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High Performance Stereo Vision Designed for
Massively Data Parallel Platforms

Wei Yu, Tsuhan Chen,Fellow, IEEE, Franz Franchetti, and James C. Hoe

Abstract—Real-time stereo vision is attractive in many ap-
plications like robot navigation and 3D scene reconstruction.
Data parallel platforms, e.g. GPU, is often used for real-time
stereo, because most stereo algorithms involve a large portion of
data parallel computations. In this paper, we propose a stereo
system on GPU which pushes the Pareto-efficiency frontline in
the accuracy and speed trade-off space. Our system is based
on hardware-aware algorithm design approach. The system
consists of new algorithms and code optimization techniques.
We emphasize on keeping the highly data parallel structure
in the algorithm design process such that the algorithms can
be effectively mapped to massively data parallel platforms. We
propose two stereo algorithms: namely, exponential step size
adaptive weight (ESAW), and exponential step size message
propagation (ESMP). ESAW reduces computational complexity
without sacrificing disparity accuracy. ESMP is an extension
of ESAW, which incorporates the smoothness term to better
model non-frontal planes. ESMP offers additional choice inthe
accuracy and speed trade-off space. We adopt code optimization
methodologies from the performance tuning community, and
apply them to this specific application. Such approach gives
higher performance than optimizing the code in an ‘ad hoc’
manner, and helps understanding the code efficiency. Experiment
results demonstrate a speed-up factor of 2.7 to 8.5 over state-of-
the-art stereo systems at comparable disparity accuracy.

Index Terms—stereo, real-time, multi-core, data parallel, GPU,
code optimization.

I. I NTRODUCTION

T HE goal of stereo vision is to reconstruct a disparity
map (reciprocal of depth) from two views. Both accuracy

and speed are important metrics in designing real-time stereo
systems. Existing stereo systems usually performs well in one
aspect but not good in the other, because they focus on either
improving accuracy or code optimization for an existing algo-
rithm. We take a different approach by designing algorithms
in aware of hardware features. Data parallel architecturesare
widely used for real-time stereo, because for most stereo
algorithms a large portion of the computing time is spent
on data parallel processing. The hardware platform we use is
GPU (Graphics Processing Unit), an instance of massively data
parallel architectures. Our goal is to jointly optimize accuracy
speed trade-off by designing high accuracy stereo algorithms
that can be effectively mapped to such platform.

Stereo accuracy can be evaluated by error rate, which
is the average percent of bad pixels (the same as the last
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column “average percent of bad pixels” in Middlebury stereo
evaluation online system [15]) of all four benchmark datasets
(Tsukuba, Venus, Teddy, and Cones). Speed is measured by
the system throughput, i.e. millions of disparity per second
(MDS).

In terms of accuracy, state-of-the-art stereo algorithms can
be categorized into 3 classes: very good quality (error rate
below 7.0), good quality (error rate in between 7.0 and 11.0),
and not good quality (error rate above 11.0). Stereo algorithms
producing very good disparity quality usually involve complex
computations for global optimization, segmentation, plane
fitting and occlusion handling, etc. To our best knowledge,
none of the algorithms in the first class (very good quality)
have been implemented in a real-time system yet. The only
near real-time solution we know of is proposed by Yang, Q.,
et al. in [22], achieving error rate of 5.8 at system throughput
of 9.4 MDS. At this throughput, it takes 1.3sec to process a
stereo image pair of size384 × 512 and 60 disparity levels.

A number of real-time systems for algorithms in the second
class (good quality) have been proposed [5], [21], [17]. Allof
them have been implemented on graphics cards. The fastest
among them is the system proposed by Gong et al. [5],
achieving error rate of 11.0 at system throughput of 124 MDS.
At this throughput, it takes 96ms to process a stereo image
pair of size384 × 512 and 60 disparity levels. Therefore, to
improve system throughput at good disparity accuracy remains
a challenging problem.

Contribution. The main contributions in this paper is a
stereo system built on hardware-aware software design con-
cept. We keep the highly data parallel structure in algorithm
design, such that the algorithms can be efficiently mapped to
a GPU platform. We propose two algorithms and related code
optimization techniques.

• The two algorithms are exponential step size adaptive
weight (ESAW) and exponential step size message prop-
agation (ESMP). ESAW allows cost information from
distant pixels to propagate to the center pixel within
a few iterations. ESMP is an extension of ESAW by
incorporating the smoothness term commonly used in
belief propagation for global stereo. ESMP can improve
the disparity accuracy at the cost of lower throughput.

