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High Performance Stereo Vision Designed for

Massively Data
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Abstract—Real-time stereo vision is attractive in many ap-
plications like robot navigation and 3D scene reconstructn.
Data parallel platforms, e.g. GPU, is often used for real-tine
stereo, because most stereo algorithms involve a large pah of
data parallel computations. In this paper, we propose a stero
system on GPU which pushes the Pareto-efficiency frontlineni

the accuracy and speed trade-off space. Our system is based

on hardware-aware algorithm design approach. The system
consists of new algorithms and code optimization technique
We emphasize on keeping the highly data parallel structure
in the algorithm design process such that the algorithms can
be effectively mapped to massively data parallel platformsWe
propose two stereo algorithms: namely, exponential step =

Parallel Platforms

Franz Franchetti, and James C. Hoe

column “average percent of bad pixels” in Middlebury stereo
evaluation online system [15]) of all four benchmark datsse
(Tsukuba, Venus, Teddy, and Cones). Speed is measured by
the system throughput, i.e. millions of disparity per seton
(MDS).

In terms of accuracy, state-of-the-art stereo algorithars c
be categorized into 3 classes: very good quality (error rate
below 7.0), good quality (error rate in between 7.0 and 11.0)
and not good quality (error rate above 11.0). Stereo algoist
producing very good disparity quality usually involve cdemp
computations for global optimization, segmentation, plan

adaptive weight (ESAW), and exponential step size messagefitting and occlusion handling, etc. To our best knowledge,

propagation (ESMP). ESAW reduces computational complexit
without sacrificing disparity accuracy. ESMP is an extensia
of ESAW, which incorporates the smoothness term to better
model non-frontal planes. ESMP offers additional choice inthe
accuracy and speed trade-off space. We adopt code optimiza
methodologies from the performance tuning community, and
apply them to this specific application. Such approach gives
higher performance than optimizing the code in an ‘ad hoc’
manner, and helps understanding the code efficiency. Experient
results demonstrate a speed-up factor of 2.7 to 8.5 over st&bf-
the-art stereo systems at comparable disparity accuracy.

Index Terms—stereo, real-time, multi-core, data parallel, GPU,
code optimization.

|I. INTRODUCTION

HE goal of stereo vision is to reconstruct a disparit
map (reciprocal of depth) from two views. Both accuracy
and speed are important metrics in designing real-timeaster,
systems. Existing stereo systems usually performs welha o e
aspect but not good in the other, because they focus on eitﬁgg

improving accuracy or code optimization for an existingaalg

rithm. We take a different approach by designing algorithnb

in aware of hardware features. Data parallel architectares

widely used for real-time stereo, because for most stere
algorithms a large portion of the computing time is spent
on data parallel processing. The hardware platform we use is

GPU (Graphics Processing Unit), an instance of massivedy d
parallel architectures. Our goal is to jointly optimize acy
speed trade-off by designing high accuracy stereo algosth
that can be effectively mapped to such platform.

Stereo accuracy can be evaluated by error rate, which

is the average percent of bad pixels (the same as the
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none of the algorithms in the first class (very good quality)
have been implemented in a real-time system yet. The only
near real-time solution we know of is proposed by Yang, Q.,
et al. in [22], achieving error rate of 5.8 at system throughp
of 9.4MDS. At this throughput, it takes 1.3sec to process a
stereo image pair of siz&34 x 512 and 60 disparity levels.

A number of real-time systems for algorithms in the second
class (good quality) have been proposed [5], [21], [17]. Il
them have been implemented on graphics cards. The fastest
among them is the system proposed by Gong et al. [5],
achieving error rate of 11.0 at system throughput of 124 MDS.
At this throughput, it takes 96ms to process a stereo image
pair of size384 x 512 and 60 disparity levels. Therefore, to
improve system throughput at good disparity accuracy remai
¥ challenging problem.

Contribution. The main contributions in this paper is a
tereo system built on hardware-aware software design con-
t. We keep the highly data parallel structure in algarith
ign, such that the algorithms can be efficiently mapped to
PU platform. We propose two algorithms and related code
Sptimization techniques.

o The two algorithms are exponential step size adaptive
weight (ESAW) and exponential step size message prop-
agation (ESMP). ESAW allows cost information from
distant pixels to propagate to the center pixel within
a few iterations. ESMP is an extension of ESAW by
incorporating the smoothness term commonly used in
belief propagation for global stereo. ESMP can improve
the disparity accuracy at the cost of lower throughput.
We discuss various choices in the code optimization
process and analyze trade-offs in their impact on perfor-
mance. Such methodologies are widely used in the perfor-
mance tuning community, but rarely found in the vision
literature. They usually deliver much higher performance
code than code optimized in an ‘ad hoc’ manner. Also,
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we analyze the performance bottleneck and understamdre details of GPU programming, readers are referred to the
how much fraction of the theoretical peak is achieved.NVIDIA GPU Programming Guide or course materials [7].

Organization. In Section Il we present the necessary back- Optimization on GPU. We summarize five guidelines to
ground and related work. First, we explain hardware platforimprove implementation efficiency on GPU, which will be
features and code optimization guidelines. Then we discuéged in Section IV.
existing real-time or near real-time stereo systems. Ini@@c .« G1 Reducing the arithmetic operation count. This is an
lll, we introduce two stereo algorithms and analyze their algorithm level optimization. Reducing operation count
complexity and accuracy. In Section IV, we present code may introduce side effects like breaking down regular
optimization techniques to efficiently map both algorithtas data structure if not used properly.
the hardware. Section V presents experiment results and 8 G2 Reducing off-chip memory accesses. This can be
comparison with existing systems. Finally, we offer conclu achieved by improving data reuse in on-chip memory. A

sions in Section VI. common strategy is “blocking”: to organize the computa-
tion and data structure to better explore the data locality.
Il. BACKGROUND AND RELATED WORK o G3 Choosing appropriate memory types to optimally

_ ~ balance their pros and cons.
We discuss background of the hardware platform and basic, g4 Organizing global memory accesses in hadfrps in
optimization guidelines. We also review existing realdim a coalesced manner when possible.

stereo systems. « G5 Choosing optimal thread block size to balance im-
pacts of occupancy and register utilization efficiency.
A. Hardware platform Higher occupancy can better hide instruction latency, but

it may reversely affect the overall performance if leading
to worse utilization of register resources (e.g. causing a
large number of register spills).

