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INTRODUCTION 


Distributed software is often structured in 
terms of clients and services. Each service 
comprises one or more sewers and exports 
operations that clients invoke by making 
requests. Although using a single, central- 
ized, server is the simplest way to imple- 
ment a service, the resulting service can 
only be as fault tolerant as the processor 
executing that server. If this level of fault 
tolerance is unacceptable, then multiple 
servers that fail independently must be 
used. Usually, replicas of a single server are 
executed on separate processors of a dis- 
tributed system, and protocols are used to 
coordinate client interactions with these 
replicas. The physical and electrical isola- 
tion of processors in a distributed system 
ensures that server failures are indepen- 


service by replicating servers and coordi- 
nating client interactions with server rep- 
licas.’ The approach also provides a 
framework for understanding and design- 
ing replication management protocols. 
Many protocols that involve replication of 
data or software-be it for masking failures 
or simply to facilitate cooperation without 
centralized control-can be derived using 
the state machine approach. Although few 
of these protocols actually were obtained in 
this manner, viewing them in terms of state 
machines helps in understanding how and 
why they work. 


This paper is a tutorial on the state ma- 
chine approach. It describes the approach 
and its implementation for two represent- 
ative environments. Small examples suffice 
to illustrate the points. However, the 


dent, as required. 
The state machine approach is a general 


method for implementing a fault-tolerant 
’ The term “state machine” is a poor one, but, never- 
theless, is the one used in the literature. 


Permission to copy without fee all or part of this material is granted provided that the copies are not made or 
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its 
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish, requires a fee and/or specific permission. 
0 1990 ACM 0360-0300/90/1200-0299 $01.50 


ACM Computing Surveys, Vol. 22, No. 4, December 1990 







300 l F. B. Schneider 


CONTENTS 


INTRODUCTION 
1. STATE MACHINES 
2. FAULT TOLERANCE 
3. FAULT-TOLERANT STATE MACHINES 


3.1 Agreement 
3.2 Order and Stability 


4. TOLERATING FAULTY OUTPUT DEVICES 
4.1 Outputs Used Outside the System 
4.2 Outputs Used Inside the System 


5. TOLERATING FAULTY CLIENTS 
5.1 Replicating the Client 
5.2 Defensive Programming 


6. USING TIME TO MAKE REQUESTS 
7. RECONFIGURATION 


7.1 Managing the Configuration 
7.2 Integrating a Repaired Object 


8. RELATED WORK 
ACKNOWLEDGMENTS 
REFERENCES 


approach has been successfully applied to 
larger examples; some of these are men- 
tioned in Section 8. Section 1 describes how 
a system can be viewed in terms of a state 
machine, clients, and output devices. Cop- 
ing with failures is the subject of Sections 
2 to 5. An important class of optimiza- 
tions-based on the use of time-is dis- 
cussed in Section 6. Section 7 describes 
dynamic reconfiguration. The history of 
the approach and related work are dis- 
cussed in Section 8. 


1. STATE MACHINES 


Services, servers, and most programming 
language structures for supporting modu- 
larity define state machines. A state ma- 
chine consists of state variables, which 
encode its state, and commands, which 
transform its state. Each command is im- 
plemented by a deterministic program; ex- 
ecution of the command is atomic with 
respect to other commands and modifies 
the state variables and/or produces some 
output. A client of the state machine makes 
a request to execute a command. The re- 
quest names a state machine, names the 
command to be performed, and contains 
any information needed by the command. 


Output from request processing can be to 
an actuator (e.g., in a process-control sys- 
tem), to some other peripheral device (e.g., 
a disk or terminal), or to clients awaiting 
responses from prior requests. 


In this tutorial, we will describe a state 
machine simply by listing its state variables 
and commands. As an example, state ma- 
chine memory of Figure 1 implements a 
time-varying mapping from locations to 
values. A read command permits a client to 
determine the value currently associated 
with a location, and a write command as- 
sociates a new value with a location. 


For generality, our descriptions of state 
machines deliberately do not specify how 
command invocation is implemented. Com- 
mands might be implemented in any of the 
following ways: 


l Using a collection of procedures that 
share data and are invoked by a call, as 
in a monitor. 


l Using a single process that awaits mes- 
sages containing requests and performs 
the actions they specify, as in a server. 


l Using a collection of interrupt handlers, 
in which case a request is made by caus- 
ing an interrupt, as in an operating sys- 
tem kernel. (Disabling interrupts permits 
each command to be executed to comple- 
tion before the next is started.) 


For example, the state machine of Figure 2 
implements commands to ensure that at ail 
times at most one client has been granted 
access to some resource. In it, xoy denotes 
the result of appending y to the end of list 
X, head(x) denotes the first element of list 
x, and tail(x) denotes the list obtained by 
deleting the first element of list X. This 
state machine would probably be imple- 
mented as part of the supervisor-call han- 
dler of an operating system kernel. 


Requests are processed by a state ma- 
chine one at a time, in an order that is 
consistent with potential causality. There- 
fore, clients of a state machine can make 
the following assumptions about the order 
in which requests are processed: 


01: Requests issued by a single client 
to a given state machine sm are 
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memory: state-machine 
var store: array[O . . n] of word 


read: command(loc: 0. n) 
send store[loc] to client 
end read; 


write: command(loc:O n, u&e: word) 
store[loc] := ualue 
end write 


end memory 


Figure 1. A memory. 


mutex: state-machine 
var tser : client-id init @; 


waiting:list of client-id init +; 


acquire: command 
if user = + + send OK to client; 


user := client 


0 user # 4 + waiting := waiting O client 
fi 
end acquire 


release: command 
if waiting = 4 + user := 9 
13 waiting # + ---f send OK to headcwaiting); 


user := head(ruaiting); 


fi 
end release 


end mutex 


waiting := tail(waiting) 


Figure 2. A resource allocator. 


processed by sm in the order they 
were issued. 


02: If the fact that request r was made to 
a state machine sm by client c could 
have caused a request r ’ to be made 
by a client c’ to sm, then sm processes 
r before r’. 


Note that due to communications network 
delays, 01 and 02 do not imply that a state 
machine will process requests in the order 
made or in the order received. 


To keep our presentation independent of 
the interprocess communication mecha- 
nism used to transmit requests to state 
machines, we will program client requests 
as tuples of the form 


(state-machine.command, arguments) 


and postulate that any results from pro- 
cessing a request are returned using mes- 


sages. For example, a client might execute 


(memory.write, 100, 16.2); 
(memory.read, 100); 
receive v from memory 


to set the value of location 100 to 16.2, 
request the value of location 100, and await 
that value, setting v to it upon receipt. 


The defining characteristic of a state ma- 
chine is not its syntax but that it specifies 
a deterministic computation that reads a 
stream of requests and processes each, oc- 
casionally producing output: 


Semantic Characterization of a State 
Machine. Outputs of a state machine are 
completely determined by the sequence of 
requests it processes, independent of time 
and any other activity in a system. 


Not all collections of commands neces- 
sarily satisfy this characterization. Con- 
sider the following program to solve a 
simple process-control problem in which an 
actuator is adjusted repeatedly based on the 
value of a sensor. Periodically, a client 
reads a sensor, communicates the value 
read to state machine pc, and delays ap- 
proximately D seconds: 


monitor: 
process 


do true -+ val := sensor; 
(pc.adjust, val); 
delay D 


od 
end monitor 


State machine pc adjusts an actuator based 
on past adjustments saved in state variable 
q, the sensor reading, and a control function 
F: 


pc: state-machine 
var q:real; 


adjust: 
command(sensor-val: real) 
q := F(q, sensor-val); 
send q to actuator 
end adjust 


end pc 


Although it is tempting to structure pc 
as a single command that loops-reading 
from the sensor, evaluating F, and writing 
to actuator-if the value of the sensor is 
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time varying, then the result would not 
satisfy the semantic characterization given 
above and therefore would not be a state 
machine. This is because values sent to 
actuator (the output of the state machine) 
would not depend solely on the requests 
made to the state machine but would, in 
addition, depend on the execution speed of 
the loop. In the structure used above, this 
problem has been avoided by moving the 
loop into monitor. 


