
Program Generation
and Optimization

CS 860
summer 2005
July 26, 2005

Instructor: Jeremy Johnson
Guest instructor: Franz Franchetti

Organization
Short Vector SIMD Extensions

Idea, benefits, reasons, restrictions
State-of-the-art floating-point SIMD extensions
History and related technologies
How to use it

Writing code for Intel’s SSE
Instructions
Common building blocks
Examples: WHT, matrix multiplication, FFT

Selected topics
BlueGene/L
Complex arithmetic and instruction-level parallelism
Things that don’t work as expected

Conclusion: How to write good vector code

Organization
Overview

Idea, benefits, reasons, restrictions
State-of-the-art floating-point SIMD extensions
History and related technologies
How to use it

Writing code for Intel’s SSE
Instructions
Common building blocks
Examples: WHT, matrix multiplication, FFT

Selected topics
BlueGene/L
Complex arithmetic and instruction-level parallelism
Things that don’t work as expected

Conclusion: How to write good vector code

SIMD (Signal Instruction Multiple Data)
vector instructions in a nutshell

What are these instructions?
Extension of the ISA. Data types and instructions for parallel computation on short
(2-16) vectors of integers and floats

Why are they here?
Useful: Many applications (e.g.,multi media) feature the required fine grain
parallelism – code potentially faster
Doable: Chip designers have enough transistors available, easy to implement

+ x 4-way

Overview Vector ISAs

Evolution of Intel Vector Instructions
MMX (1996, Pentium)

Integers only, 64-bit divided into 2 x 32 to 8 x 8
MMX register = Float register
Lost importance due to SSE2 and modern graphics cards

SSE (1999, Pentium III)
Superset of MMX
4-way float operations, single precision
8 new 128 Bit Register
100+ instructions

SSE2 (2001, Pentium 4)
Superset of SSE
“MMX” operating on SSE registers, 2 x 64
2-way float ops, double-precision, same registers as 4-way single-precision

SSE3 (2004, Pentium 4E Prescott)
Superset of SSE2
New 2-way and 4-way vector instructions for complex arithmetic

Related Technologies
Original SIMD machines (CM-2,…)

Don’t really have anything in common with SIMD vector extension
Vector Computers (NEC SX6, Earth simulator)

Vector lengths of up to 128
High bandwidth memory, no memory hierarchy
Pipelined vector operations
Support strided memory access

Very long instruction word (VLIW) architectures (Itanium,…)
Explicit parallelism
More flexible
No data reorganization necessary

Superscalar processors (x86, …)
No explicit parallelism
Memory hierarchy

SIMD vector extensions borrow multiple concepts

How to use SIMD Vector Extensions?

Prerequisite: fine grain parallelism

Helpful: regular algorithm structure

Easiest way: use existing libraries
Intel MKL and IPP, Apple vDSP, AMD ACML,
Atlas, FFTW, Spiral

Do it yourself:
Use compiler vectorization: write vectorizable code
Use language extensions to explicitly issue the instructions
Vector data types and intrinsic/builtin functions
Intel C++ compiler, GNU C compiler, IBM VisualAge for BG/L,…
Implement kernels using assembly (inline or coding of full modules)

Characterization of Available Methods
Interface used

Portable high-level language (possibly with pragmas)
Proprietary language extension (builtin functions and data types)
Assembly language

Who vectorizes
Programmer or code generator expresses parallelism
Vectorizing compiler extracts parallelism

Structures vectorized
Vectorization of independent loops
Instruction-level parallelism extraction

Generality of approach
General purpose (e.g., for complex code or for loops)
Problem specific (for FFTs or for matrix products)

0

1000

2000

3000

4000

5000

6000

7000

8000

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ld N

Ps
eu

do
 M

flo
p/

s
5

N
 ld

 N
 /

ru
nt

im
e

FFTW 3.0.1
FFTW 3.0.1 SSE
MKL 6.1 DFTI
IPP 4.0 inplace
SPIRAL
SPIRAL w/vect C
SPIRAL SSE
Numerical Recipies

Higher is better

Vendor code:
hand-tuned
assembly?

Benchmark: DFT, 2-powers P4, 3.0 GHz,
icc 8.0

Single precision code

• limitations of compiler vectorization
• Spiral code competitive with the best

Problems

Correct data alignment paramount

Reordering data kills runtime

Algorithms must be adapted to suit machine needs

Adaptation and optimization is machine/extension dependent

Thorough understanding of ISA + Micro architecture required

One can easily slow down a program by vectorizing it

Organization
Overview

Idea, benefits, reasons, restrictions
State-of-the-art floating-point SIMD extensions
History and related technologies
How to use it

Writing code for Intel’s SSE
Instructions
Common building blocks
Examples: WHT, matrix multiplication, FFT