Stereo vision demonstrates intensive fine-grained data par
allelism, which can take advantage of the massively data
parallel architectures. GPU is an instance of such datdiplara _ o i
platforms. The GPU we used is NVIDIA GeForce GTX The _f|rst tlwo ggldellneésl andG2 are rglated to first order
8800, with CUDA (Computer Unified Device Architecture)n2lysis to identify whether the program is compute bound or
programming interface. memory bound. The theoretical upper bound for computation

GPU architecture features.The GTX 8800 is a hierarchi- and memory access indicates

cal architecture consisting of a total of 128 cores orgahize #of arithmetic ops

into 16 stream multi-processors (SM), each SM containing 8 processing time < 345.6Gflop/s 1)
stream processors (SP), or cores. Each SP runs at 1.35GHz, #of memory access (Bytesg

and has one 32-bit single-precision floating point multiatid < 86.4GB/s 2

. . ] A . . N rocessing time
arithmetic unit. Fully pipelined arithmetic units yield atal of P g

1.35GHzx 16SMx (8 x 2)flop/SM = 345.6Gflop/s theoretical ~ G3 addresses choosing the right type of memory for specific
peak performance. applications. The GTX 8800 offers various types of memory

The memory system of the GTX 8800 comprises 768MBuited for different situations [7]G4 is important for im-
off-chip global memory, 64kB on-chip cache for texture menproving memory bandwidth utilization efficiency. The highe
ory, 16kB on-chip cache for constant memory per SM, 16kBandwidth can be achieved when the global memory accesses
shared memory per SM, 8k 32-bit registers and local memaaye organized in a coalesced way, i.e., 16 threads in a half
for register spilling purpose. Off-chip memory access bithi warp access 16 continuous data elements of 32-, 64- or 128-
very long latency (200-300 cycles if L1 hit and 400-600 cgclebit data types , and the starting address must be aliggéd.
if L1 miss); latency for on-chip texture cache is about 108uggests tuning for the optimal thread block size to balance
cycles; and accessing other on-chip memory is very fast (¥arious factors for the best overall performance.
2 cycles). Though the GTX 8800 features a high off-chip
bandwidth of 86.4GB/s, it is still easy to saturate the mgmor
bandwidth given the high peak computing power. B. Related Work

CUDA GPU Programming model. The GTX 8800 sup-  Most existing stereo vision algorithms consist of four step
ports single program multiple data (SPMD) programmings suggested by Scharstein and Szeliski [10]: (1) matching
model. The computation task is coded irk&nel functions. cost initialization; (2) cost aggregation ; (3) disparitptie
Eachkernel is executed by multiple threads concurrently omization; and (4) disparity refinement. Stereo algorithras c
different data. Eaclkernel creates a singlgrid that consists be roughly classified into local and global approaches. Loca
of multiple thread blocks. Every thread block is assigned to algorithms use Winner-Take-All (WTA) strategy, simply itads
execute on one SM. Eadhread block is further partitioned the disparity level that minimizes the aggregation costbal
into warps of 32 threads. SM can support zero-overheaalgorithms apply energy minimization techniques to coraput
scheduling to switch betweewarps to hide long latency the optimal solution to a global energy function, which dgua
operations like off-chip memory access. The total numbercorporates explicit smoothness assumptions. We cagegor
of concurrentwarps reflects theoccupancy of SM, which is existing real-time or near real-time stereo systems inta fo
determined by the physical resource limitations on chip. Fmajor classes: local/global stereo on GPU/CPU.
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TABLE |

SUMMARY OF REAL-TIME OR NEAR REAL-TIME STEREO SYSTEMY QUANTITATIVE RESULTS ARE GIVEN LATER IN TABLE V)
GPU local ( [5], [19], [20]) very fast, good accuracy

global ( [21], [22], [17], [4]) slower and better accuracyathlocal stereo on GPU

proposed ESAW faster than local stereo on GPU at comparableacy

proposed ESMP faster than global stereo on GPU at compaaablgacy
CPU  local ( [11], [9], [23]) worse Pareto-efficiency in acaoy-speed trade-off space than local stereo on GPU

global ( [2], [3]) worse Pareto-efficiency in accuracy-sperade-off space than global stereo on GPU

Local stereo on GPU.Local approaches on a graphicghe real-time local stereo on GPU platforms [5], showing a
processing unit (GPU) produce good quality disparity magertain gap between CPU/GPU processing power for stereo
at very fast speed. Gong et al. [5] discusses an interestwigion. In addition, Tombari et al. [12] classify the mainsto
accuracy-speed trade-off of six cost aggregation appesaclhggregation approaches proposed in the literature based on
with WTA optimization under the real-time constraint on atoth accuracy and processing speed on the Intel Core Duo 2.14
ATIl Radeon X800 graphics card. Their experiments show th@Hz CPU. Though implementation is not fully optimized, it
a modified version of the adaptive weight window approadjives an interesting overview picture of the trade-off bedw
performs the best in terms of accuracy, running at aboatcuracy and computational complexity for cost aggregatio
124MDS on the ATl Radeon X800. The adaptive weighhethods.
approach was originally proposed by Yoon and Kweon [23], Global stereo on CPUFast global stereo systems on a CPU
which was very expensive in computation. Earlier real-timare not common. Felzenszwalb and Huttenlocher [2] proposed
local stereo systems on the GPU include multi-resolutiannear real-time stereo system on the 2GHz Pentium IV based
stereo by Yang, R., et al. [19], [20]. Other related workn loopy belief propagation, running at about 1.8 MDS. They
includes real-time high quality stereo-based view syrighepropose several algorithm level optimization techniqu2$]
systems on GPUs [14], [8]. also used those techniques in the GPU acceleration. Faratma

