able is for the state machine to
include information about configuration
changes in messages it sends to clients and
output devices in the course of normal pro-
cessing. Doing this requires periodic com-
munication between the state machine and
clients and between the state machine and
output devices.

Requests to change the configuration of
the system are made by a failure/recovery
detection mechanism. It is convenient to
think of this mechanism as a collection of
clients, one for each element of C, S: or 0.
Each of these configurators is responsible
for detecting the failure or repair of the
single object it manages and, when such an
event is detected, for making a request to
alter the configuration. A configurator is
likely to be part of an existing client or
state machine replica and might be imple-
mented in a variety of ways.

When elements are fail stop, a configu-
rator need only check the failure-detection
mechanism of that element. When ele-
ments can exhibit Byzantine failures, de-
tecting failures is not always possible.
When it is possible, a higher degree of fault
tolerance can be achieved by reconfigura-
tion. A nonfaulty configurator satisfies two
safety properties:

Cl: Only a faulty element is removed
from the configuration.

C2: Only a nonfaulty element is added to
the configuration.

A configurator that does nothing satisfies
Cl and C2. Changing the configuration en-
hances faults tolerance only if Fl and F2
also hold. For Fl and F2 to hold, a config-
urator must also (1) detect faults and cause
elements to be removed and (2) detect re-
pairs and cause elements to be added. Thus,
the degree to which a configurator en-
hances fault tolerance is directly related to
the degree to which (1) and (2) are achieved.

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Implementing Fault-Tolerant Services l 315

Here, the semantics of the application can
be helpful. For example, to infer that a
client is faulty, a state machine can com-
pare requests made by different clients or
by the same client over a period of time. To
determine that a processor executing a
state machine replica is faulty, the state
machine can monitor messages sent by
other state machine replicas during execu-
tion of an agreement protocol. And, by
monitoring aspects of the environment
being controlled by actuators, a state ma-
chine replica might be able to determine
that an output device is faulty. Some ele-
ments, such as processors, have internal
failure-detection circuitry that can be read
to determine whether that element is faulty
or has been repaired and restarted. A con-
figurator for such an element can be im-
plemented by having the state machine
periodically poll this circuitry.

In order to analyze the fault tolerance of
a system that uses configurators, failure of
a configurator can be considered equivalent
to the failure of the element that the con-
figurator manages. This is because with
respect to the Combining Condition, re-
moval of a nonfaulty element from the sys-
tem or addition of a faulty one is the same
as that element failing. Thus, in a t fault-
tolerant system, the sum of the number of
faulty configurators that manage nonfaulty
elements and the number of faulty compo-
nents with nonfaulty configurators must be
bounded by t.

7.2 Integrating a Repaired Object

Not only must an element being added to a
configuration be nonfaulty, it also must
have the correct state so that its actions
will be consistent with those of the rest of
the system. Define e[r,] to be the state that
a non-faulty system element e should be in
after processing requests r. through ri. An
element e joining the configuration imme-
diately after request rjOin must be in state
e[rjOin] before it can participate in the
running system.

An element is self-stabilizing [Dijkstra
19741 if its current state is completely de-
fined by the previous k inputs it has pro-
cessed for some fixed k. Running such an
element long enough to ensure that it has

processed k inputs is all that is required to
put it in state e [rjOi”]. Unfortunately, the
design of self-stabilizing state machines is
not always possible.

When elements are not self-stabilizing,
processors are fail stop, and logical clocks
are implemented, cooperation of a single
state machine replica smi is sufficient to
integrate a new element e into the system.
This is because state information obtained
from any state machine replica smi must be
correct. In order to integrate e at request
rjoin, replica sm, must have access to enough
state information SO that e [rjoin] can be
assembled and forwarded to e.

When e is an output device, e[rjOin] is
likely to be only a small amount of device-
specific setup information-information
that changes infrequently and can be
stored in state variables of ami.
When e is a client, the information
needed for e [rjOin] is frequently based on
recent sensor values read and can there-
fore be determined by using information
provided to ami by other clients.
And, when e is a state machine replica,
the information needed for e [r+,,] is
stored in the state variables and pending
requests at Smi.