Selected topics
BlueGene/L
Complex arithmetic and instruction-level parallelism
Things that don’t work as expected

Conclusion: How to write good vector code

Intel Streaming SIMD Extension (SSE)

Used syntax: Intel C++ compiler
Data type: __m128 d; // ={float d3, d2, d1, d0}
Intrinsics: _mm_add_ps(), _mm_mul_ps(),…
Dynamic memory: _mm_malloc(), _mm_free()

Instruction classes
Memory access (explicit and implicit)
Basic arithmetic (+, -, *)
Expensive arithmetic (1/x, sqrt(x), min, max, /, 1/sqrt)
Logic (and, or, xor, nand)
Comparison (+, <, >, …)
Data reorder (shuffling)

Blackboard

Organization
Overview

Idea, benefits, reasons, restrictions
State-of-the-art floating-point SIMD extensions
History and related technologies
How to use it

Writing code for Intel’s SSE
Instructions
Common building blocks
Examples: WHT, matrix multiplication, FFT

Selected topics
BlueGene/L
Complex arithmetic and instruction-level parallelism
Things that don’t work as expected

Conclusion: How to write good vector code

Blackboard

Organization
Overview

Idea, benefits, reasons, restrictions
State-of-the-art floating-point SIMD extensions
History and related technologies
How to use it

Writing code for Intel’s SSE
Instructions
Common building blocks
Examples: WHT, matrix multiplication, FFT

Selected topics
BlueGene/L
Complex arithmetic and instruction-level parallelism
Things that don’t work as expected

Conclusion: How to write good vector code

BlueGene/L Supercomputer
System at Lawrence Livermore National Laboratory (LLNL)

Aims at #1 in Top 500 list of supercomputers
65,536 processors
PowerPC 440 FP2 @ 700 MHz
360 Tflop/s peak performance
16 TByte RAM
In operation by end of 2005

Smaller systems will be commercially available
Other national labs, universities, Japan, Germany,…
BlueGene/L consortium: open to everybody, community effort

The BlueGene/L System at LLNL

© 2004 IBM Corporation

One CPU

BlueGene/L CPU: PowerPC 440 FP2

© 2004 IBM Corporation

One CPU

SIMD unit: Double FPU

The Double FPU
BlueGene/L Double FPU: Two coupled FPUs

Scalar and two-way vector FPU instructions
Per cycle: Either two-way FMA or two-way move,

and one two-way load or store
Double precision

Supports complex arithmetic and two-way SIMD
20 instructions supporting complex multiply-add
Implicit parallel, cross and copy operations
Vector sign changes and cross moves

re im im

re im

re

+ +

re im im

re im

re

* *

re im im

re im

re

*

Parallel add = 1 instr.
Complex add

Parallel mul = 1 instr. Complex mul = 2 instr.
(6 flops)

Vectorization Overhead

Real vector code = faster computation but overhead
Overhead: prepare data for parallel computation
Goal: minimize or eliminate these reorder operations

re im re im

re re im im

BlueGene/L: Expensive data reorganization
Work in parallel on real and imaginary parts
One copy and two cross-copies
On BlueGene/L: 3 cycles = 12 flops

Complex arithmetic
Native mode for BlueGene/L Double FPU
However, many codes use real arithmetic
Real codes require vectorization

BlueGene/L DD2 prototype at IBM T.J. Watson Research Center
Single BlueGene/L CPU at 700 MHz (one Double FPU), IBM XL C compiler

0

200

400

600

800

1000

1200

1400

1600

4 8 16 32 64 128 256 512 1024 2048 4096 8192

SPIRAL C99 complex (440d)
FFTW 2.1.5
SPIRAL C real (440)
SPIRAL C real (440d)
GNU GSL mixed radix

Ps
eu

do
 M

flo
p/

s
5

N
ld

 N
/ r

un
tim

e

Vector length N

Three times faster

Two times faster

Benchmark: DFT, 2-powers, BlueGene/L

• Utilization of complex FPU via C99 _Complex double
• Factor 2 over real code with compiler vectorization (IBM XL C)

Organization
Overview

Idea, benefits, reasons, restrictions
State-of-the-art floating-point SIMD extensions
History and related technologies
How to use it

Writing code for Intel’s SSE
Instructions
Common building blocks
Examples: WHT, matrix multiplication, FFT

Selected topics
BlueGene/L
Complex arithmetic and instruction-level parallelism
Things that don’t work as expected

Conclusion: How to write good vector code

Example: Complex Multiplication SSE3

a b c d

a b

b a

d dc c

bd ad

ac bc

ac-bd ad+bc

ac-bd ad+bc

Memory

Memory

load load load

mult

mult

swap

addsub

store

Result:
4 load/stores
3 arithm. ops.
1 reorder op

Not available
in SSE2

Complex C99 code + compiler vectorization
works reasonably well

Complex code features intrinsic
2-way vector parallelism

The Corresponding Assembly Code
SSE3:

movapd xmm0, XMMWORD PTR A
movddup xmm2, QWORD PTR B
mulpd xmm2, xmm0
movddup xmm1, QWORD PTR B+8
shufpd xmm0, xmm0, 1
mulpd xmm1, xmm0
addsubpd xmm2, xmm1
movapd XMMWORD PTR C, xmm2