Global stereo on GPU.Global stereo on the GPU is alsoet al. [3] accelerated a dynamic programming based algorith
extensively studied. Gong et al. [4] proposed a near rea@-ti using MMX instructions, achieving about 100 MDS on an
stereo based on ORDP (orthogonal reliability-based dyaamfithlonXP 2800+ 2.2G computer.
programming) on the ATI Radeon 9800 XT graphics card, Summary. Table | gives an overview of the trade-off
running at about 20 MDS. Wang, L., et al. [17] proposed a real various real-time stereo systems. Quantitative resadés
time stereo algorithm on the ATl Radeon XL1800 graphiggiven later in Table IV. Generally speaking, stereo aldwnis
card. It integrated the adaptive weight aggregation aldveg ton CPU platforms can hardly match the Pareto-efficiency
vertical direction with dynamic programming optimizatiorachieved on GPU platforms. Stereo systems based on global
along horizontal scanlines. The disparity accuracy ish#ljg optimization methods like dynamic programming or belief
better than [5]. The system runs at about 52.8 MDS. Yang, @ropagation usually produce more accurate disparity map, a
et al. [21] proposed a near real-time global stereo matchititge cost of lower throughput.
using hierarchical belief propagation on the NVIDIA Geferc
7900 GTX graphics card. It produces better accuracy than I1l. PROPOSEDSTEREOALGORITHM

[17], but runs slower at about 17MDS. Yang, Q., et al. [22] We propose two stereo algorithms: exponential step size

proposed a nhear real-time s;_/stem on the NVIDIA GefOr(_::fdaptive weight (ESAW) and exponential step size message
8800 GTX graphics card that incorporates color Segmemtat'rﬁropagation (ESMP)

and plane fitting with belief propagation. The accuracy is
further improved compared to [21]. The system runs at about ) . . )
9.4 MDS. [27] propose an efficient implementation of dynamif- Exponential Step Sze Adaptive Weight Algorithm
programming approach using a recursive scheme, suitable foExponential step size adaptive weight (ESAW) is an ex-
parallel stream computation model. [1] propose a near resnsion of the real-time adaptive weight approach in [5]e Th
time implementation of the semi-global matching algoritiim main advantage of the proposed ESAW is to save arithmetic
[6], running at about 9MDS for large image size and disparigomputation without degrading parallelism or accuracye Th
range. algorithm in [5] is a simplification of the adaptive weight
Local stereo on CPU.Several real-time local stereo systems/indow cost aggregation originally proposed in [23]. Wetfirs
on a general purpose CPU have been proposed. The Point Gregfly summarize the basic adaptive weight aggregatiod, an
commercial stereo package can achieve 205 MDS on a 2.8GHen explain the proposed ESAW.
Intel PIV PC based on local window matching [9]. Veksler Algorithm description. In cost aggregation, the matching
[13] proposed a fast stereo based on variable windows usitmst of a pixel is the aggregated cost of all pixels in a
integral images. Tombari et al. [11] presents a segmemtaticGurrounding support window of the center pixel. The basic
based cost aggregation strategy that runs at 18.9 MDS on ithea of the adaptive weight approach is to adjust the peglpix
Intel Core Duo 2.14 GHz CPU, achieving the best accurageight based on color dissimilarity and geometric relagtdp
among existing near real-time local approaches on CPWith the center pixel under consideration. Intuitively, ixgb
However, both accuracy and speed are worse comparedstoassigned a higher weight if it is closer in color and
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distance to the center pixel. Figure 1 second column ibuss
examples of adaptive pixel weights with respect to the gente
pixel. The adaptive weight approach can preserve arbitrari
shaped depth discontinuities using a fixed window size. it ma
perform worse than box filtering for heavy-textured areks li

meadows.
f +000“006$000\{0003600 \‘oooo+
""""""""" ( B)""""""'"""
-
Fig. 2. A 1-D example of cost aggregation: (a) conventiorgdragation
used in [5], (b) exponential step size information propagat

Fig. 1. From left to right: sample window, AW[23], RtAW[5] dnESAW.

Iteration 1, step size =1, impact range (-1,1)

_________________ Ao L

| lteration 2, step size =3, impact range (-4,4) |

I Impact range from 1

I Wprevious iteration 1

: 000000000 000000000 - :
e —|
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Iteration 3, step size =9, impact range (-13,13)
Impact range from
previous iteration

impact range after iterationbecomes-r(¢) to r(t), where

Gong et al. [5] propose two simplifications over the basic r(t) =3r(t—1)+1
adaptive weight to achieve real-time implementation on GPU
We name it RtAW in the following text. First, only We,ghtswnh simple recursion, it can be derived that starting from
in the reference view are used in cost aggregation. Secofid) = 0, the maximum step size and the impact range are
instead of .usmg a fixed wmdpw of sizZ& x N, a two pass s(t) =371 and r(t) = (3" —1)/2
approach is employed: the first pass aggregates cost along
horizontal scanline, followed by a pass aggregating castcal By using exponential step size, aggregating the costs/ of
vertical scanline. This reduces the arithmetic compleftityn ~ Pixels needs only)(log N) computations.
O(N?) to O(N) per pixel. The idea can easily be extended to the 2-D case, by applying
We propose to use exponential step size in cost aggregati@merticm pass after a horizontal pass in each iteratiois iEh
which greatly saves the operation count without sacrificirije proposed ESAW cost aggregation scheme. Using ESAW
data parallelism. We first explain the idea of exponenti@pproach, aggregating the costséfx N pixels is reduced
step size cost aggregation in the 1-D case. It tak¢d/) to O(log N) computations per pixel.
computations to aggregate the costs of all pixels within The complete ESAW algorithm is summarized as following:
r = | N/2] offset to the center pixel along 1-D scanline using
the direct aggregation method in [5]. Figure 2 (a) shows
simple example of aggregating pixels within range (-13, 13) C%p,d) = Amin(Zr, (pz, py) — Tr(ps — d, py), T) 3
needs computation on 27 pixels. Figure 2 (b) shows anothefierative cost aggregation
way of aggregation with much less computation, achieved byfor t =1: T
3 iterations. In each iteration, every pixel aggregatesctists (@) Compute offset:
of three pixels, itself and pixels ats and +s offset. Offset s = roundb* 1) 4
s is set to 1, 3, 9 for three iterations. The “impact range” is , .
. . . . (b) Aggregate the costs horizontallyof center pixelp at
defined as the largest pixel offset where the pixel matching (z,y), pr at (z — s,y) andpy at (z + s, y):
cost is aggregated into the center pixel. After each itenati