The protocol for integrating a client or
output device e is simple-e [rjO;,] is sent to
e before the output produced by processing
any request with a unique identifier larger
than uid(rjOin). The protocol for integrating
a state machine replica sm,,, is a bit more
complex. It is not sufficient for replica SiYLi
simply to send the values of all its state
variables and copies of any pending re-
quests to smnew. This is because some client
request might be received by ami after send-
ing e[r+] but delivered to sm,,, before its
repair. Such a request would neither be
reflected in the state information for-
warded by am; to smnew nor received by
srnnew directly. Thus, smi must, for a time,
relay to srnnew requests received from
clients.” Since requests from a given client
are received by sm,,, in the order sent and
in ascending order by request identifier,

lo Duplicate copies of some requests might be received
by smnew .

ACM Computing Surveys, Vol. 22, No. 4, December 1990

316 l F. B. Schneider

once sm,,, has received a request directly by time 7join + A according to its clock.
(i.e., not relayed) from a client c, there is Therefore, every request received by ami
no need for requests from c with larger after Tjoin + A must also be received directly
identifiers to be relayed to sm,,,. Jf sm,,, by sm,,,. Clearly, ami need not relay such
informs em; of the identifier on a request requests, and we have the following
received directlv from each client c. then nrotocol:
ami can know when to stop relaying to sm,,,
requests from c.

The complete integration protocol is
summarized in the following:

Integration with Fail-stop Processors
and Logical Clocks. A state machine
replica smi can integrate an element e
at request rjoin into a running system as
follows:

If e is a client or output device, sm, sends
the relevant portions of its state variables
to e and does so before sending any output
produced by requests with unique identi-
fiers larger than the one on rjOin.

If e is a state machine replica sm,,,,
then smi

(1) sends the values of its state variables
and copies of any pending requests to
sm,,, ,

and then
(2) sends to srnnew every subsequent re-

quest r received from each client c such
that uid(r) c uid(r,), where r, is the
first request sm,,, received directly
from c after being restarted.

The existence of synchronized real-time
clocks permits this protocol to be simplified
because am; can determine when to stop
relaying messages based on the passage of
time. Suppose, as in Section 3.2.2, there
exists a constant A such that a request r
with unique identifier uid(r) will be re-
ceived by every (correct) state machine rep-
lica no later than time uid (r) + A according
to the local clock at the receiving processor.
Let sm,,, join the configuration at
time rjoin. By definition, smnew is guaranteed
to receive every request that was made after
time Tj,in on the requesting client’s clock.
Since unique identifiers are obtained from
the real-time clock of the client making the
request, srnnew is guaranteed to receive
every request r such that uid(r) 2 7j,i”. The
first such request r must be received by smi

Integration with Fail-stop Processors
and Real-time Clocks. A state machine
replica Smi can integrate an element e
at request rjoin into a running system as
follows:

If e is a client or output device, then smi
sends the relevant portions of its state vari-
ables to e and does so before sending any
output produced by requests with unique
identifiers larger than the one on rj0in.

If e is a state machine replica sm,,,,,
then sm,

(1) sends the values of its state variables
and copies of any pending requests to
smnew,

and then
(2) sends to smnew every request received

during the next interval of duration A.

When processors can exhibit Byzantine
failures, a single state machine replica smi
is not sufficient for integrating a new ele-
ment into the system. This is because state
information furnished by sm; might not be
correct-smi might be executing on a faulty
processor. To tolerate t failures in a system
with 2t + 1 state machine replicas, t + 1
identical copies of the state information
and t + 1 identical copies of relayed mes-
sages must be obtained. Otherwise, the pro-
tocol is as described above for real-time
clocks.

7.2.1 Stability Revisited

The stability tests of Section 3 do not work
when requests made by a client can be
received from two sources-the client and
via a relay. During the interval that mes-
sages are being relayed, sm,,,, the state
machine replica being integrated, might re-
ceive a request r directly from c but later
receive r ‘, another request from c, with
uid (r) > uid (r’), because r’ was relayed by
am;. The solution to this problem is for

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Implementing Fault-Tolerant Services l 317

sm,,, to consider requests received directly
from c stable only after no relayed requests
from c can arrive. Thus, the stability test
must be changed:

Stability Test During Restart. A re-
quest r received directly from a client c by
a restarting state machine replica sm,,, is
stable only after the last request from c
relayed by another processor has been
received by sm,,,.