In practice, having to structure a system 
in terms of state machines and clients does 
not constitute a real restriction. Anything 
that can be structured in terms of proce- 
dures and procedure calls can also be struc- 
tured using state machines and clients-a 
state machine implements the procedure, 
and requests implement the procedure 
calls. In fact, state machines permit more 
flexibility in system structure than is usu- 
ally available with procedure calls. With 
state machines, a client making a request 
is not delayed until that request is proc- 
essed, and the output of a request can be 
sent someplace other than to the client 
making the request. We have not yet en- 
countered an application that could not be 
programmed cleanly in terms of state ma- 
chines and clients. 


2. FAULT TOLERANCE 


Before turning to the implementation of 
fault-tolerant state machines, we must in- 
troduce some terminology concerning fail- 
ures. A component is considered faulty once 
its behavior is no longer consistent with its 
specification. In this paper, we consider two 
representative classes of faulty behavior: 


Byzantine Failures. The component 
can exhibit arbitrary and malicious behav- 
ior, perhaps involving collusion with other 
faulty components [Lamport et al. 19821. 


Byzantine failures is the weakest possible 
assumption that could be made about the 
effects of a failure. Since a design based on 
assumptions about the behavior of faulty 
components runs the risk of failing if these 
assumptions are not satisfied, it is prudent 
that life-critical systems tolerate Byzantine 
failures. For most applications, however, it 
suffices to assume fail-stop failures. 


A system consisting of a set of distinct 
components is t fault tolerant if it satisfies 
its specification provided that no more than 
t of those components become faulty during 
some interval of interest.’ Fault-tolerance 
traditionally has been specified in terms of 
mean time between failures (MTBF), prob- 
ability of failure over a given interval, and 
other statistical measures [Siewiorek and 
Swarz 19821. Although it is clear that such 
characterizations are important to the 
users of a system, there are advantages in 
describing fault tolerance of a system in 
terms of the maximum number of compo- 
nent failures that can be tolerated over 
some interval of interest. Asserting that a 
system is t fault tolerant makes explicit the 
assumptions required for correct operation; 
MTBF and other statistical measures do 
not. Moreover, t fault tolerance is unrelated 
to the reliability of the components that 
make up the system and therefore is a 
measure of the fault tolerance supported by 
the system architecture, in contrast to fault 
tolerance achieved simply by using reliable 
components. MTBF and other statistical 
reliability measures of a t fault-tolerant 
system can be derived from statistical reli- 
ability measures for the components used 
in constructing that system-in particular, 
the probability that there will be t or more 
failures during the operating interval of’ 
interest. Thus, t is typically chosen based 
on statistical measures of component reli- 
ability. 


Fail-stop Failures. In response to a fail- 
ure, the component changes to a state that 3. FAULT-TOLERANT STATE MACHINES 


permits other components to detect that A t fault-tolerant version of a state machine 
a failure has occurred and then stops can be implemented by replicating that 
[Schneider 19841. 


Byzantine failures can be the most disrup- 
tive, and there is anecdotal evidence that 


2 A t fault-tolerant system might continue to operate 
correctly if more than t failures occur, but correct 


such failures do occur in practice. Allowing operation cannot be guaranteed. 
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state machine and running a replica on 
each of the processors in a distributed sys- 
tem. Provided each replica being run by a 
nonfaulty processor starts in the same ini- 
tial state and executes the same requests in 
the same order, then each will do the same 
thing and produce the same output. Thus, 
if we assume that each failure can affect at 
most one processor, hence one state ma- 
chine replica, then by combining the output 
of the state machine replicas of this ensem- 
ble, we can obtain the output for the t fault- 
tolerant state machine. 


When processors can experience Byzan- 
tine failures, an ensemble implementing a 
t fault-tolerant state machine must have at 
least 2t + 1 replicas, and the output of the 
ensemble is the output produced by the 
majority of the replicas. This is because 
with 2t + 1 replicas, the majority of the 
outputs remain correct even after as many 
as t failures. If processors experience only 
fail-stop failures, then an ensemble con- 
taining t + 1 replicas suffices, and the out- 
put of the ensemble can be the output 
produced by any of its members. This is 
because only correct outputs are produced 
by fail-stop processors, and after t failures 
one nonfaulty replica will remain among 
the t + 1 replicas. 


The key, then, for implementing a t fault- 
tolerant state machine is to ensure the 
following: 


Replica Coordination. All replicas re- 
ceive and process the same sequence of 
requests. 


This can be decomposed into two require- 
ments concerning dissemination of re- 
quests to replicas in an ensemble. 


Agreement. Every nonfaulty state ma- 
chine replica receives every request. 
Order. Every nonfaulty state machine 
replica processes the requests it receives in 
the same relative order. 


Notice that Agreement governs the behav- 
ior of a client in interacting with state 
machine replicas and that Order governs 
the behavior of a state machine replica with 
respect to requests from various clients. 
Thus, although Replica Coordination could 


be partitioned in other ways, the Agree- 
ment-order partitioning is a natural choice 
because it corresponds to the existing sep- 
aration of the client from the state machine 
replicas. 


Implementations of Agreement and Or- 
der are discussed in Sections 3.1 and 3.2. 
These implementations make no assump- 
tions about clients or commands. Although 
this generality is useful, knowledge of com- 
mands allows Replica Coordination, hence 
Agreement and Order, to be weakened and 
thus allows cheaper protocols to be used for 
managing the replicas in an ensemble. Ex- 
amples of two common weakenings follow. 


First, Agreement can be relaxed for read- 
only requests when fail-stop processors are 
being assumed. When processors are fail 
stop, a request r whose processing does not 
modify state variables need only be sent to 
a single nonfaulty state machine replica. 
This is because the response from this rep- 
lica is-by definition-guaranteed to be 
correct and because r changes no state vari- 
ables, the state of the replica that processes 
r will remain identical to the states of rep- 
licas that do not. 


Second, Order can be relaxed for requests 
that commute. Two requests r and r’ com- 
mute in a state machine sm if the sequence 
of outputs and final state of sm that would 
result from processing r followed by r ’ is 
the same as would result from processing 
r’ followed by r. An example of a state 
machine where Order can be relaxed 
appears in Figure 3. State machine tally 
determines which from among a set of al- 
ternatives receives at least MAJ votes and 
sends this choice to SYSTEM. If clients 
cannot vote more than once and the num- 
ber of clients Cno satisfies 2MAJ > Cno, 
then every request commutes with every 
other. Thus, implementing Order would be 
unnecessary-different replicas of the state 
machine will produce the ‘same outputs 
even if they process requests in different 
orders. On the other hand, if clients can 
vote more than once or 2MAJ 5 Cno, then 
reordering requests might change the out- 
come of the election. 


Theories for constructing state machine 
ensembles that do not satisfy Replica Co- 
ordination are proposed in Aizikowitz 
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tally: state-machine 
var uotes: array[candidate] of integer init 0 


cast-uote: command(choice:candidate) 
uotes[choice] := uotes[choice] + 1; 
if uotes[choice] 2 MAJ -+ send choice to 


SYSTEM; 
halt 


0 uotes[choice] < MAJ + skip 
fi 
end cast-vote 


end tally 


Figure 3. Election. 


[ 19891 and Mancini and Pappalardo [ 19881. 
Both theories are based on proving that an 
ensemble of state machines implements 
the same specification as a single replica 
does. The approach taken in Aizikowitz 
[l989] uses temporal logic descriptions of 
state sequences, whereas the approach in 
Mancini and Pappalardo 19881 uses an al- 
gebra of action sequences. A detailed de- 
scription of this work is beyond the scope 
of this tutorial. 


3.1 Agreement 


The Agreement requirement can be satis- 
fied by using any protocol that allows a 
designated processor, called the transmit- 
ter, to disseminate a value to some other 
processors in such a way that 


The Order requirement can be satisfied by 
assigning unique identifiers to requests and 
having state machine replicas process re- 
quests according to a total ordering relation 
on these unique identifiers. This is equiva- 
lent to requiring the following, where a 
request is defined to be stable at smi once 
no request from a correct client and bearing 
a lower unique identifier can be subse- 
quently delivered to state machine replica 
sm,: 


Order Implementation. A replica next 
processes the stable request with the small- 
est unique identifier. 