• We discuss various choices in the code optimization
process and analyze trade-offs in their impact on perfor-
mance. Such methodologies are widely used in the perfor-
mance tuning community, but rarely found in the vision
literature. They usually deliver much higher performance
code than code optimized in an ‘ad hoc’ manner. Also,
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we analyze the performance bottleneck and understand
how much fraction of the theoretical peak is achieved.

Organization. In Section II we present the necessary back-
ground and related work. First, we explain hardware platform
features and code optimization guidelines. Then we discuss
existing real-time or near real-time stereo systems. In Section
III, we introduce two stereo algorithms and analyze their
complexity and accuracy. In Section IV, we present code
optimization techniques to efficiently map both algorithmsto
the hardware. Section V presents experiment results and a
comparison with existing systems. Finally, we offer conclu-
sions in Section VI.

II. BACKGROUND AND RELATED WORK

We discuss background of the hardware platform and basic
optimization guidelines. We also review existing real-time
stereo systems.

A. Hardware platform

Stereo vision demonstrates intensive fine-grained data par-
allelism, which can take advantage of the massively data
parallel architectures. GPU is an instance of such data parallel
platforms. The GPU we used is NVIDIA GeForce GTX
8800, with CUDA (Computer Unified Device Architecture)
programming interface.

GPU architecture features.The GTX 8800 is a hierarchi-
cal architecture consisting of a total of 128 cores organized
into 16 stream multi-processors (SM), each SM containing 8
stream processors (SP), or cores. Each SP runs at 1.35GHz,
and has one 32-bit single-precision floating point multiply-add
arithmetic unit. Fully pipelined arithmetic units yield a total of
1.35GHz×16SM×(8×2)flop/SM= 345.6Gflop/s theoretical
peak performance.

The memory system of the GTX 8800 comprises 768MB
off-chip global memory, 64kB on-chip cache for texture mem-
ory, 16kB on-chip cache for constant memory per SM, 16kB
shared memory per SM, 8k 32-bit registers and local memory
for register spilling purpose. Off-chip memory access exhibits
very long latency (200–300 cycles if L1 hit and 400-600 cycles
if L1 miss); latency for on-chip texture cache is about 100
cycles; and accessing other on-chip memory is very fast (1–
2 cycles). Though the GTX 8800 features a high off-chip
bandwidth of 86.4GB/s, it is still easy to saturate the memory
bandwidth given the high peak computing power.

CUDA GPU Programming model. The GTX 8800 sup-
ports single program multiple data (SPMD) programming
model. The computation task is coded intokernel functions.
Eachkernel is executed by multiple threads concurrently on
different data. Eachkernel creates a singlegrid that consists
of multiple thread blocks. Every thread block is assigned to
execute on one SM. Eachthread block is further partitioned
into warps of 32 threads. SM can support zero-overhead
scheduling to switch betweenwarps to hide long latency
operations like off-chip memory access. The total number
of concurrentwarps reflects theoccupancy of SM, which is
determined by the physical resource limitations on chip. For

more details of GPU programming, readers are referred to the
NVIDIA GPU Programming Guide or course materials [7].

Optimization on GPU. We summarize five guidelines to
improve implementation efficiency on GPU, which will be
used in Section IV.

• G1 Reducing the arithmetic operation count. This is an
algorithm level optimization. Reducing operation count
may introduce side effects like breaking down regular
data structure if not used properly.

• G2 Reducing off-chip memory accesses. This can be
achieved by improving data reuse in on-chip memory. A
common strategy is “blocking”: to organize the computa-
tion and data structure to better explore the data locality.

• G3 Choosing appropriate memory types to optimally
balance their pros and cons.

• G4 Organizing global memory accesses in halfwarps in
a coalesced manner when possible.

• G5 Choosing optimal thread block size to balance im-
pacts of occupancy and register utilization efficiency.
Higheroccupancy can better hide instruction latency, but
it may reversely affect the overall performance if leading
to worse utilization of register resources (e.g. causing a
large number of register spills).