Initialize the matching costsat each pixelp at every disparity

the impact range grows, first from (-1, 1) to (-4, 4), then from c'p)= Y warc' ®)
(-4, 4) to (-13, 13). In this way, aggregating the matchingtso a€{pi,p.pr}
of all pixels within range (-13, 13) just needs computation 0 (c) Aggregate the costs verticallyof center pixelp at (z,
3 x 3 =9 pixels. Y), pu at (z,y — s) andpg at (z,y + s):
. Now we generah;e th_e toy gxample. Assuming that the Cl(p) = Z (g, )C"(q) ©)
impact range after iteration— 1 is —r(t — 1) to r(¢t — 1), I
then the maximum step siz&t) at iterationt is end
s(t) _ 2r(t _ 1) +1 3. Choose the best disparity

. . d= in C* 7

to avoid holes or gaps, which we don'’t expect to see because et ) @

closer pixels are more correlated. With this step size, thePost-processinglisparity map using x 3 median filter.
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B. Exponential Step Sze Message Propagation Algorithm

Z(ps,py) is the grayscale luminance of pixgl by elimi-  \jotivation. One basic assumption in the local cost aggrega-

natting the hue and saturatio@!(p) is a vector denoting all jon js that pixels within the window have the same disparity
C*(p, d), which is the aggregated cost of pixe&fter iteration o the local window is frontal plane. The optimal solutisn
t. C"(p) is the intermediate horizontally aggregated cast.

is the normalized weight computed as in [23]. d = arg mdinZw(q,p)C’O(q, d) 8
q
g 2:)1- -iter3 - - -iter4 —e—iter5 —a—iter6 - -A- -iter7 - <- -iter8 —o—iter9 —a—iter 10 |f we relax the Constraint Of frontal plane tO a”OW Sma||-diS
g parity variation within the window, the optimization preiph
5 can be formulated as
[}
() . —
§ dp = arg Hélnz w(q,p)(C%(g,dg) + V(dp — dy)) 9)
> P q
<
5«7 2.2 base 27 3.2 V(SC) = min(c|x|, ’I]) (10)
 of forations s 4 s s 7 s s w dq(q # p) can take arbitrary disparity valueg,(z) is exactly
Optimal base 310 260 260 270 280 170 190 1.80 the smoothness term widely used in belief propagation based

Avg. % bad pixels 13.34 10.81 956 9.04 865 847 822 828

stereo [16], [2], penalizing disparity changes freno ¢. The
solution to equation (9) can be computed as:

Fig. 3. Error rate of ESAW for varying and iteration numbers.

M(q, d) = min(C*(q, dy) + V(d, — d)) (12)
q
Algorithm analysis. Figure 3 shows the reconstruction d. — - Mo d 12
accuracy of the ESAW algorithm, for varying number of P argn}inw(q’p); (4, dp) (12)
iterations (3 to 10) and bade(1.5 to 3). The average error

rate is average percent of bad pixels (last column in Middle- T We compare equation (8) and (12), the dn‘ferenC(E IS t?at
bury stereo evaluation online system) of all four benchmafk2) aggregates “messagef (¢, d) and (8) aggre%ates cost
datasets. The other parameters are empirically chosen ¢ (¢,d). Equation (11) is about how to map”(q,d) to

M (q,d), which is exactly the min-sum message computation

Ye =17, 7p =36, 7 =12. in [2]. This mapping has a “smoothing” effect aii’(q, d).

v, Yp @re parameters used for computing the adaptive weigt%(q’ d_) is the lower envelop of cones roqted at each di_screte
as in [23]. Since the computing time grows linearly with thgllsparlty _Iev_el and the_ co_nstant truncation value: A simple
number of iterations, we choose an optimal baggving the example is illustrated in Figure 5. For more details, resder
best accuracy for each iteration number, as summarized 3¢ referred to [2].
Figure 3. Sensitivity of the average error rate with respgect
each parameter is shown in Figure 4.

8.4 20 20 \ e
h 15 | 15 (d. (COq, )t ™y
' 10 P iseeees 10 F R
\\,ﬂ',\ 1 2 3 a d
8.2 L L I 5 Il Il Il 5
26 31 36 41 46 7 12 17 22 27 2 7 12 17 22
Yo Ye = Fig. 5. An illustration of min-sum computation (without treation). Output

M(q, d) is the lower envelop of four Cones rooted(at C°(q, d)). Dashed
blue curve shows0(q, d), dotted red curve shows the lower envelop.

Fig. 4. Sensitivity analysis of ESAW parameters.
In Figure 6, we use a toy example to show the difference

It is observed that the accuracy improves with the numbleetween aggregating matching costs and aggregating mes-
of iterations, though improvement gets very marginal aftsages. Assuming true disparities of pixgl, p,p; are 1, 2,
iteration 7. 3 respectively, and totally there are only three dispagtels.