ICl: All nonfaulty processors agree on the 
same value. 


IC2: If the transmitter is nonfaulty, then 
all nonfaulty processors use its value 
as the one on which they agree. 


Protocols to establish ICl and IC2 have 
received considerable attention in the lit- 
erature and are sometimes called Byzantine 
Agreement protocols, reliable broadcast pro- 
tocols, or simply agreement protocols. The 
hard part in designing such protocols is 
coping with a transmitter that fails part 
way through an execution. See Strong and 
Dolev [ 19831 for protocols that can tolerate 
Byzantine processor failures and Schneider 
et al. [1984] for a (significantly cheaper) 
protocol that can tolerate (only) fail-stop 
processor failures. 


Further refinement of Order Implemen- 
tation requires selecting a method for as- 
signing unique identifiers to requests and 
devising a stability test for that assignment 
method. Note that any method for assign- 
ing unique identifiers is constrained by 01 
and 02 of Section 1, which imply that if 
request ri could have caused request rj to be 
made then uid (r;) < uid(rj) holds, where 
uid(r) is the unique identifier assigned to a 
request r. 


In the sections that follow, we give three 
refinements of the Order Implementation. 
Two are based on the use of clocks; a third 
uses an ordering defined by the replicas of 
the ensemble. 


3.2.1 Using Logical Clocks 


If requests are distributed to all state A logical clock [Lamport 1978a] is a map- 
machine replicas by using a protocol that ping T from events to the integers. T(e), 
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satisfies ICl and IC2, then the Agreement 
requirement is satisfied. Either the client 
can serve as the transmitter or the client 
can send its request to a single state ma- 
chine replica and let that replica serve as 
the transmitter. When the client does not 
itself serve as the transmitter, however, the 
client must ensure that its request is not 
lost or corrupted by the transmitter before 
the request is disseminated to the state 
machine replicas. One way to monitor for 
such corruption is by having the client be 
among the processors that receive the re- 
quest from the transmitter. 


3.2 Order and Stability 
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the “time” assigned to an event e by logical 
clock T, is an integer such thatlfor any two 
distjnct events e and e’, either T(e) < T(e’) 
or T(e) > Te’), and if e might beIrespon- 
sible for causing e’ then T(e) < T(e’). It 
is a simple matter to implement logical 
clocks in a distributed system. Associated 
with each process p is a counter T,. In 
addition, a timestamp is included in each 
message sent by p. This timestamp is the 
value of T, when that messages is sent. T, 
is updated according to the following: 


LCl: pP is incremented after each event 


1 2 4 
P 


4 7 


1 2 3 4 


Figure 4. Logical clock example. 


at p. 
LC2: Upon receipt of a message -with 


timestamp T, process p resets T,: 


Pp := max(PP, 7) + 1. 


The value of p(e) for an event e that occurs 
at processor p is constructed by appending 
a fixed-length bit string-that uniquely iden- 
tifies p to the value of T, when e occurs. 


Figure 4 illustrates the use of this scheme 
for implementing logical clocks in a system 
of three processors, p, q, and r. Events are 
depicted by dots, and an arrow is drawn 
between events e and e’ if e might be re- 
sponsible for causing event e’. For example, 
an arrow between events in different pro- 
cesses starts from the event corresponding 
to the sending of a message and ends at the 
event corresponding tolthe receipt of that 
message. The value of T,(e) for each event 
e is written above that event. 


ment. The case in which relative speeds 
of nonfaulty processors and messages is 
bounded is equivalent to assuming that 
they have synchronized real-time clocks 
and will be considered shortly. This leaves 
the case in which fail-stop failures are pos- 
sible and a process or message can be 
delayed for an arbitrary length of time 
without being considered faulty. Thus, we 
now turn to devising a stability test for that 
environment. 


By attaching sequence numbers to the 
messages between every pair of processors, 
it is trivial to ensure the following property 
holds of communications channels: 


FIFO Channels. Messages between a pair 
of processors are delivered in the order sent. 


For fail-stop processors, we can also assume 
the following: 


If f(e) is used as the unique identifier 
associated with a request whose issuance 
corresponds to event e, the result is a total 
ordering on the unique identifiers that sat- 
isfies 01 and 02. Thus, a logical clock can 
be used as the basis of an Order Implemen- 
tation if we can formulate a way to deter- 
mine when a request is stable at a state 
machine replica. 


Failure Detection Assumption. A pro- 
cessor p detects that a fail-stop processor q 
has failed only after p has received the last 
message sent to p by q. 


The Failure Detection Assumption is con- 
sistent with FIFO Channels, since the 
failure event for a fail-stop processor nec- 
essarily happens after the last message sent 
by the processor and, therefore, should be 
received after all other messages. 


It is pointless to implement a stability 
test in a system in which Byzantine failures 
are possible and a processor or message can 
be delayed for an arbitrary length of time 
without being considered faulty. This is 
because no deterministic protocol can im- 
plement agreement under these conditions 
[Fischer et al. 851.” Since it is impossible to 
satisfy the Agreement requirement, there is 
no point in satisfying the Order require- 


Under these two assumptions, the follow- 
ing stability test can be used: 


Logical Clock Stability Test Tolerat- 
ing Fail-stop Failures. Every client 


3 The result of Fischer et al. [1985] is actually stronger 
than this. It states that ICl and IC2 cannot be 
achieved by a deterministic protocol in an asynchron- 
ous system with a single processor that fails in an 
even less restrictive manner-by simply halting. 


305 
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periodically makes some-possibly null- occurs. We can use T,(e) followed by a 
request to the state machine. A request fixed-length bit string that uniquely iden- 
is stable at replica am; if a request with tifies p as the unique identifier associated 
larger timestamp has been received by srn; with a request made as event e by a client 
from every client running on a nonfaulty running on a processor p. To ensure that 
processor. 03 and 02 (of Section 1) hold for unique 


To see why this stability test works, we 
show that once a request r is stable at ami, 
no request with smaller unique identifier 
(timestamp) will be received. First, con- 
sider clients that ami does not detect as 
being faulty. Because logical clocks are used 
to generate unique identifiers, any request 
made by a client c must have a larger unique 
identifier than was assigned to any previous 
request made by c. Therefore, from the 
FIFO Channels assumption, we conclude 
that once a request from a nonfaulty client 
c is received by emi, no request from c with 
a smaller unique identifier than uid (r) can 
be received by am;. This means that once 
requests with larger unique identifiers than 
uid (r) have been received from every non- 
faulty client, it is not possible to receive a 
request with a smaller unique identifier 
than uid(r) from these clients. Next, for a 
client c that ami detects as faulty, the Fail- 
ure Detection Assumption implies that no 
request from c will be received by ami. Thus, 
once a request r is stable at ami, no request 
with a smaller timestamp can be received 
from a client-faulty or nonfaulty. 


3.2.2 Synchronized Real-Time Clocks 


A second way to produce unique request 
identifiers satisfying 01 and 02 is by us- 
ing approxirnately synchronized real-time 
clocks.4 Define T,(e) to be the value of the 
real-time clock at processor p when event e 


4 A number of protocols to achieve clock synchroni- 
zation while toleratine Bvzantine failures have been 


identifiers generated in this manner, two 
restrictions are required. 01 follows pro- 
vided no client makes two or more requests 
between successive clock ticks. Thus, if 
processor clocks have a resolution of R 
seconds, then each client can make at most 
one request every R seconds. 02 follows 
provided the degree of clock synchroniza- 
tion is better than the minimum message 
delivery time. In particular, if clocks on 
different processors are synchronized to 
within 6 seconds, then it must take more 
than 6 seconds for a message from one 
client to reach another. Otherwise, 02 
would be violated because a request r made 
by the one client could have a unique iden- 
tifier that was smaller than a request r’ 
made by another, even though r was caused 
by a message sent after r’ was made. 