The first two guidelinesG1 andG2 are related to first order
analysis to identify whether the program is compute bound or
memory bound. The theoretical upper bound for computation
and memory access indicates

#of arithmetic ops
processing time

≤ 345.6Gflop/s (1)

#of memory access (Bytes)
processing time

≤ 86.4GB/s (2)

G3 addresses choosing the right type of memory for specific
applications. The GTX 8800 offers various types of memory
suited for different situations [7].G4 is important for im-
proving memory bandwidth utilization efficiency. The highest
bandwidth can be achieved when the global memory accesses
are organized in a coalesced way, i.e., 16 threads in a half
warp access 16 continuous data elements of 32-, 64- or 128-
bit data types , and the starting address must be aligned.G5
suggests tuning for the optimal thread block size to balance
various factors for the best overall performance.

B. Related Work

Most existing stereo vision algorithms consist of four steps,
as suggested by Scharstein and Szeliski [10]: (1) matching
cost initialization; (2) cost aggregation ; (3) disparity opti-
mization; and (4) disparity refinement. Stereo algorithms can
be roughly classified into local and global approaches. Local
algorithms use Winner-Take-All (WTA) strategy, simply taking
the disparity level that minimizes the aggregation cost. Global
algorithms apply energy minimization techniques to compute
the optimal solution to a global energy function, which usually
incorporates explicit smoothness assumptions. We categorize
existing real-time or near real-time stereo systems into four
major classes: local/global stereo on GPU/CPU.
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TABLE I
SUMMARY OF REAL-TIME OR NEAR REAL-TIME STEREO SYSTEMS(QUANTITATIVE RESULTS ARE GIVEN LATER IN TABLE IV)

GPU local ( [5], [19], [20]) very fast, good accuracy
global ( [21], [22], [17], [4]) slower and better accuracy than local stereo on GPU
proposed ESAW faster than local stereo on GPU at comparable accuracy
proposed ESMP faster than global stereo on GPU at comparableaccuracy

CPU local ( [11], [9], [13]) worse Pareto-efficiency in accuracy-speed trade-off space than local stereo on GPU
global ( [2], [3]) worse Pareto-efficiency in accuracy-speed trade-off space than global stereo on GPU

Local stereo on GPU. Local approaches on a graphics
processing unit (GPU) produce good quality disparity map
at very fast speed. Gong et al. [5] discusses an interesting
accuracy-speed trade-off of six cost aggregation approaches
with WTA optimization under the real-time constraint on an
ATI Radeon X800 graphics card. Their experiments show that
a modified version of the adaptive weight window approach
performs the best in terms of accuracy, running at about
124 MDS on the ATI Radeon X800. The adaptive weight
approach was originally proposed by Yoon and Kweon [23],
which was very expensive in computation. Earlier real-time
local stereo systems on the GPU include multi-resolution
stereo by Yang, R., et al. [19], [20]. Other related work
includes real-time high quality stereo-based view synthesis
systems on GPUs [14], [8].

Global stereo on GPU.Global stereo on the GPU is also
extensively studied. Gong et al. [4] proposed a near real-time
stereo based on ORDP (orthogonal reliability-based dynamic
programming) on the ATI Radeon 9800 XT graphics card,
running at about 20 MDS. Wang, L., et al. [17] proposed a real-
time stereo algorithm on the ATI Radeon XL1800 graphics
card. It integrated the adaptive weight aggregation along the
vertical direction with dynamic programming optimization
along horizontal scanlines. The disparity accuracy is slightly
better than [5]. The system runs at about 52.8 MDS. Yang, Q.,
et al. [21] proposed a near real-time global stereo matching
using hierarchical belief propagation on the NVIDIA Geforce
7900 GTX graphics card. It produces better accuracy than
[17], but runs slower at about 17 MDS. Yang, Q., et al. [22]
proposed a near real-time system on the NVIDIA Geforce
8800 GTX graphics card that incorporates color segmentation
and plane fitting with belief propagation. The accuracy is
further improved compared to [21]. The system runs at about
9.4 MDS. [27] propose an efficient implementation of dynamic
programming approach using a recursive scheme, suitable for
parallel stream computation model. [1] propose a near real-
time implementation of the semi-global matching algorithmin
[6], running at about 9MDS for large image size and disparity
range.