Our aggregation scheme does not produce exactly the sdmé-igure 6 (a), we show the matching cost of each pixel at
result as [5] or [23]. But all three approaches have one thirad) 3 disparity levels. The blue line is the summation of sost
in common: in general, they tend to assign higher weights ¢ all pixels. In Figure 6 (b), we show the message of each
closer pixels. Figure 1 shows the weights for three cases:pixel at all 3 disparity levels. Messages are computed from
window has constant color; 2) window has sharp color changeatching costs using equation (11). Blue curves in Figure
3) a real window from Tsukuba image. In all three approachés,(a@) and (b) show the aggregation results. By aggregating
pixels assigned high weights are close to the center in tefmamessages instead of matching costs, the blue curve in Figure
both color and geometric distance. That's why they generdt® can reach minimum at the true disparity. This is becanse i
disparity maps of similar quality. Some preliminary reswf highly textured areas, pixels may have large matching grror
ESAW has appeared in [26]. at disparity levels deviating a little from the true dispari
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left view

VZ
=

aggregated cost

/
I

aggregated message

/—
400] sum 20 sum.
300 I
200 / e br 10 TP p 1'/
wof _— p [ T~ \ ~
p b
2 Al 2 3
disparity disparity

(a) (b)

Fig. 6. A synthesized example showing difference of agdheganatching
costs and aggregating messages. Ground truth dispariixefypis 2. (a) blue
curve shows the result of aggregating matching costg,farthere minimum is
reached at disparity 1. (b) blue curve shows the result ofegding messages
for p, where minimum is reached at true disparity 2. Messagesampuated
from matching costs using equation (11). In this exampléz) = 10|x|.

In this examplep;, p, have large matching costs at disparity

2, resulting in a large aggregation cost pfat disparity
2. Aggregating messages tend to have a “smoothing” eff

on the matching costs, therefore it is more robust to stI

variation in disparity.

Figure 7 shows a more complicated synthesized example.

Assuming that disparity increases from left to right lifgar

from O to 64 pixels, the right view is synthesized from the . ,_

2. Iterative cost aggregation
fort=1:T
(a) Compute offset as in equation (4).
(b) Map costs to messagescpst 2nsg):

M(p,d) = min(V(d—d)+0""V(p,d)) (13)
d/
(c) Aggregate the messages horizontatly
chp) = > @e.pM) (14)
q€{p;,p,pr}
(d) Map costs to messagescpst 2nsg):
M(p,d) = min(V(d-d)+CM(p,d)) (15)
d/
(e) Aggregate the messages vertically
' = >, Wap)M) (16)
q€{pu,p,paq}

end

We use the fast min-sum algorithm[2] to m&j(p, d) to

left view and the given disparity map. The second row shows

the disparity results of ESAW and ESMP (parameters are

the same as those in Section V). The disparity of ESMP

much smoother than the disparity of ESAW. The third row

shows error pixels (whose estimation errorl pixel) of two
algorithms. In this case, the error rate for ESAW2is of the

error rate for ESMP. ESMP demonstrates to be much more

EM( d) as following, which can reduce the complexity from
) to O(¢) (¢ is the total number of disparity levels).
M{p) = C(p) 17
ho = minM(p,d)+n (18)
1:1:4—1
M(p,d) = min(M(p,d—1)+ ¢, M(p,d)) (19)
isend
M(p,t—1) = min(M(p,£—1),h) (20)
ford=¢—2:-1:0
M(p,d) = min(M(p,d+1)+c, M(p,d),h) (21)

robust than ESAW when true disparity deviates from frontal

plane assumption.

ESAW result ESMP result

error >1 (ESAW) error >1 (ESMP)

nght V|ew - Ground truth disparity

Fig. 7. A synthesized example to demonstrate that ESMP pesda more
accurate disparity map than ESAW when true disparity is nfobrtal plane.

Algorithm description. As an extension of the ESAW

algorithm, ESMP shares the same steps 1, 3 and 4 of ESAW.

The difference lies in step 2, as shown in the following:

Algorithm analysis. Figure 8 shows the reconstruction
accuracy of the ESMP algorithm, for varying number of
iterations (3 to 10) and bade(1.6 to 3.1). The average error
rate is average percent of bad pixels (last column in Middle-
bury stereo evaluation online system) of all four benchmark
datasets. The other parameters are empirically chosen

Ve =18, 7, =29, 7 =17, A =0.15, ¢ = 1, 5 = 0.0375d,p,,

whered,,, is the maximum disparity value. Sensitivity of the
average error rate with respect to each parameter is shown in
Figure 9.

Compared to standard belief propagation (BP) based global
optimization, ESMP has three differences:

« Global optimization optimizes a global energy function.
ESMP instead aggregates messages coming from a pre-
defined bounded support like other local aggregation
algorithms.

ESMP aggregates information using an exponential step
size, while the standard BP always uses step size 1.
Messages in ESMP are isotropic, independent of the
direction where the message is sent to, thus reducing
the memory tol/4 of what's needed in the standard
BP. The huge message storage requirement (about 1GB
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- -A--iter3 - -« -iter4 —e—iter5 —a—iter6 - -a- -iter7 - < -iter8 —o—iter9 —a—iter 10

o « aggr _H (horizontal aggregation in equation (5));
o aggr _V (vertical aggregation in equation (6));
o sel ect _disparity (choose the best disparity in
equation (7));
o nedian_filter (post-processing).
In eachkernel, the same computation is done on every pixel.
base Naturally, the image is segmented intg@ad of blocks, each
PU— 3 a s p . 5 s 10 corresponding to one thread block. The block digex b, is
Optimal base 310 260 260 300 180 280 180 250 adjustable, but it must be a multiple of 32 to be divided into
Avg. %badpixels 1206 964 856 7.86 7.71 742 7.37 752 multiple warps. Block width b,, should be a multiple of 16
to allow coalesced memory access pattern. In our baseline,
Fig. 8. Error rate of ESMP for varying and iteration numbers. block size is fixed to bel x 32. After each aggregation,
the aggregation cost is copied into texture memory to save
2 management of out-of-boundary addressing.
75 157 10 For ESAW at iteration 9 on Teddy dataset, the baseline
74 \W/ 10 Maeyersssereerors . \ implementation takes about 99.9ms. The time spent on each
73 ! 5 L 7 [ ——— kernel function, memory copy to or from the host CPU, and
19 24 9 3% 3% 8 13 18 23 28 7 Y 7.3 4 5  memorycopytime onthe GPU device are illustrated in Figure
20 : %0 12 “ESAW baseline”. About 35% of the time is spent on
memory copy on the GPU device, and 61% of the time is