When unique request identifiers are ob- 
tained from synchronized real-time clocks, 
a stability test can be implemented by ex- 
ploiting these clocks and the bounds on 
message delivery delays. Define A to be 
constant such that a request r with unique 
identifier uid (r) will be received by every 
correct processor no later than time uid(r) 
+ A according to the local clock at the 
receiving processor. Such a A must exist if 
requests are disseminated using a protocol 
that employs a fixed number of rounds, like 
the ones cited above for establishing ICl 
and IC2.” By definition, once the clock on 
a processor p reaches time 7, p cannot sub- 
sequently receive a request r such that 
uid(r) c 7 - A. Therefore, we have the 
following stability test: 


proposed [Halpern et al. i984; Lamport and Melliar- 
Smith 19841. See Schneider [1986] for a survey. The Real-time Clock Stability Test Toler- 
protocols all require that known bounds exist for the ating Byzantine Failures I. A request r 
execution speed and clock rates of nonfaulty proces- is stable at a state machine replica sm, 
sors and for message delivery delays along nonfaulty 
communications links. In practice, these requirements 
do not constitute a restriction. Clock synchronization 5 In general, A will be a function of the variance in 
achieved by the protocols is proportional to the vari- message delivery delay, the maximum message deliv- 
ante in message delivery delay, making it possible to ery delay, and the degree of clock synchronization. See 
satisfy the restriction-necessary to ensure 02-that Cristian et al. [1985] for a detailed derivation for A in 
message delivery delay exceeds clock synchronization. a variety of environments. 
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being executed by processor p if the local 
clock at p reads T and uid(r) < T - A. 


One disadvantage of this stability test is 
that it forces the state machine to lag be- 
hind its clients by A, where A is propor- 
tional to the worst-case message delivery 
delay. This disadvantage can be avoided. 
Due to property 01 of the total ordering 
on request identifiers, if communications 
channels satisfy FIFO Channels, then a 
state machine replica that has received a 
request r from a client c can subsequently 
receive from c only requests with unique 
identifiers greater than uid(r). Thus, a re- 
quest r is also stable at a state machine 
replica provided a request with a larger 
unique identifier has been received from 
every client. 


Real-time Clock Stability Test Toler- 
ating Byzantine Failures II. A request 
r is stable at a state machine replica smi if 
a request with a larger unique identifier has 
been received from every client. 


This second stability test is never passed if 
a (faulty) processor refuses to make re- 
quests. However, by combining the first 
and second test so that a request is consid- 
ered stable when it satisfies either test, a 
stability test results that lags clients by A 
only when faulty processors or network de- 
lays force it. Such a combined test is dis- 
cussed in [Gopal et al. 19901. 


3.2.3 Using Replica-Generated Identifiers 


In the previous two refinements of the Or- 
der Implementation, clients determine the 
order in which requests are processed-the 
unique identifier uid(r) for a request r is 
assigned by the client making that request. 
In the following refinement of the Order 
Implementation, the state machine replicas 
determine this order. Unique identifiers are 
computed in two phases. In the first phase, 
which can be part of the agreement protocol 
used to satisfy the Agreement requirement, 
state machine replicas propose candidate 
unique identifiers for a request. Then, in 
the second phase, one of these candidates 
is selected and it becomes the unique iden- 
tifier for that request. 


The advantage of this approach to com- 
puting unique identifiers is that communi- 
cation between all processors in the system 
is not necessary. When logical clocks or 
synchronized real-time clocks are used in 
computing unique request identifiers, all 
processors hosting clients or state machine 
replicas must communicate. In the case 
of logical clocks, this communication is 
needed in order for requests to become sta- 
ble; in the case of synchronized real-time 
clocks, this communication is needed in 
order to keep the clocks synchronized.6 In 
the replica-generated identifier approach of 
this section, the only communication re- 
quired is among processors running the 
client and state machine replicas. 


By constraining the possible candidates 
proposed in phase 1 for a request’s unique 
identifier, it is possible to obtain a simple 
stability test. To describe this stability test, 
some terminology is required. We say that 
a state machine replica sm; has seen a re- 
quest r once sm, has received r and pro- 
posed a candidate unique identifier for r. 
We say that sm; has accepted r once that 
replica knows the ultimate choice of unique 
identifier for r. Define cuid (smi, r) to be 
the candidate unique identifier proposed by 
replica srn; for request r. Two constraints 
that lead to a simple stability test are: 


UIDl: cuid(smi, r) I uid(r). 
UIDB: If a request r’ is seen by replica 


sm.; after r has been accepted by 
smi then uid(r) < cuid(smi, r’). 


If these constraints hold throughout exe- 
cution, then the following test can be used 
to determine whether a request is stable at 
a state machine replica: 


Replica-Generated Identifiers Stabil- 
ity Test. A request r that has been ac- 
cepted by smi is stable provided there is no 


6 This communications cost argument illustrates an 
advantage of having a client forward its request to a 
single state machine replica that then serves as the 
transmitter for disseminating the request. In effect, 
that state machine replica becomes the client of the 
state machine, and so communication need only in- 
volve those processors running state machine replicas. 
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request r’ that has (i) been seen by am;, (ii) 
not been accepted by ami, and (iii) for which 
cuid(smi, r’) I uid(r) holds. 


To prove that this stability test works, 
we must show that once an accepted re- 
quest r is deemed stable at sm,, no request 
with a smaller unique identifier will be sub- 
sequently accepted at sm;. Let r be a request 
that, according to the Replica-Generated 
Identifiers Stability Test, is stable at rep- 
lica smi. Due to UIDB, for any request r’ 
that has not been seen by sm;, uid(r) < 
cuid(smi, r’) holds. Thus, by transitivity 
using UIDl, uid(r) c uid(r’) holds, and we 
conclude that r ’ cannot have a smaller 
unique identifier than r. Now consider the 
case in which request r ’ has been seen but 
not accepted by ami and-because the sta- 
bility test for r is satisfied--Ad(r) c 
cuid(sm;, r’) holds. Due to UIDl, we con- 
clude that uid (r) < uid (r ‘) holds and, 
therefore, r ’ does not have a smaller unique 
identifier than r. Thus, we have shown that 
once a request r satisfies the Replica- 
Generated Identifiers Stability Test at ami, 
any request r’ that is accepted by smi will 
satisfy uid (r) < uid (r ’ ), as desired. 


Unlike clock-generated unique identi- 
fiers for requests, replica-generated ones do 
not necessarily satisfy 01 and 02 of Section 
1. Without further restrictions, it is possi- 
ble for a client to make a request r, send a 
message to another client causing request 
r’ to be issued, yet have uid(r’) < uid(r). 
However, 01 and 02 will hold provided that 
once a client starts disseminating a request 
to the state machine replicas, the client 
performs no other communication until 
every state machine replica has accepted 
that request. To see why this works, con- 
sider a request r being made by some client 
and suppose some request r ’ was influenced 
by r. The delay ensures that r is accepted 
by every state machine replica smj before 
r ’ is seen. Thus, from UID2 we conclude 
uid(r) c cuid(smi, r ‘) and, by transi- 
tivity with UIDl, that uid(r) < uid(r’), as 
required. 


To complete this Order Implementation, 
we have only to devise protocols for com- 
puting unique identifiers and candidate 


unique identifiers such that: 


l UIDl and UID2 are satisfied. 
l r # r’ a uid(r) # uid(r’). 
l Every request that is seen 


(1) 
(2) 


eventually becomes accepted. (3) 


One simple solution for a system of fail- 
stop processors is the following: 


Replica-generated Unique Identifiers. 
In a system with N clients, each state ma- 
chine replica smi maintains two variables: 


SEENi is the largest cuid (smi, r) assigned 
to any request r so far seen by ami, and 
ACCEPT, is the largest uid(r) assigned to 
any request r so far accepted by sm,. 


Upon receipt of a request r, each replica 
sm, computes 


cuid(smi, r) := 


max( 1 SEEN,], [ACCEPTij ) 


+ 1 + i/N. (4) 


(Notice, this means that all candidate 
unique identifiers are themselves unique.) 
The replica then disseminates (using an 
agreement protocol) cuid(smi, r ) to all 
other replicas and awaits receipt of a can- 
didate unique identifier for r from every 
nonfaulty replica, participating in the 
agreement protocol for that value as well. 
Let NF be the set of replicas from which 
candidate unique identifiers were received. 
Finally, the replica computes 


uid(r) := .~z;~ (cuid(smj, r)) (5) 
I 


and accepts r. 