Local stereo on CPU.Several real-time local stereo systems
on a general purpose CPU have been proposed. The Point Grey
commercial stereo package can achieve 205 MDS on a 2.8GHz
Intel PIV PC based on local window matching [9]. Veksler
[13] proposed a fast stereo based on variable windows using
integral images. Tombari et al. [11] presents a segmentation-
based cost aggregation strategy that runs at 18.9 MDS on the
Intel Core Duo 2.14 GHz CPU, achieving the best accuracy
among existing near real-time local approaches on CPU.
However, both accuracy and speed are worse compared to

the real-time local stereo on GPU platforms [5], showing a
certain gap between CPU/GPU processing power for stereo
vision. In addition, Tombari et al. [12] classify the main cost
aggregation approaches proposed in the literature based on
both accuracy and processing speed on the Intel Core Duo 2.14
GHz CPU. Though implementation is not fully optimized, it
gives an interesting overview picture of the trade-off between
accuracy and computational complexity for cost aggregation
methods.

Global stereo on CPU.Fast global stereo systems on a CPU
are not common. Felzenszwalb and Huttenlocher [2] proposed
a near real-time stereo system on the 2GHz Pentium IV based
on loopy belief propagation, running at about 1.8 MDS. They
propose several algorithm level optimization techniques.[21]
also used those techniques in the GPU acceleration. Forstmann
et al. [3] accelerated a dynamic programming based algorithm
using MMX instructions, achieving about 100 MDS on an
AthlonXP 2800+ 2.2G computer.

Summary. Table I gives an overview of the trade-off
of various real-time stereo systems. Quantitative resultsare
given later in Table IV. Generally speaking, stereo algorithms
on CPU platforms can hardly match the Pareto-efficiency
achieved on GPU platforms. Stereo systems based on global
optimization methods like dynamic programming or belief
propagation usually produce more accurate disparity map, at
the cost of lower throughput.

III. PROPOSEDSTEREOALGORITHM

We propose two stereo algorithms: exponential step size
adaptive weight (ESAW) and exponential step size message
propagation (ESMP).

A. Exponential Step Size Adaptive Weight Algorithm

Exponential step size adaptive weight (ESAW) is an ex-
tension of the real-time adaptive weight approach in [5]. The
main advantage of the proposed ESAW is to save arithmetic
computation without degrading parallelism or accuracy. The
algorithm in [5] is a simplification of the adaptive weight
window cost aggregation originally proposed in [23]. We first
briefly summarize the basic adaptive weight aggregation, and
then explain the proposed ESAW.

Algorithm description. In cost aggregation, the matching
cost of a pixel is the aggregated cost of all pixels in a
surrounding support window of the center pixel. The basic
idea of the adaptive weight approach is to adjust the per-pixel
weight based on color dissimilarity and geometric relationship
with the center pixel under consideration. Intuitively, a pixel
is assigned a higher weight if it is closer in color and
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distance to the center pixel. Figure 1 second column illustrates
examples of adaptive pixel weights with respect to the center
pixel. The adaptive weight approach can preserve arbitrarily
shaped depth discontinuities using a fixed window size. It may
perform worse than box filtering for heavy-textured areas like
meadows.

Fig. 1. From left to right: sample window, AW[23], RtAW[5] and ESAW.

Gong et al. [5] propose two simplifications over the basic
adaptive weight to achieve real-time implementation on GPU.
We name it RtAW in the following text. First, only weights
in the reference view are used in cost aggregation. Second,
instead of using a fixed window of sizeN × N , a two pass
approach is employed: the first pass aggregates cost along
horizontal scanline, followed by a pass aggregating cost along
vertical scanline. This reduces the arithmetic complexityfrom
O(N2) to O(N) per pixel.

We propose to use exponential step size in cost aggregation,
which greatly saves the operation count without sacrificing
data parallelism. We first explain the idea of exponential
step size cost aggregation in the 1-D case. It takesO(N)
computations to aggregate the costs of all pixels within
r = bN/2c offset to the center pixel along 1-D scanline using
the direct aggregation method in [5]. Figure 2 (a) shows a
simple example of aggregating pixels within range (-13, 13)
needs computation on 27 pixels. Figure 2 (b) shows another
way of aggregation with much less computation, achieved by
3 iterations. In each iteration, every pixel aggregates thecosts
of three pixels, itself and pixels at−s and +s offset. Offset
s is set to 1, 3, 9 for three iterations. The “impact range” is
defined as the largest pixel offset where the pixel matching
cost is aggregated into the center pixel. After each iteration,
the impact range grows, first from (-1, 1) to (-4, 4), then from
(-4, 4) to (-13, 13). In this way, aggregating the matching costs
of all pixels within range (-13, 13) just needs computation on
3 × 3 = 9 pixels.