An obvious way to implement this new
stability test is for a message to be sent to
srnnew when no further requests from c will
be relayed.

8. RELATED WORK

The state machine approach was first de-
scribed in Lamport [1978a] for environ-
ments in which failures could not occur. It
was generalized to handle fail-stop failures
in Schneider [1982], a class of failures
between fail-stop and Byzantine failures
in Lamport [1978b], and full Byzantine
failures in Lamport [1984]. These various
state machine implementations were first
characterized using the Agreement and
Order requirements and a stability test in
Schneider [19851.

The state machine approach has been
used in the design of significant fault-
tolerant process control applications
[Wensley et al. 19781. It has also been used
in the design of distributed synchroniza-
tion-including read/write locks and dis-
tributed semaphores [Schneider 19801,
input/output guards for CSP and condi-
tional Ada SELECT statements [Schneider
1982]-and in the design of a fail-stop pro-
cessor approximation using processors that
can exhibit arbitrary behavior in response
to a failure [Schlichting and Schneider
1983; Schneider 19841. A stable storage im-
plementation described in Bernstein [19851
exploits properties of a synchronous broad-
cast network to avoid explicit protocols for
Agreement and Order and uses Transmit-
ting a Default Vote (as described in Sec-
tion 7). The notion of A common storage,
suggested in Cristian et al. [19851, is a state
machine implementation of memory that

uses the Real-time Clock Stability Test.
The decentralized commit protocol of
Skeen [1982] can be viewed as a straight-
forward application of the state machine
approach, whereas the two-phase commit
protocol described in Gray [1978] can be
obtained from decentralized commit simply
by making restrictive assumptions about
failures and performing optimizations
based on these assumptions. The Paxon
Synod commit protocol [Lamport 19891
also can be understood in terms of the state
machine approach. It is similar to, but less
expensive to execute, than the standard
three-phase commit protocol. Finally, the
method of implementing highly available
distributed services in Liskov and Ladin
[1986] uses the state machine approach,
with clever optimizations of the stability
test and agreement protocol that are pos-
sible due to the semantics of the application
and the use of fail-stop processors.

A critique of the state machine approach
for transaction management in database
systems appears in Garcia-Molina et al.
[19861. Experiments evaluating the per-
formance of various of the stability tests in
a network of SUN Workstations are re-
ported in Pittelli and Garcia-Molina
[1989]. That study also reports on the per-
formance of request batching, which is
possible when requests describe database
transactions, and the use of null requests
in the Logical Clock Stability Test Toler-
ating Fail-stop Failures of Section 3.

Primitives to support the Agreement and
Order requirements for Replica Coordina-
tion have been included in two operating
systems toolkits. The ISIS Toolkit [Birman
19851 provides ABCAST and CBCAST for
allowing an applications programmer to
control the delivery order of messages to
the members of a process group (i.e., collec-
tion of state machine replicas). ABCAST
ensures that all state machine replicas pro-
cess requests in the same order; CBCAST
allows more flexibility in message ordering
and ensures that causally related requests
are delivered in the correct relative order.
ISIS has been used to implement a number
of prototype applications. One example is
the RNFS (replicated NFS) file system, a

ACM Computing Surveys, Vol. 22, No. 4, December 1990

318 l F. B. Schneider

network file system that is tolerant to fail-
stop failures and runs on top of NFS, that
was designed using the state machine ap-
proach [Marzullo and Schmuck 19881.

The Psync primitive [Peterson et al.
19891, which has been implemented in the
n-kernel [Hutchinson and Peterson 19881,
is similar to the CBCAST of ISIS. Psync,
however, makes available to the program-
mer the graph of the message “potential
causality” relation, whereas CBCAST does
not. Psync is intended to be a low-level
protocol that can be used to implement
protocols like ABCAST and CBCAST; the
ISIS primitives are intended for use by
applications programmers and, therefore,
hide the “potential causality” relation while
at the same time include support for group
management and failure reporting.

ACKNOWLEDGMENTS

This material is based on work supported in part by
the Office of Naval Research under contract N00014-
86-K-0092, the National Science Foundation under
Grants Nos. DCR-8320274 and CCR-8701103, and
Digital Equipment Corporation. Any opinions, find-
ings, and conclusions or recommendations expressed
in this publication are those of the author and do not
reflect the views of these agencies.