We prove that this protocol satisfies 
(l)-(3) as follows. UIDl follows from us- 
ing assignment (5) to compute uid (r), and 
UID2 follows from assignment (4) to 
compute cuid(ami, r). To conclude that 
(2) holds, we argue as follows. Because an 
agreement protocol is used to disseminate 
candidate unique identifiers, all replicas re- 
ceive the same values from the same repli- 
cas. Thus, all replicas will execute the same 
assignment statement (5), and all will com- 
pute the same value for uid(r). To establish 
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that these uid(r) values are unique for each 
request, it suffices to observe that maxi- 
mums of disjoint subsets of a collection of 
unique values-the candidate unique iden- 
tifiers-are also unique. Finally, to estab- 
lish (3), that every request that is seen is 
eventually accepted, we must prove that for 
each replica smj, a replica sm; eventually 
learns cuid(smj, r) or learns that sm, has 
failed. This follows trivially from the use of 
an agreement protocol to distribute the 
cuid(smj, r) and the definition of a fail- 
stop processor. 


An optimization of our Replica-gener- 
ated Unique Identifiers protocol is the basis 
for the ABCAST protocol in the ISIS 
Toolkit [Birman and Joseph 19871 devel- 
oped at Cornell. In this optimization, can- 
didate unique identifiers are returned to the 
client instead of being disseminated to the 
other state machine replicas. The client 
then executes assignment (5) to compute 
uid(r). Finally, an agreement protocol is 
used by the client in disseminating uid (r ) 
to the state machine replicas. Some unique 
replica takes over for the client if the client 
fails. 


It is possible to modify our Replica- 
generated Unique Identifiers protocol for 
use in systems where processors can exhibit 
Byzantine failures, have synchronized real- 
time clocks, and communications channels 
have bounded message-delivery delays- 
the same environment as was assumed for 
using synchronized real-time clocks to gen- 
erate unique identifiers. The following 
changes are required. First, each replica sm, 
uses timeouts so that ami cannot be forever 
delayed waiting to receive and participate 
in the agreement protocol for disseminating 
a candidate unique identifier from a faulty 
replica smj. Second, if ami does determine 
that amj has timed out, ami disseminates 
“smj timeout” to all replicas (by using an 
agreement protocol). Finally, NF is the set 
of replicas in the ensemble less any amj for 
which “sm, timeout” has been received from 
t + 1 or more replicas. Notice, Byzantine 
failures that cause faulty replicas to pro- 
pose candidate unique identifiers not pro- 
duced by (4) do not cause difficulty. This is 
because candidate unique identifiers that 


are too small have no effect on the outcome 
of (5) at nonfaulty replicas and those that 
are too large will satisfy UIDl and UID2. 


4. TOLERATING FAULTY OUTPUT DEVICES 


It is not possible to implement a t fault- 
tolerant system by using a single voter to 
combine the outputs of an ensemble of state 
machine replicas into one output. This is 
because a single failure-of the voter-can 
prevent the system from producing the cor- 
rect output. Solutions to this problem de- 
pend on whether the output of the state 
machine implemented by the ensemble is 
to be used within the system or outside the 
system. 


4.1 Outputs Used Outside the System 


If the output of the state machine is sent 
to an output device, then that device is 
already a single component whose failure 
cannot be tolerated. Thus, being able to 
tolerate a faulty voter is not sufficient-the 
system must also be able to tolerate a faulty 
output device. The usual solution to this 
problem is to replicate the output device 
and voter. Each voter combines the output 
of each state machine replica, producing a 
signal that drives one output device. What- 
ever reads the outputs of the system is 
assumed to combine the outputs of the 
replicated devices. This reader, which is not 
considered part of the computing system, 
implements the critical voter. 


If output devices can exhibit Byzantine 
failures, then by taking the output pro- 
duced by the majority of the devices, 2t + 
l-fold replication permits up to t faulty 
output devices to be tolerated. For example, 
a flap on an airplane wing might be de- 
signed so that when the 2t + 1 actuators 
that control it do not agree, the flap always 
moves in the direction of the majority 
(rather than twisting). If output devices 
exhibit only fail-stop failures, then only 
t + l-fold replication is necessary to toler- 
ate t failures because any output produced 
by a fail-stop output device can be assumed 
correct. For example, video display termi- 
nals usually present information with 
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enough redundancy so that they can be 
treated as fail stop-failure detection is 
implemented by the viewer. With such an 
output device, a human user can look at 
one of t + 1 devices, decide whether the 
output is faulty, and only if it is faulty, look 
at another, and so on. 


4.2 Outputs Used Inside the System 


If the output of the state machine is to a 
client, then the client itself can combine 
the outputs of state machine replicas in the 
ensemble. Here, the voter-a part of the 
client-is faulty exactly when the client is, 
so the fact that an incorrect output is read 
by the client due to a faulty voter is irrele- 
vant. When Byzantine failures are possible, 
the client waits until it has received t + 1 
identical responses, each from a different 
member of the ensemble, and takes that as 
the response from the t fault-tolerant state 
machine. When only fail-stop failures are 
possible, the client can proceed as soon as 
it has received a response from any member 
of the ensemble, since any output produced 
by a replica must be correct. 


When the client is executed on the same 
processor as one of the state machine rep- 
licas, optimization of client-implemented 
voting is possible.7 This is because correct- 
ness of the processor implies that both the 
state machine replica and client will be 
correct. Therefore, the response produced 
by the state machine replica running locally 
can be used as that client’s response from 
the t fault-tolerant state machine. And, if 
the processor is faulty, we are entitled to 
view the client as being faulty, so it does 
not matter what state machine responses 
the client receives. Summarizing, we have 
the following: 


Dependent-Failures Output Optimiza- 
tion. If a client and a state machine replica 
run on the same processor, then even when 


‘Care must be exercised when analyzing the fault 
tolerance of such a system because a single processor 
failure can now cause two system components to fail. 
Implicit in most of our discussions is that system 
components fail independently. It is not always pos- 
sible to transform a t fault-tolerant system in which 
clients and state machine replicas have independent 
failures to one in which they share processors. 
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Byzantine failures are possible, the client 
need not gather a maj0rit.y of responses to 
its requests to the state machine. It can use 
the single response produced locally. 


5. TOLERATING FAULTY CLIENTS 


Implementing a t fault-tolerant state ma- 
chine is not sufficient for implementing a i 
fault-tolerant system. Faults might result 
in clients making requests that cause the 
state machine to produce erroneous output 
or that corrupt the state machine so that 
subsequent requests from nonfaulty clients 
are incorrectly processed. Therefore, in this 
section we discuss various methods for in- 
sulating the state machine from faults that 
affect clients. 


5.1 Replicating the Client 


One way to avoid having faults affect a 
client is by replicating the client and run- 
ning each replica on hardware that fails 
independently. This replication, however, 
also requires changes to state machines 
that handle requests from that client. This 
is because after a client has been replicated 
N-fold, any state machine it interacts with 
receives N requests-one from each client 
replica-when it formerly receives a single 
request. Moreover, corresponding requests 
from different client replicas will not nec- 
essarily be identical. First, they will differ 
in their unique identifiers. Second, unless 
the original client is itself a state machine 
and the methods of Section 3 are used to 
coordinate the replicas, corresponding re- 
quests from different replicas can also dif- 
fer in their content. For example, if a client 
makes requests based on the value of some 
time-varying sensor, then its replicas will 
each read their sensors at slightly differ- 
ent times and, therefore, make different 
requests. 


We first consider modifications to a state 
machine sm for the case in which requests 
from different client replicas are known to 
differ only in their unique identifiers. FOI 
this case, modifications are needed for cop- 
ing with receiving N requests instead of a 
single one. These modifications involve 
changing each command so that instead of 
processing every request received, requests 
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are buffered until enough’ have been re- 
ceived; only then is the corresponding com- 
mand performed (a single time). In effect, 
a voter is being added to sm to control 
invocation of its commands. Client repli- 
cation can be made invisible to the designer 
of a state machine by including such a voter 
in the support software that receives re- 
quests, tests for stability, and orders stable 
requests by unique identifier. 