Now we generalize the toy example. Assuming that the
impact range after iterationt − 1 is −r(t − 1) to r(t − 1),
then the maximum step sizes(t) at iterationt is

s(t) = 2r(t − 1) + 1

to avoid holes or gaps, which we don’t expect to see because
closer pixels are more correlated. With this step size, the

Iteration 3, step size =9, impact range (-13,13)

impact range (-13,13)

-13 0 13

0 13-13

(a)

(b)

Impact range from 

previous iteration

Iteration 2, step size =3, impact range (-4,4)

-4 0 4

Impact range from 

previous iteration

Iteration 1, step size =1, impact range (-1,1)

10-1

Fig. 2. A 1-D example of cost aggregation: (a) conventional aggregation
used in [5], (b) exponential step size information propagation.

impact range after iterationt becomes−r(t) to r(t), where

r(t) = 3r(t − 1) + 1

With simple recursion, it can be derived that starting from
r(0) = 0, the maximum step size and the impact range are

s(t) = 3t−1 and r(t) = (3t − 1)/2

By using exponential step size, aggregating the costs ofN
pixels needs onlyO(log N) computations.

The idea can easily be extended to the 2-D case, by applying
a vertical pass after a horizontal pass in each iteration. This is
the proposed ESAW cost aggregation scheme. Using ESAW
approach, aggregating the costs ofN × N pixels is reduced
to O(log N) computations per pixel.

The complete ESAW algorithm is summarized as following:

1. Initialize the matching costsat each pixelp at every disparity

C0(p, d) = λmin(IL(px, py) − IR(px − d, py), τ) (3)

2. Iterative cost aggregation
for t = 1 : T

(a) Compute offset:

s = round(bt−1) (4)

(b) Aggregate the costs horizontallyof center pixelp at
(x, y), pl at (x − s, y) andpr at (x + s, y):

C
h(p) =

∑

q∈{pl,p,pr}

w(q, p)C(t−1)(q) (5)

(c) Aggregate the costs verticallyof center pixelp at (x,
y), pu at (x, y − s) andpd at (x, y + s):

C
t(p) =

∑

q∈{pu,p,pd}

w(q, p)Ch(q) (6)

end
3. Choose the best disparity

d = arg min
d

C
t(p) (7)

4. Post-processingdisparity map using3 × 3 median filter.
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I(px, py) is the grayscale luminance of pixelp, by elimi-
nating the hue and saturation.C

t(p) is a vector denoting all
Ct(p, d), which is the aggregated cost of pixelp after iteration
t. C

h(p) is the intermediate horizontally aggregated cost.w
is the normalized weight computed as in [23].
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Avg. % bad pixels 13.34 10.81 9.56 9.04 8.65 8.47 8.22 8.28
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Fig. 3. Error rate of ESAW for varyingb and iteration numbers.

Algorithm analysis. Figure 3 shows the reconstruction
accuracy of the ESAW algorithm, for varying number of
iterations (3 to 10) and baseb (1.5 to 3). The average error
rate is average percent of bad pixels (last column in Middle-
bury stereo evaluation online system) of all four benchmark
datasets. The other parameters are empirically chosen

γc = 17, γp = 36, τ = 12.

γc, γp are parameters used for computing the adaptive weights
as in [23]. Since the computing time grows linearly with the
number of iterations, we choose an optimal baseb giving the
best accuracy for each iteration number, as summarized in
Figure 3. Sensitivity of the average error rate with respectto
each parameter is shown in Figure 4.

8.2

8.3

8.4

26 31 36 41 46
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20

2 7 12 17 22

Fig. 4. Sensitivity analysis of ESAW parameters.

It is observed that the accuracy improves with the number
of iterations, though improvement gets very marginal after
iteration 7.

Our aggregation scheme does not produce exactly the same
result as [5] or [23]. But all three approaches have one thing
in common: in general, they tend to assign higher weights to
closer pixels. Figure 1 shows the weights for three cases: 1)
window has constant color; 2) window has sharp color change;
3) a real window from Tsukuba image. In all three approaches,
pixels assigned high weights are close to the center in termsof
both color and geometric distance. That’s why they generate
disparity maps of similar quality. Some preliminary results of
ESAW has appeared in [26].