15 \______,,.‘ l spent on horizontal/vertical iterative aggregation.
10 10 [
Reaas SUUUUUUUOS g

o

3

Average error rate (%)

76 20 12

5 — 5 e B. Optimization techniques
0 0.5 1 15 2 0.5 1 15 2 25
1677 10°A Texture vs. global memory. Both texture memory and
global memory can be used for storing the costs. We simply
Fig. 9. Sensitivity analysis of ESMP parameters. substitute texture memory with global memory without any

optimization on memory access pattern. The overall pracgss

] . o time increases to 113.9ms (Figure 12 “ESAW global mem-
for 640 x 480 with 200 disparities in the standard Bp)ory"). The memory copy time on the GPU is significantly

presents great challenge for embedded systems and pedyced, butaggr H kernel is slowed down by about 4
cessors exhibiting memory bandwidth limitations. Oth&fmes. The reason is that 75% of load instructions are

solutions include compression techniques [25] and seargh_coalesced. It is worth noticing thaernel aggr _V is

space reduction [18]. However, those solutions eithgheq up by1.59x. This is because memory access pattern
require an additional coding/decoding process, or makifgr agqr V is naturally coalesced. For the same coalesced

data structure less regular and parallelization on multhemory transactions, global memory is usually faster than
core platforms more difficult. ESMP, on the other hanggyiyre memory.

keeps the highly parallel data structure. Coalescing memory accesse$o further improve the per-

formance, we organize global memory accesses into coaesce
IV. MAPPING ALGORITHMS TO THEGPU transactions. The reason for the un-coalesced loagiggn _H

On a high level, ESAW and ESMP are highly data parallés that the offset value in equation (4) may not be a multiple
algorithms suitable to be implemented on a GPU architecturd 16. This will violate the starting address alignment riegju
However, there are still various choices to be made in codeent in the coalesced access pattern. Figure 10 illusttiages
optimization to achieve the best performance. Followingsgu case whens = 3. Each thread needs to read 3 pixels at
tions are what we found most related to the performance, Firsc — 3,y), (z,y), (z + 3,y). Though 16 pixels afx,y) can
which kind of off-chip memory should be used for storing thbe accessed in the coalesced pattern, the left and rigtetoffs
costs after each aggregation pass? Second, how to orgapixels cannot be loaded in a coalesced way.
off-chip memaory accesses to improve the bandwidth utitirat
efficiency? Third, whats the optimal thread block size? Hgur
where the intermediate results should be stored and when to
transfer data to off-chip memory? We start from a straight
forward implementation of ESAW, then gradually optimize th
code by answering the above questions.

16 pixels (half warp)

I left offset by 3 pixels

right offset by 3 pixels ]

A. Basdline implementation Fig. 10. An example of un-aligned memory access pattern iizdwtal
. . aggregation, wher = 3.
In ESAW, computatiorkernels include:

« rgb2grey (compute luminance from a color image);  The solution for coalescing memory accesses is to use the
« i nit_cost (initialize matching cost in equation (3)); on-chip shared memory, as illustrated in Figure 11. Chunks
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120

of pixels are first read from global memory into the on-chip

. W median filter
shared memory in a coalesced way, and then threads load datae | I O select_disparity
from the shared memory for computation. Accessing data in w0 | W init_cost
the shared memory does not require address alignment and;is B rgb2grey
as fast as registers. Coalescing memory accesses redti:cesrf—,th60 I W aggr V
processing time to 53.5ms (Figure 12 “ESAW coalesced”). £ , | = aggr H

O memcpy(on GPU)
on-chip shared memory 20 ¢ 8 memepy(CPU)
B cost2msg

}'\ 0 [
ESAW ESAW ESAW ESAW | ESMP  ESMP
baseline global coalesced tune baseline re-

global memory C(p.d) \ memory block organized
T
/

size
d=0
d=1

- bh
. 32l p 132 Fig. 12. Profile of execution time of different implementats on Teddy

deDIL—1 dataset, at iteration 9. (Best view in color)

Fig. 11. lllustration of bringing data from the off-chip meny to the on- Slightly increases the complexity of the aggregatiennel,
chip shared memory. Every block of sizg x by, brings pixels inside this but saves half of the global memory accessesadst 2nsg.
block, and extends 32 pixels to the left and right. We rename the reorganizmnds asaggr _H+, aggr _V+
) . ) S andcost 2nsg- . With this techniquekernel execution time
Tuning thread block size. Tuning block size involves for cost 2msg is sped up by aboux. The total process-
intricate trade-offs among various factors. Total number g time reduces to 65.2 ms for ESMP (Figure 12 “ESMP
bytes loaded from the global memory in one horizontal pagsorganized”).
1S In Table I, we summarize the arithmetic operation count
(9+ (1 +64/by)4DL)hw and bandwidth used for the most time-consumikes-
. . . . nels: aggr _H, aggr _V in “ESAW tune block size”, and
where h, w are image height and widtlt, is the number of aggr _Ht, aggr V4, cost 2msg- in “ESMP reorganized”.

g:c?_réiri'tymlg\é}e;?' :scég(;;esaséz% ir?::?gi;s\fh\ggﬁa hggsreraesdeuffe Clearly the performance is memory bound. Figure 12 shows
P Y ' y the time spent on eackernel in the above implementations

occupancy because eacthread block needs more resources. ; . .
. . on Teddy image dataset at iteration 9.