Modifying the state machine for the case 
in which requests from different client rep- 
licas can also differ in their content typi- 
cally requires exploiting knowledge of the 
application. As before, the idea is to trans- 
form multiple requests into a single one. 
For example, in a t fault-tolerant system, if 
2t + 1 different requests are received, each 
containing the value of a sensor, then a 
single request containing the median of 
those values might be constructed and 
processed by the state machine. (Given at 
most t Byzantine faults, the median of 
2t + 1 values is a reasonable one to use 
because it is bounded from above and below 
by a nonfaulty value.) A general method for 
transforming multiple requests containing 
sensor values into a single request is dis- 
cussed in Marzullo [1989]. That method is 
based on viewing a sensor value as an in- 
terval that includes the actual value being 
measured; a single interval (sensor) is com- 
puted from a set of intervals by using a 
fault-tolerant intersection algorithm. 


5.2 Defensive Programming 


Sometimes a client cannot be made fault 
tolerant by using replication. In some cir- 
cumstances, due to the unavailability of 
sensors or processors, it simply might not 
be possible to replicate the client. In other 
circumstances, the application semantics 
might not afford a reasonable way to trans- 
form multiple requests from client replicas 
into the single request needed by the state 
machine. In all of these circumstances, 
careful design of state machines can limit 


‘If Byzantine failures are possible, then a t fault- 
tolerant client requires 2t + l-fold replication and a 
command is performed after t + 1 requests have been 
received. If failures are restricted to fail stop, then 
t + l-fold replication will suffice, and a command 
can be performed after a single request has been 
received. 


the effects of requests from faulty clients. 
For example, memory (Figure 1) permits 
any client to write to any location. There- 
fore, a faulty client can overwrite all 
locations, destroying information. This 
problem could be prevented by restricting 
write requests from each client to only cer- 
tain memory locations-the state machine 
can enforce this. 


Including tests in commands is another 
way to design a state machine that cannot 
be corrupted by requests from faulty 
clients. For example, mutex as specified in 
Figure 2, will execute a release command 
made by any client-even one that does not 
have access to the resource. Consequently, 
a faulty client could issue such a request 
and cause mutex to grant a second client 
access to the resource before the first has 
relinquished access. A better formulation 
of mutex ignores release commands from 
all but the client to which exclusive access 
has been granted. This is implemented by 
changing the release in mutex to 


release : 
command 
if user # client -+ skip 
0 waiting = @ A user = client -3 


user := * 
0 waiting # Q A user = client + 


send OK to head (waiting); 
user := head(waiting); 
waiting := tail (waiting) 


fi 
end release 


Sometimes, a faulty client not making a 
request can be just as catastrophic as one 
making an erroneous request. For example, 
if a client of mutex failed and stopped while 
it had exclusive access to the resource, then 
no client could be granted access to the 
resource. Of course, unless we are prepared 
to bound the length of time that a correctly 
functioning process can retain exclusive ac- 
cess to the resource, there is little we can 
do about this problem. This is because there 
is no way for a state machine to distinguish 
between a client that has stopped executing 
because it has failed and one that is exe- 
cuting very slowly. However, given an up- 
per bound B on the interval between an 
acquire and the following release, the ac- 
quire command of mutex can automatically 
schedule release on behalf of a client. 
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We use the notation 


schedule (REQUEST) for +T 


to specify scheduling (REQUEST) with a 
unique identifier at least 7 greater than the 
identifier on the request being processed. 
Such a request is called a timeout request 
and becomes stable at some time in the 
future, according to the stability test being 
used for client-generated requests. Unlike 
requests from clients, requests that result 
from executing schedule need not be dis- 
tributed to all state machine replicas of the 
ensemble. This is because each state ma- 
chine replica will independently schedule 
its own (identical) copy of the request. 


We can now modify acquire so that a 
release operation is automatically sched- 
uled. In the code that follows, TIME is 
assumed to be a function that evaluates to 
the current time. Note that mutex might 
now process two release commands on be- 
half of a client that has acquired access 
to the resource: one command from the 
client itself and one generated by its 
acquire request. The new state variable 
time-granted, however, ensures that super- 
fluous release commands are ignored. The 
code is 
acquire : 


command 
if user = @ + 


send OK to client; 
time-granted := TIME; 
schedule 


(mutextimeout, time-granted) 
for + B 


0 user # * + waiting := waiting 0 client 
fi 
end acquire 


timeout: 
command (when-granted: integer) 
if when-granted # 


time-granted + skip 
0 waiting = 9 A when-granted = 


time-granted -+ user := @ 
0 waiting # + A when-granted = 


time-granted -+ 
send OK to head (waiting); 
user := head(waiting); 
time-granted := TIME; 
waiting := tail(waiting) 


fi 
end timeout 


6. USING TIME TO MAKE REQUESTS 


A client need not explicitly send a message 
to make a request. Not receiving a request 
can trigger execution of a command-in 
effect, allowing the passage of time to 
transmit a request from client to state ma- 
chine [Lamport 19841. Transmitting a re- 
quest using time instead of messages can 
be advantageous because protocols that im- 
plement ICl and IC2 can be costly both in 
total number of messages exchanged and in 
delay. Unfortunately, using time to trans- 
mit requests has only limited applicability 
since the client cannot specify parameter 
values. 


The use of time to transmit a request was 
used in Section 5 when we revised the ac- 
quire command of mutex to foil clients that 
failed to release the resource. There, a re- 
lease request was automatically scheduled 
by acquire on behalf of a client being 
granted the resource. A client transmits a 
release request to mutex simply by permit- 
ting B (logical clock or real-time clock) time 
units to pass. It is only to increase utiliza- 
tion of the shared resource that a client 
might use messages to transmit a release 
request to mutex before B time units have 
passed. 


A more dramatic example of using time 
to transmit a request is illustrated in con- 
nection with tally of Figure 3. Assume that 


l all clients and state machine replicas 
have (logical or real time) clocks synchro- 
nized to within r, 


and 


l the election starts at time Strt and this 
is known to all clients and state machine 
replicas. 


Using time, a client can cast a vote for a 
default by doing nothing; only when a client 
casts a vote different from its default do we 
require that it actually transmits a request 
message. Thus, we have: 


Transmitting a Default Vote. If client 
has not made a request by time Strt + I’, 
then a request with that client’s default 
vote has been made. 


Notice that the default need not be fixed 
nor even known at the time a vote is cast. 
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For example, the default vote could be “vote 
for the first client that any client casts 
a nondefault vote for.” In that case, the 
entire election can be conducted as long 
as one client casts a vote by using actual 
messages.g 


7. RECONFIGURATION 


An ensemble of state machine replicas can 
tolerate more than t faults if it is possible 
to remove state machine replicas running 
on faulty processors from the ensemble and 
add replicas running on repaired proces- 
sors. (A similar argument can be made for 
being able to add and remove copies of 
clients and output devices.) Let P(r) be the 
total number of processors at time 7 that 
are executing replicas of some state ma- 
chine of interest, and let F(T) be the num- 
ber of them that are faulty. In order for the 
ensemble to produce the correct output, we 
must have 


Combining Condition: P(T) - F(7) > 
Enuf for all 0 I 7, where 


P(7) 
- 


Enuf = 2 


1 


if Byzantine failures 
are possible. 


0 if only fail-stop failures 
are possible. 


A processor failure may cause the Com- 
bining Condition to be violated by increas- 
ing F(T), thereby decreasing P(T) - F(T). 
When Byzantine failures are possible, if a 
faulty processor can be identified, then re- 
moving it from the ensemble decreases 
Enuf without further decreasing P(T) - 
F(T); this can keep the Combining Condi- 
tion from being violated. When only fail- 
stop failures are possible, increasing the 
number of nonfaulty processors-by add- 
ing one that has been repaired-is the only 
way to keep the Combining Condition from 
being violated because increasing P(r) is 
the only way to ensure that P(7) - F(T) 
> 0 holds. Therefore, provided the follow- 
ing conditions hold, it may be possible to 
maintain the Combining Condition forever 


’ Observe that if Byzantine failures are possible, then 
a faulty client can be elected. Such problems are 
always possible when voters do not have detailed 
knowledge about the candidates in an election. 


and thus tolerate an unbounded total num- 
ber of faults over the life of the system: 


Fl: If Byzantine failures are possible, 
then state machine replicas being ex- 
ecuted by faulty processors are iden- 
tified and removed from the ensemble 
before the Combining Condition is 
violated by subsequent processor 
failures. 