B. Exponential Step Size Message Propagation Algorithm

Motivation. One basic assumption in the local cost aggrega-
tion is that pixels within the window have the same disparity,
i.e. the local window is frontal plane. The optimal solutionis

d = arg min
d

∑

q

w(q, p)C0(q, d) (8)

If we relax the constraint of frontal plane to allow small dis-
parity variation within the window, the optimization problem
can be formulated as

dp = arg min
dp

∑

q

w(q, p)(C0(q, dq) + V (dp − dq)) (9)

V (x) = min(c|x|, η) (10)

dq(q 6= p) can take arbitrary disparity values.V (x) is exactly
the smoothness term widely used in belief propagation based
stereo [16], [2], penalizing disparity changes fromp to q. The
solution to equation (9) can be computed as:

M(q, d) = min
dq

(C0(q, dq) + V (dq − d)) (11)

dp = argmin
dp

w(q, p)
∑

q

M(q, dp) (12)

If we compare equation (8) and (12), the difference is that
(12) aggregates “message”M(q, d) and (8) aggregates “cost”
C0(q, d). Equation (11) is about how to mapC0(q, d) to
M(q, d), which is exactly the min-sum message computation
in [2]. This mapping has a “smoothing” effect onC0(q, d).
M(q, d) is the lower envelop of cones rooted at each discrete
disparity level and the constant truncation value. A simple
example is illustrated in Figure 5. For more details, readers
are referred to [2].

1 2 3 4

Fig. 5. An illustration of min-sum computation (without truncation). Output
M(q, d) is the lower envelop of four Cones rooted at(d, C0(q, d)). Dashed
blue curve showsC0(q, d), dotted red curve shows the lower envelop.

In Figure 6, we use a toy example to show the difference
between aggregating matching costs and aggregating mes-
sages. Assuming true disparities of pixelpr, p, pl are 1, 2,
3 respectively, and totally there are only three disparity levels.
In Figure 6 (a), we show the matching cost of each pixel at
all 3 disparity levels. The blue line is the summation of costs
of all pixels. In Figure 6 (b), we show the message of each
pixel at all 3 disparity levels. Messages are computed from
matching costs using equation (11). Blue curves in Figure
6 (a) and (b) show the aggregation results. By aggregating
messages instead of matching costs, the blue curve in Figure6
(b) can reach minimum at the true disparity. This is because in
highly textured areas, pixels may have large matching errors
at disparity levels deviating a little from the true disparity.
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left view
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(a)

sumsum

lp p rp

(b)

Fig. 6. A synthesized example showing difference of aggregating matching
costs and aggregating messages. Ground truth disparity of pixel p is 2. (a) blue
curve shows the result of aggregating matching costs forp, where minimum is
reached at disparity 1. (b) blue curve shows the result of aggregating messages
for p, where minimum is reached at true disparity 2. Messages are computed
from matching costs using equation (11). In this example,V (x) = 10|x|.

In this example,pl, pr have large matching costs at disparity
2, resulting in a large aggregation cost ofp at disparity
2. Aggregating messages tend to have a “smoothing” effect
on the matching costs, therefore it is more robust to small
variation in disparity.

Figure 7 shows a more complicated synthesized example.
Assuming that disparity increases from left to right linearly
from 0 to 64 pixels, the right view is synthesized from the
left view and the given disparity map. The second row shows
the disparity results of ESAW and ESMP (parameters are
the same as those in Section V). The disparity of ESMP is
much smoother than the disparity of ESAW. The third row
shows error pixels (whose estimation error> 1 pixel) of two
algorithms. In this case, the error rate for ESAW is2× of the
error rate for ESMP. ESMP demonstrates to be much more
robust than ESAW when true disparity deviates from frontal
plane assumption.

Left view Right view Ground truth disparity

ESMP resultESAW result

error >1 (ESAW) error >1 (ESMP)

Fig. 7. A synthesized example to demonstrate that ESMP produces a more
accurate disparity map than ESAW when true disparity is not afrontal plane.