SSE2:

movsd xmm3, QWORD PTR A
movapd xmm4, xmm3
movsd xmm5, QWORD PTR A+8
movapd xmm0, xmm5
movsd xmm1, QWORD PTR B
mulsd xmm4, xmm1
mulsd xmm5, xmm1
movsd xmm2, QWORD PTR B+8
mulsd xmm0, xmm2
mulsd xmm3, xmm2
subsd xmm4, xmm0
movsd QWORD PTR C, xmm4
addsd xmm5, xmm3
movsd QWORD PTR C, xmm5

In SSE2 scalar code is better

Example: 3DNow! Basic Block Vectorization
Utilizing instruction-level parallelism
Inter-operand and intra-operand vector instructions

Scalar operations Vector operations

npacc+swap vadd+chshi vsub+chsloadd+sub

Organization
Overview

Idea, benefits, reasons, restrictions
State-of-the-art floating-point SIMD extensions
History and related technologies
How to use it

Writing code for Intel’s SSE
Instructions
Common building blocks
Examples: WHT, matrix multiplication, FFT

Selected topics
BlueGene/L
Complex arithmetic and instruction-level parallelism
Things that don’t work as expected

Conclusion: How to write good vector code

Things that don’t work as expected
Intel SSE/SSE2/SSE3

SSE2 can’t do complex arithmetic well
Early application notes showed really bad code examples (split radix FFT)
Intel Compiler doesn’t vectorize despite pragmas,…

Intel Itanium processor family (IPF)
No intrinsic interface to IPF native vector instruction
Can only use 4-way SSE intrinsics to program 2-way IPF
With Itanium 2, no vectorization speed-up possible any more

AMD 3DNow! and AMD64
AMD64 can do 3DNow! and SSE2 in parallel – have fun!
For a long time they had no compiler support
K7: One intra operand instruction is just missing (++,+-, --; -+??)

Things that don’t work as expected (2)
Motorola/IBM AltiVec

No unaligned memory access (raises exception)
Subvector access: the actually read/written vector element depends on the
memory address referenced (!!)
A general shuffle requires a 128 bit register “howto” operand
Only fused-multiply-add (FMA) instruction – have to add explicitly (0,0,0,0)
for multiplication only
For a while, the GNU C compiler was buggy and the only compiler available

IBM Double FPU (BlueGene/L)
One shuffle or one vector FMA per cycle
Data reorganization prohibitively expensive
Have to fold that into special FMAs and multiply by one

Organization
Overview

Idea, benefits, reasons, restrictions
State-of-the-art floating-point SIMD extensions
History and related technologies
How to use it

Writing code for Intel’s SSE
Instructions
Common building blocks
Examples: WHT, matrix multiplication, FFT

Selected topics
BlueGene/L
Complex arithmetic and instruction-level parallelism
Things that don’t work as expected

Conclusion: How to write good vector code

How to Write Good Vector Code?

Take the “right” algorithm and the “right” data structures
Fine grain parallelism
Correct alignment in memory
Contiguous arrays

Use a good compiler (e. g., vendor compiler)
First: Try compiler vectorization

Right options, pragmas and dynamic memory functions
(Inform compiler about data alignment, loop independence,…)
Check generated assembly code and runtime

If necessary: Write vector code yourself
Most expensive subroutine first
Use intrinsics, no (inline) assembly
Important: Understand the ISA

Remaining time: Discussion

	Program Generation �and Optimization��CS 860�summer 2005�July 26, 2005��Instructor: Jeremy Johnson�Guest instructor: Franz Fra
	Organization
	Organization
	SIMD (Signal Instruction Multiple Data) �vector instructions in a nutshell
	Overview Vector ISAs
	Evolution of Intel Vector Instructions
	Related Technologies
	How to use SIMD Vector Extensions?
	Characterization of Available Methods
	Benchmark: DFT, 2-powers
	Problems
	Organization
	Intel Streaming SIMD Extension (SSE)
	Blackboard
	Organization
	Blackboard
	Organization
	BlueGene/L Supercomputer
	Vectorization Overhead
	Benchmark: DFT, 2-powers, BlueGene/L
	Organization
	Example: Complex Multiplication SSE3
	The Corresponding Assembly Code
	Example: 3DNow! Basic Block Vectorization
	Organization
	Things that don’t work as expected
	Things that don’t work as expected (2)
	Organization
	How to Write Good Vector Code?
	Remaining time: Discussion