F2: State machine replicas running on re- 
paired processors are added to the 
ensemble before the Combining Con- 
dition is violated by subsequent pro- 
cessor failures. 


Fl and F2 constrain the rates at which 
failures and repairs occur. 


Removing faulty processors from an en- 
semble of state machines can also improve 
system performance. This is because the 
number of messages that must be sent to 
achieve agreement is usually proportional 
to the number of state machine replicas 
that must agree on the contents of a re- 
quest. In addition, some protocols to im- 
plement agreement execute in time propor- 
tional to the number of processors that are 
faulty. Removing faulty processors clearly 
reduces both the message complexity and 
time complexity of such protocols. 


Adding or removing a client from the 
system is simply a matter of changing the 
state machine so that henceforth it re- 
sponds to or ignores requests from that 
client. Adding an output device is also 
straightforward-the state machine starts 
sending output to that device. Removing 
an output device from a system is achieved 
by disabling the device. This is done by 
putting the device in a state that prevents 
it from affecting the environment. For ex- 
ample, a CRT terminal can be disabled by 
turning off the brightness so that the screen 
can no longer be read; a hydraulic actuator 
controlling the flap on an airplane wing can 
be disabled by opening a cutoff valve so 
that the actuator exerts no pressure on that 
control surface. As suggested by these ex- 
amples, however, it is not always possible 
to disable a faulty output device: Turning 
off the brightness might have no effect on 
the screen, and the cutoff valve might not 
work. Thus, there are systems in which no 
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more than a total of t actuator faults can 
be tolerated because faulty actuators can- 
not be disabled. 


The configuration of a system structured 
in terms of a state machine and clients can 
be described using three sets: the clients C, 
t.he state machine replicas S, and the out- 
put devices 0. 5’ is used by the agreement 
protocol and therefore must be known to 
clients and state machine replicas. It can 
also be used by an output device to deter- 
mine which send operations made by state 
machine replicas should be ignored. C and 
0 are used by state machine replicas to 
determine from which clients requests 
should be processed and to which devices 
output should be sent. Therefore, C and 
0 must be available to all state machine 
replicas. 


Two problems must be solved to support 
changing the system configuration. First, 
the values of C, S, and 0 must be available 
when required. Second, whenever a client, 
state machine replica, or output device is 
added to the configuration, the state of that 
element must be updated to reflect the 
current state of the system. These prob- 
lems are considered in the following two 
sections. 


7.1 Managing the Configuration 


The configuration of a system can be man- 
aged using the state machine in that sys- 
tem. Sets C, S, and 0 are stored in state 
variables and changed by commands. Each 
configuration is valid for a collection of 
requests-those requests r such that uid(r) 
is in the range defined by two succes- 
sive configuration-change requests. Thus, 
whenever a client, state machine replica, or 
output device performs an action connected 
with processing r, it uses the configuration 
that is valid for r. This means that a con- 
figuration-change request must schedule 
the new configuration for some point far 
enough in the future so that clients, state 
machine replicas, and output devices all 
find out about the new configuration before 
it actually comes into effect. 


There are various ways to make config- 
uration information available to the clients 
and output devices of a system. (The infor- 
mation is already available to the state 


machine.) One is for clients and output 
devices t.o query the state machine peri- 
odically for information about relevant 
pending configuration changes. Obviously, 
communication costs for this scheme are 
reduced if clients and output devices share 
processors with state machine replicas. An- 
other way to make configuration informa- 
tion avai!able is for the state machine to 
include information about configuration 
changes in messages it sends to clients and 
output devices in the course of normal pro- 
cessing. Doing this requires periodic com- 
munication between the state machine and 
clients and between the state machine and 
output devices. 


Requests to change the configuration of 
the system are made by a failure/recovery 
detection mechanism. It is convenient to 
think of this mechanism as a collection of 
clients, one for each element of C, S: or 0. 
Each of these configurators is responsible 
for detecting the failure or repair of the 
single object it manages and, when such an 
event is detected, for making a request to 
alter the configuration. A configurator is 
likely to be part of an existing client or 
state machine replica and might be imple- 
mented in a variety of ways. 


When elements are fail stop, a configu- 
rator need only check the failure-detection 
mechanism of that element. When ele- 
ments can exhibit Byzantine failures, de- 
tecting failures is not always possible. 
When it is possible, a higher degree of fault 
tolerance can be achieved by reconfigura- 
tion. A nonfaulty configurator satisfies two 
safety properties: 


Cl: Only a faulty element is removed 
from the configuration. 


C2: Only a nonfaulty element is added to 
the configuration. 


A configurator that does nothing satisfies 
Cl and C2. Changing the configuration en- 
hances faults tolerance only if Fl and F2 
also hold. For Fl and F2 to hold, a config- 
urator must also (1) detect faults and cause 
elements to be removed and (2) detect re- 
pairs and cause elements to be added. Thus, 
the degree to which a configurator en- 
hances fault tolerance is directly related to 
the degree to which (1) and (2) are achieved. 
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Here, the semantics of the application can 
be helpful. For example, to infer that a 
client is faulty, a state machine can com- 
pare requests made by different clients or 
by the same client over a period of time. To 
determine that a processor executing a 
state machine replica is faulty, the state 
machine can monitor messages sent by 
other state machine replicas during execu- 
tion of an agreement protocol. And, by 
monitoring aspects of the environment 
being controlled by actuators, a state ma- 
chine replica might be able to determine 
that an output device is faulty. Some ele- 
ments, such as processors, have internal 
failure-detection circuitry that can be read 
to determine whether that element is faulty 
or has been repaired and restarted. A con- 
figurator for such an element can be im- 
plemented by having the state machine 
periodically poll this circuitry. 


In order to analyze the fault tolerance of 
a system that uses configurators, failure of 
a configurator can be considered equivalent 
to the failure of the element that the con- 
figurator manages. This is because with 
respect to the Combining Condition, re- 
moval of a nonfaulty element from the sys- 
tem or addition of a faulty one is the same 
as that element failing. Thus, in a t fault- 
tolerant system, the sum of the number of 
faulty configurators that manage nonfaulty 
elements and the number of faulty compo- 
nents with nonfaulty configurators must be 
bounded by t. 


7.2 Integrating a Repaired Object 


Not only must an element being added to a 
configuration be nonfaulty, it also must 
have the correct state so that its actions 
will be consistent with those of the rest of 
the system. Define e[r,] to be the state that 
a non-faulty system element e should be in 
after processing requests r. through ri. An 
element e joining the configuration imme- 
diately after request rjOin must be in state 
e[rjOin] before it can participate in the 
running system. 


An element is self-stabilizing [Dijkstra 
19741 if its current state is completely de- 
fined by the previous k inputs it has pro- 
cessed for some fixed k. Running such an 
element long enough to ensure that it has 


processed k inputs is all that is required to 
put it in state e [rjOi”]. Unfortunately, the 
design of self-stabilizing state machines is 
not always possible. 


When elements are not self-stabilizing, 
processors are fail stop, and logical clocks 
are implemented, cooperation of a single 
state machine replica smi is sufficient to 
integrate a new element e into the system. 
This is because state information obtained 
from any state machine replica smi must be 
correct. In order to integrate e at request 
rjoin, replica sm, must have access to enough 
state information SO that e [rjoin] can be 
assembled and forwarded to e. 


When e is an output device, e[rjOin] is 
likely to be only a small amount of device- 
specific setup information-information 
that changes infrequently and can be 
stored in state variables of ami. 
When e is a client, the information 
needed for e [rjOin] is frequently based on 
recent sensor values read and can there- 
fore be determined by using information 
provided to ami by other clients. 
And, when e is a state machine replica, 
the information needed for e [r+,,] is 
stored in the state variables and pending 
requests at Smi. 