Low occupancy may lead to low instruction throughput. We

search for the best block size configuration that gives the TABLE I

best performance. With tuning, computation time reduces to COMPUTATIONAL AND COMMUNICATIONAL COST FOR THE MOST

43.4ms (Figure 12 “ESAW tune block sizeggr H and TIME-CONSUMING KERNELS

aggr _V count for about 92% of the total processing time.

. L. K arithmetic off-chip off-chip opls BW

So far, we have discussed about optimization for ESAW. operations read(B) write(B)  (Gflop/s)  (GBIs)
Next we will discuss implementation of ESMP. aggr _H (33 4+ 50hw (9 4+ 60)hw  4thw  19.4 345
Reorganizing data accessesThe most natural way of ggg:—\l_/H Eggig%g Egié%})l’;w w227 039
extending ESAW to ESMP is to add one méeenel function  aggr v+ (33+80)hw  (9+120)hw  4¢hw 339 62.8
cost 2nsg that maps the costs to messages using equatiorf§st2mg-  3thw Athw Alhw 216 577

(18)—(21). A straight-forward implementation fopsSt 2nW8Qg 1, w are image height and widtf. is the total number of disparity levels.
kernel takes 90.5mscost 2nsg contains a forward pass
(equation (18)—(19)) and a backward pass (equation (20)—

Figure 13 shows processing time of our final version
(21)). We found that performance farost 2nsg kernel o P i
is 22.2 Gflop/s, and bandwidth utilized is 59.3GB/s. The >/ Wne block size” and "ESMP reorganized” for the four

; Benchmark datasets, for iteration number 3 to 10.
cost 2nsg kernel is memory bound.

It is not practical to use the on-chip shared memory to ESAW ESMP
alleviate off-chip memory accesses, because each threal$ ne€ ® &

4¢ bytes space to store cost values. This means each 60 60 —+—tsukuba
—&— \enus

40__3§m§g_/p;/‘izef'/i_q_/i___ Ol 33ms ot ____ oo 1] s tedy

20 .- 20 ././-/'/././‘A —o—cones

needs 8k bytes on-chip memory whén= 64, so at most
2 warps can run concurrently on one SM, leading to a

proeéssing time

o s T PEDINEDSS S o o
extremely lowoccupancy of 0.08. Also for stereo requiring & | *==—~——~—7" | | - B 1
large number of disparity levels, this technique is notadoial. teration teration

We propose a more practical solution. At the end of each

aggregation, costs are written back to the global memog’* aﬂg. 13. Execution time of “ESAW tune block size” and “ESMPmganized”
then they are read from the global memory at the beginnigg four datasets, for 3 to 10 iterations. Red dashed line §33Mmows where
of cost 2nsg kernel. This motivates us to integrate the for+eal-time performance can be achieved.

ward pass ot ost 2nsg with the aggregatiokernel, which
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—— ESAW —8—ESMP —A— RtAW =O— RtAW+MP == AW
V. EXPERIMENTAL RESULTS
15

17 x 17

In this section, we compare both accuracy and system
throughput with existing stereo systems. Our implemenitati
uses all optimization techniques discussed in Section hé T
accuracy is measured by the average percent of bad pixels
for non-occluded, all, and discontinuous areas on all four
benchmark datasets. The throughput is reported as average

13

65 X 65 33-x33

average err. rate
-
R
I

97 x 97

ESAW iter3- 10

MDS on Teddy and Cones dataset (MDS for Tsukuba and 7 ‘ rEeMP e 10
Venus is bit lower due to the higher overhead for small image ¢ ° 8 10 12 1
SiZE). op/(pixel-DL) (in log2 scale)

Comparison to RtAW[5] and AW[23]. Figure 14 shows

trade-off between the average error rate and algorithm coff: 14. Accuracy-complexity trade-off of ESAW, ESMP, RIARIAW+MP,
and AW. z-axis shows arithmetic operation count per pixel per dispével.

plexity in !ESAW, RtAW[S] and .original window based  _ayis shows the average error rate. Parameter settinggateel in text.
AW[23]. It is worth noticing that in RtAW and AW after

fixing 7., v, andr, the window size decides both algorithm < square window[5] o shiftable window[5] © oriented window[5]

complexity and accuracy. However in ESAW after fixing v, * adaptive window[5]  x boundary guided[5] ~x adaptive weight(5]
andr, the accuracy depends on iteration numbeand base + HBP[15] 4 DP[11] « WeaklyTex[13]
b. The algorithm complexity depends d@h. It can be seen 30
in Figure 3 that the optimal base is not the one having tt § 25 | ¢
largest impact range or the effective window size, meanir ® y | . O *
in ESAW the effective window size itself cannot decide th%ﬁ 15 S * % e s
accuracy. Therefore, a fair comparison is to compare tiwg ,, | ESAWiters=10 *%e2, +
accuracy complexity trade-off. 5 5] ESMP hera~10 *
In Figure 14, parameters for ESAW are the same as o

Figure 3.7.,7, andr are the same for ESAW and RtAW. For 0 : 2 3 4 5 6 7 8
RtAW, we show results of varying window size {17, 33, 65,
97}. For AW, we use the code provided online[24], and sho

results of varying window size ifi17, 33}. Program is aborted § ,, | o

due to lack of memory on a 4G RAM machine for window sizi ® 1 | o 5 o,

65 and 97. Algorithm complexity is estimated by arithmeti‘§ 8 <

operations(ops) per pixel per disparity level. For ESAWsit i § 6 - o X

about2T - 5, because 5 ops are needed to compute Eq. (5) 5 #1 =AW T s + X
(6). For RtAW it is abouR-(2W,—1) (Wj is the window size), & 2 ESMP iter3~10