Discussions with 0. Babaoglu, K. Birman, and
L. Lamport over the past 5 years have helped me
formulate the ideas in this paper. Useful comments on
drafts of this paper were provided by J. Aizikowitz,
0. Babaoglu, A. Bernstein, K. Birman, R. Brown,
D. Gries, K. Marzullo, and B. Simons. I am very
grateful to Sal March, managing editor of ACM Com-
puting Surveys, for his thorough reading of this paper
and many helpful comments.

REFERENCES

AIZIKOWITZ, J. 1989. Designing distributed services
using refinement mappings. Ph.D. dissertation,
Computer Science Dept., Cornell Univ., Ithaca,
New York. Also available as Tech. Rep. TR
89-1040.

BERNSTEIN, A. J. 1985. A loosely coupled system for
reliably storing data. IEEE Trans. Softw. Eng.
SE-II, 5 (May), 446-454.

BIRMAN, K. P. 1985. Replication and fault tolerance
in the ISIS system. In Proceedings of the IOth
ACM Symposium on Operating Systems Princi-
ples (Orcas Island, Washington, Dec. 1985), ACM,
pp. 79-86.

BIRMAN, K. P., AND JOSEPH, T. 1987. Reliable com-
munication in the presence of failures. ACM
TOCS 5, 1 (Feb. 1987), 47-76.

CRISTIAN, F., AGHILI, H., STRONG, H. R., AND DOLEV,
D. 1985. Atomic broadcast: From simple mes-
sage diffusion to Byzantine agreement. In Pro-
ceedings of the 15th Internutional Conference on
Fault-tolerant Computing (Ann Arbor, Mich.,
June 1985), IEEE Computer Society.

DIJKSTRA, E. W. 1974. Self stabilization in spite
of distributed control. Commun. ACM 17, 11
(Nov.), 643-644.

FISCHER, M., LYNCH, N., AND PATERSON, M. 1985.
Impossibility of distributed consensus with
one faulty process. J. ACM 32, 2 (Apr. 1986),
374-382.

GARCIA-M• LINA, H., PITTELLI, F., AND DAVIDSON, S.
1986. Application of Byzantine agreement in
database systems. ACM TODS II, 1 (Mar. 1986),
27-47.

GOPAL, A., STRONG, R., TOUEG, S., AND CRISTIAN,
F., 1990. Early-delivery atomic broadcast. To
appear in Proceedings of the 9th ACM
SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (Quebec City, Quebec,
Aug. 1990).

GRAY, J. 1978. Notes on data base operating systems.
In Operating Systems: An Advanced Course, Lcc-
ture Notes in Computer Science. Vol. 60. Springer-
Verlag, New York, pp. 393-481.

HALPERN, J., SIMONS, B., STRONG, R., AND DOLEV,
D. 1984. Fault-tolerant clock synchronization.
In Proceedings of the 3rd ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Comput-
ing (Vancouver, Canada, Aug.), pp. 89-102.

HUTCHINSON, N., AND PETERSON, L. 1988. Design
of the x-kernel. In Proceedings of SIGCOMM
‘88-Symposium on Communication Architcc-
tures and Protocols (Stanford, Calif., Aug.), pp.
65-75.

LAMPORT, L. 1978a. Time, clocks and the ordering
of events in a distributed system. Commun. ACM
21, 7 (July), 558-565.

LAMPORT, L. 1979b. The implementation of reliable
distributed multiprocess systems. Comput. Net-
works 2,955114.

LAMPORT, L. 1984. Using time instead of timeout
for fault-tolerance in distributed systems. ACM
TOPLAS 6, 2 (Apr.), 254-280.

LAMPORT, L. 1989. The part-time parliament. Tech.
Rep. 49. Digital Equipment Corporation Systems
Research Center, Palo Alto, Calif.

LAMPORT, L., AND MELLIAR-SMITH, P. M.
1984. Byzantine clock synchronization. In Pro-
ceedings of the 3rd ACM SIGACT-SIGOPS Sym-
posium on Principles of Distributed Computing
(Vancouver, Canada, Aug.), 68-74.