The protocol for integrating a client or 
output device e is simple-e [ rjO;, ] is sent to 
e before the output produced by processing 
any request with a unique identifier larger 
than uid(rjOin). The protocol for integrating 
a state machine replica sm,,, is a bit more 
complex. It is not sufficient for replica SiYLi 
simply to send the values of all its state 
variables and copies of any pending re- 
quests to smnew. This is because some client 
request might be received by ami after send- 
ing e[r+] but delivered to sm,,, before its 
repair. Such a request would neither be 
reflected in the state information for- 
warded by am; to smnew nor received by 
srnnew directly. Thus, smi must, for a time, 
relay to srnnew requests received from 
clients.” Since requests from a given client 
are received by sm,,, in the order sent and 
in ascending order by request identifier, 


lo Duplicate copies of some requests might be received 
by smnew . 
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once sm,,, has received a request directly by time 7join + A according to its clock. 
(i.e., not relayed) from a client c, there is Therefore, every request received by ami 
no need for requests from c with larger after Tjoin + A must also be received directly 
identifiers to be relayed to sm,,,. Jf sm,,, by sm,,,. Clearly, ami need not relay such 
informs em; of the identifier on a request requests, and we have the following 
received directlv from each client c. then nrotocol: 
ami can know when to stop relaying to sm,,, 
requests from c. 


The complete integration protocol is 
summarized in the following: 


Integration with Fail-stop Processors 
and Logical Clocks. A state machine 
replica smi can integrate an element e 
at request rjoin into a running system as 
follows: 


If e is a client or output device, sm, sends 
the relevant portions of its state variables 
to e and does so before sending any output 
produced by requests with unique identi- 
fiers larger than the one on rjOin. 


If e is a state machine replica sm,,,, 
then smi 


(1) sends the values of its state variables 
and copies of any pending requests to 
sm,,, , 


and then 
(2) sends to srnnew every subsequent re- 


quest r received from each client c such 
that uid(r) c uid(r,), where r, is the 
first request sm,,, received directly 
from c after being restarted. 


The existence of synchronized real-time 
clocks permits this protocol to be simplified 
because am; can determine when to stop 
relaying messages based on the passage of 
time. Suppose, as in Section 3.2.2, there 
exists a constant A such that a request r 
with unique identifier uid(r) will be re- 
ceived by every (correct) state machine rep- 
lica no later than time uid (r) + A according 
to the local clock at the receiving processor. 
Let sm,,, join the configuration at 
time rjoin. By definition, smnew is guaranteed 
to receive every request that was made after 
time Tj,in on the requesting client’s clock. 
Since unique identifiers are obtained from 
the real-time clock of the client making the 
request, srnnew is guaranteed to receive 
every request r such that uid(r) 2 7j,i”. The 
first such request r must be received by smi 


Integration with Fail-stop Processors 
and Real-time Clocks. A state machine 
replica Smi can integrate an element e 
at request rjoin into a running system as 
follows: 


If e is a client or output device, then smi 
sends the relevant portions of its state vari- 
ables to e and does so before sending any 
output produced by requests with unique 
identifiers larger than the one on rj0in. 


If e is a state machine replica sm,,,,, 
then sm, 


(1) sends the values of its state variables 
and copies of any pending requests to 
smnew, 


and then 
(2) sends to smnew every request received 


during the next interval of duration A. 


When processors can exhibit Byzantine 
failures, a single state machine replica smi 
is not sufficient for integrating a new ele- 
ment into the system. This is because state 
information furnished by sm; might not be 
correct-smi might be executing on a faulty 
processor. To tolerate t failures in a system 
with 2t + 1 state machine replicas, t + 1 
identical copies of the state information 
and t + 1 identical copies of relayed mes- 
sages must be obtained. Otherwise, the pro- 
tocol is as described above for real-time 
clocks. 


7.2.1 Stability Revisited 


The stability tests of Section 3 do not work 
when requests made by a client can be 
received from two sources-the client and 
via a relay. During the interval that mes- 
sages are being relayed, sm,,,, the state 
machine replica being integrated, might re- 
ceive a request r directly from c but later 
receive r ‘, another request from c, with 
uid (r) > uid (r’), because r’ was relayed by 
am;. The solution to this problem is for 
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sm,,, to consider requests received directly 
from c stable only after no relayed requests 
from c can arrive. Thus, the stability test 
must be changed: 


Stability Test During Restart. A re- 
quest r received directly from a client c by 
a restarting state machine replica sm,,, is 
stable only after the last request from c 
relayed by another processor has been 
received by sm,,,. 


An obvious way to implement this new 
stability test is for a message to be sent to 
srnnew when no further requests from c will 
be relayed. 


8. RELATED WORK 


The state machine approach was first de- 
scribed in Lamport [1978a] for environ- 
ments in which failures could not occur. It 
was generalized to handle fail-stop failures 
in Schneider [1982], a class of failures 
between fail-stop and Byzantine failures 
in Lamport [1978b], and full Byzantine 
failures in Lamport [1984]. These various 
state machine implementations were first 
characterized using the Agreement and 
Order requirements and a stability test in 
Schneider [ 19851. 


The state machine approach has been 
used in the design of significant fault- 
tolerant process control applications 
[Wensley et al. 19781. It has also been used 
in the design of distributed synchroniza- 
tion-including read/write locks and dis- 
tributed semaphores [Schneider 19801, 
input/output guards for CSP and condi- 
tional Ada SELECT statements [Schneider 
1982]-and in the design of a fail-stop pro- 
cessor approximation using processors that 
can exhibit arbitrary behavior in response 
to a failure [Schlichting and Schneider 
1983; Schneider 19841. A stable storage im- 
plementation described in Bernstein [ 19851 
exploits properties of a synchronous broad- 
cast network to avoid explicit protocols for 
Agreement and Order and uses Transmit- 
ting a Default Vote (as described in Sec- 
tion 7). The notion of A common storage, 
suggested in Cristian et al. [ 19851, is a state 
machine implementation of memory that 


uses the Real-time Clock Stability Test. 
The decentralized commit protocol of 
Skeen [1982] can be viewed as a straight- 
forward application of the state machine 
approach, whereas the two-phase commit 
protocol described in Gray [1978] can be 
obtained from decentralized commit simply 
by making restrictive assumptions about 
failures and performing optimizations 
based on these assumptions. The Paxon 
Synod commit protocol [Lamport 19891 
also can be understood in terms of the state 
machine approach. It is similar to, but less 
expensive to execute, than the standard 
three-phase commit protocol. Finally, the 
method of implementing highly available 
distributed services in Liskov and Ladin 
[1986] uses the state machine approach, 
with clever optimizations of the stability 
test and agreement protocol that are pos- 
sible due to the semantics of the application 
and the use of fail-stop processors. 


A critique of the state machine approach 
for transaction management in database 
systems appears in Garcia-Molina et al. 
[ 19861. Experiments evaluating the per- 
formance of various of the stability tests in 
a network of SUN Workstations are re- 
ported in Pittelli and Garcia-Molina 
[1989]. That study also reports on the per- 
formance of request batching, which is 
possible when requests describe database 
transactions, and the use of null requests 
in the Logical Clock Stability Test Toler- 
ating Fail-stop Failures of Section 3. 


Primitives to support the Agreement and 
Order requirements for Replica Coordina- 
tion have been included in two operating 
systems toolkits. The ISIS Toolkit [Birman 
19851 provides ABCAST and CBCAST for 
allowing an applications programmer to 
control the delivery order of messages to 
the members of a process group (i.e., collec- 
tion of state machine replicas). ABCAST 
ensures that all state machine replicas pro- 
cess requests in the same order; CBCAST 
allows more flexibility in message ordering 
and ensures that causally related requests 
are delivered in the correct relative order. 
ISIS has been used to implement a number 
of prototype applications. One example is 
the RNFS (replicated NFS) file system, a 
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network file system that is tolerant to fail- 
stop failures and runs on top of NFS, that 
was designed using the state machine ap- 
proach [Marzullo and Schmuck 19881. 


The Psync primitive [Peterson et al. 
19891, which has been implemented in the 
n-kernel [Hutchinson and Peterson 19881, 
is similar to the CBCAST of ISIS. Psync, 
however, makes available to the program- 
mer the graph of the message “potential 
causality” relation, whereas CBCAST does 
not. Psync is intended to be a low-level 
protocol that can be used to implement 
protocols like ABCAST and CBCAST; the 
ISIS primitives are intended for use by 
applications programmers and, therefore, 
hide the “potential causality” relation while 
at the same time include support for group 
management and failure reporting. 
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