becaus@lV, —1 ops are needed to compute horizontal/vertic: 0 ; > 3 . s A ; o
aggregation. For AW it is aboui)ﬁ/[/s2 —1 to compute window- processing time per disparity evaluation in log, scale (ns)
based aggregated error, according to Eq. (7) in [23]. Gtearl
complexity of ESAW is the lowest among three algorithms g, 15.
comparable accuracy. We also implement message aggmegatio
for RtAW. Results of ESMP and RtAW+MP are also shown.
Parameter setting for ESMP is the same as in Figure.8. and it is much slower than ESMP. At comparable accuracy,
Yp, T, A andn are the same for ESMP and RtAW+MP. Fokhe proposed systems can achieve much higher throughput
both ESAW and RtAW, we see message aggregation impro@snpared to existing stereo systems. We also show C code im-
accuracy at the cost of higher complexity compared to dirgglementation result of ESAW for reference on an off-thelishe
cost aggregation. Core 2 Duo desktop CPU (Intel E6750 2.66GHz) with 2GB
Comparison to other real-time stereo systemsFigure memory. Please note this result is based on single-threaded
15 plots error rates for non-occluded and discontinuouasar&calar code without full optimizations, which probably isch
versus the normalized processing timelag, scale (ns per slower than the best code (fully optimized, using multiple
disparity evaluation, which is the reciprocal of MDS), feat- threads and SSE vector instructions) possible.
time stereo systems on the GPU. The proposed ESAW andComparison of implementation efficiency.lt is important
ESMP suggest a number of Pareto-optimal configurationstim note that some previous works are not implemented on ex-
the accuracy-speed trade-off space. actly the same platform. For a fair comparison across differ
Table IV shows quantitative comparison results using foptatforms, we made our best effort to compare implementatio
benchmark datasets. Parameter settings are listed in Mableefficiency with RtAW (adaptive weigh83 x 33 in [5]) and
Disparity maps are shown in Figure 16. In terms of accuradyBP ( [21]), as shown in Table V. The estimation of memory
ESMP at iteration 9 outperforms all other real-time or neaccess is a lower bound, based on the assumption that in each
real-time stereo systems on GPU except for WeaklyTex in [223]ass cost values are at least read and write once. Compared to
WeaklyTex incorporates color segmentation and plane dittinESAW, RtAW achieves comparable computational efficiency

Error rate versus processing time for real-timeesi®n the GPU.
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TABLE IV
ACCURACY-SPEED COMPARISON OF REATIME OR NEAR REAL-TIME STEREO SYSTEMS THE DATASET AND ERROR RATE ARE THE SAME AS
MIDDLEBURY ONLINE EVALUATION STEREO SYSTEM15].

Tsukuba Venus Teddy Cones Err MDS
vis all disc  vis all disc vis all disc vis all disc
GPU  local ESMP(iter 8) 14 19 71 0.4 1.0 27 8.6 152 195 56125 132 742 1444
ESAW(iter 9) 19 25 97 1.0 1.7 69 8.5 142 187 6.6 127 1482 194.8
ESAW(iter 5) 14 24 71 1.6 26 129 94 16.0 194 8.6 15.6 9179.6 307.2
RtAW([5]) 23 36 112 36 46 198 109 188 232 59 14.3 813.11.0 124.1
RealTime([20]) 9.7 15.7 117.0
global WeaklyTex([22]) 1.0 1.8 53 0.2 05 17 6.7 121 147.2 4 107 106 538 9.4
HBP([21]) 15 34 79 0.8 1.9 9.0 8.7 13.2 172 46 11.6 1247 7.17.0
DP([17]) 21 42 106 1.9 30 203 7.2 144 176 6.4 13.7 16.58 9 52.8
ORDP([4]) 14 7.4 2.4 135 20.0
CPU  local ESAW(iter 9) 19 25 97 1.0 1.7 6.9 8.5 142 187 6.612.7 144 8.2 2.3
ESAW(iter 5) 14 24 71 1.6 26 129 94 16.0 194 8.6 15.6 9179.6 4.2
aggregate([11]) 3.0 44 132 35 46 255 107 175 234 49271113 112 189
Integral([13]) 2.4 122 1.2 13.4 <1
global  BP([2]) 19 38 101 12 22 156 231 309 338 20.6.62729.0 16.6 1.8
RealTimeDP([3]) 2.9 156 6.4 25.3 100.0
AW([23]) 14 19 6.9 0.7 12 6.1 7.9 13.3 186 4.0 9.8 8.3 6.7< 0.1

TABLE Il ESAW iteration 5

PARAMETER SETTINGS INESAW AND ESMP.
ESAW iter5 7. =17, 7p =36, 7T =12, b=2.60 :
iter 9 4o =17, 4p =36, 7 =12, b=1.90 i
ESMP iter8 ~.=18, 7 =29, 7 =17, A=0.15, c =1, a

n = 0.0375d.,, b= 2.80 ESAW iteration 9

(op/s). We believe this is due to the strong data locality i ;
the RtAW algorithm. Another point worth noticing is that the .

operation count of ESAW at iteration 4 is only ab&ot of ESMP iteration 8

RtAW, but they generate disparity maps of the same quali
TABLE V
COMPUTATIONAL AND COMMUNICATIONAL EFFICIENCY COMPARISON. i

op/s BW used # of ops memory
(Gflop/s)  (GBIs) (G) accesses(B)
ESMP iter5  28.0 50.5 1.00 1.80 Fig. 16. Disparity map results.
ESAW iter4 20.9 48.1 0.39 0.90
RtAW 20.3 2.1 1.30 0.14t
HBP 4.3 0.51 2.55 0.641

code efficiency. Such methodologies not only deliver higher
Note: ESMP and ESAW are run on GTX 8800, with peak performafcgs0 Gflop/s : P, f
and BW 86.4 GB/s; RtAW[5] is run on ATl Radeon X800, with peadrformance of per-for-ma.nce-, but also prOVIde InSIthS into how far theem_)trr
200 Gflop/s and BW 35.8 GB/s; HBP [21] is run on Geforce 7900 GWikh peak optimization is from the peak and how much headroom is left
performance of 255 Gflop/s and BW 51.2 GBfgstimation is a lower-bound. for further optimization Experiment shows improved Paret
efficiency compared to existing real-time stereo systems.
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