LAMPORT, L., SHOSTAK, R., AND PEASE, M.
1982. The Byzantine generals problem. ACM
TOPLAS 4, 3 (July), 382-401.

ACM Computing Surveys, Vol. 22, No. 4, December 1990

Implementing Fault-Tolerant Services 319

LISKOV, B., AND LADIN, R. 1986. Highly available SCHNEIDER, F. B. 1982. Synchronization in dis-
distributed services and fault-tolerant distributed tributed programs. ACM TOPLAS 4, 2 (Apr.),
garbage collection. In Proceedings of the 5th ACM 179-195.
Symposium on Principles of Distributed Comput-
ing (Calgary, Alberta, Canada, Aug.), ACM, pp.

SCHNEIDER, F. B. 1984. Byzantine generals in ac-

29-39.
tion: Implementing fail-stop processors. ACM

MANCINI, L., AND PAPPALARDO, G. 1988. Towards
TOCS 2,2 (May), 145-154.

a theory of replicated processing. Formal Tech-
SCHNEIDER, F. B. 1985. Paradigms for distributed

niques in Real-Time and Fault-Tolerant Systems.
programs. Distributed Systems. Methods and

Lecture Notes in Computer Science, Vol. 331.
Tools for Specification. Lecture Notes in Computer

Springer-Verlag, New York, pp. 175-192.
Science, Vol. 190. Springer-Verlag, New York, pp.
343-430.

MARZULLO, K. 1989. Implementing fault-tolerant
sensors. Tech. Rep. TR 89-997. Computer Sci- SCHNEIDER, F. B. 1986. A paradigm for reliable clock

ence Dept., Cornell Univ., Ithaca, New York. synchronization. In Proceedings of the Advanced

MARZULLO, K., AND SCHMUCK, F. 1988. Supplying
Seminar on Real-Time Local Area Networks

high availability with a standard network file
(Bandol, France, Apr.), INRIA, pp. 85-104.

system. In Proceedings of the 8th International SCHNEIDER, F. B., GRIES, D., AND SCHLICHTING,

Conference on Distributed Computing Systems R. D. 1984. Fault-tolerant broadcasts. Sci.

(San Jose, CA, June), IEEE Computer Society, Comput. Program. 4, 1-15.

pp. 447-455. SIEWIOREK, D. P., AND SWARZ, R. S. 1982. The

PETERSON, L. L., BUCHOLZ, N. C., AND SCHLICHT- Theory and Practice of Reliable System Design.
ING, R. D. 1989. Preserving and using context Digital Press, Bedford, Mass.
information in interprocess communication. SKEEN, D. 1982. Crash recovery in a distributed
ACM TOCS 7, 3 (Aug.), 217-246. database system. Ph.D. dissertation, Univ. of

PITTELLI, F. M., AND GARCIA-M• LINA, H. California at Berkeley, May.
1989. Reliable scheduling in a TMR database
system. ACM TOCS 7, 1 (Feb.), 25-60.

STRONG, H. R., AND DOLEV, D. 1983. Byzantine
agreement. Intellectual Leverage for the Informa-

SCHLICHTING, R. D., AND SCHNEIDER, F. B. tion Society, Digest of Papers. (Compcon 83,
1983. Fail-Stop processors: An approach to de- IEEE Computer Society, Mar.), IEEE Computer
signing fault-tolerant computing systems. ACM Society, pp. 77-82.
TOCS I, 3 (Aug.), 222-238. WENSLEY, J., WENSKY, J. H., LAMPORT, L.,

SCHNEIDER, F. B. 1980. Ensuring consistency on a GOLDBERG, J., GREEN, M. W., LEVITT. K. N.,
distributed database system by use of distributed MELLIAR-SMITH, P. M., SHOSTAK, R. E., and
semaphores. In Proceedings of International Sym- WEINSTOCK, C. B. 1978. SIFT: Design and
posium on Distributed Data Bases (Paris, France, analysis of a fault-tolerant computer for aircraft
Mar.), INRIA, pp. 183-189. control. Proc. IEEE 66, 10 (Oct.), 1240-1255.

Received November 1987; final revision accepted January 1990.

ACM Computing Surveys, Vol. 22, No. 4, December 1990