Algorithm description. As an extension of the ESAW
algorithm, ESMP shares the same steps 1, 3 and 4 of ESAW.
The difference lies in step 2, as shown in the following:

2. Iterative cost aggregation
for t = 1 : T

(a) Compute offset as in equation (4).
(b) Map costs to messages (cost2msg):

M(p, d) = min
d′

(V (d − d′) + C(t−1)(p, d′)) (13)

(c) Aggregate the messages horizontally:

C
h(p) =

∑

q∈{pl,p,pr}

w(q, p)M(q) (14)

(d) Map costs to messages (cost2msg):

M(p, d) = min
d′

(V (d − d′) + C(h)(p, d′)) (15)

(e) Aggregate the messages vertically:

C
t(p) =

∑

q∈{pu,p,pd}

w(q, p)M(q) (16)

end

We use the fast min-sum algorithm[2] to mapC(p, d) to
M(p, d) as following, which can reduce the complexity from
O(`2) to O(`) (` is the total number of disparity levels).

M(p) = C(p) (17)

h = min
d

M(p, d) + η (18)

for d = 1 : 1 : ` − 1

M(p, d) = min(M(p, d − 1) + c,M(p, d)) (19)

end

M(p, ` − 1) = min(M(p, ` − 1), h) (20)

for d = ` − 2 : −1 : 0

M(p, d) = min(M(p, d + 1) + c,M(p, d), h) (21)

end

Algorithm analysis. Figure 8 shows the reconstruction
accuracy of the ESMP algorithm, for varying number of
iterations (3 to 10) and baseb (1.6 to 3.1). The average error
rate is average percent of bad pixels (last column in Middle-
bury stereo evaluation online system) of all four benchmark
datasets. The other parameters are empirically chosen

γc = 18, γp = 29, τ = 17, λ = 0.15, c = 1, η = 0.0375dm,

wheredm is the maximum disparity value. Sensitivity of the
average error rate with respect to each parameter is shown in
Figure 9.

Compared to standard belief propagation (BP) based global
optimization, ESMP has three differences:

• Global optimization optimizes a global energy function.
ESMP instead aggregates messages coming from a pre-
defined bounded support like other local aggregation
algorithms.

• ESMP aggregates information using an exponential step
size, while the standard BP always uses step size 1.

• Messages in ESMP are isotropic, independent of the
direction where the message is sent to, thus reducing
the memory to1/4 of what’s needed in the standard
BP. The huge message storage requirement (about 1GB
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# of iterations 3 4 5 6 7 8 9 10

Optimal base 3.10 2.60 2.60 3.00 1.80 2.80 1.80 2.50

Avg. % bad pixels 12.06 9.64 8.56 7.86 7.71 7.42 7.37 7.52
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Fig. 8. Error rate of ESMP for varyingb and iteration numbers.
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Fig. 9. Sensitivity analysis of ESMP parameters.

for 640 × 480 with 200 disparities in the standard BP)
presents great challenge for embedded systems and pro-
cessors exhibiting memory bandwidth limitations. Other
solutions include compression techniques [25] and search
space reduction [18]. However, those solutions either
require an additional coding/decoding process, or making
data structure less regular and parallelization on multi-
core platforms more difficult. ESMP, on the other hand,
keeps the highly parallel data structure.

IV. M APPING ALGORITHMS TO THEGPU

On a high level, ESAW and ESMP are highly data parallel
algorithms suitable to be implemented on a GPU architecture.
However, there are still various choices to be made in code
optimization to achieve the best performance. Following ques-
tions are what we found most related to the performance. First,
which kind of off-chip memory should be used for storing the
costs after each aggregation pass? Second, how to organize
off-chip memory accesses to improve the bandwidth utilization
efficiency? Third, whats the optimal thread block size? Fourth,
where the intermediate results should be stored and when to
transfer data to off-chip memory? We start from a straight
forward implementation of ESAW, then gradually optimize the
code by answering the above questions.

A. Baseline implementation

In ESAW, computationkernels include:
• rgb2grey (compute luminance from a color image);
• init_cost (initialize matching cost in equation (3));

• aggr_H (horizontal aggregation in equation (5));
• aggr_V (vertical aggregation in equation (6));
• select_disparity (choose the best disparity in

equation (7));
• median_filter (post-processing).
In eachkernel, the same computation is done on every pixel.

Naturally, the image is segmented into agrid of blocks, each
corresponding to one thread block. The block sizebh × bw is
adjustable, but it must be a multiple of 32 to be divided into
multiple warps. Block width bw should be a multiple of 16
to allow coalesced memory access pattern. In our baseline,
block size is fixed to be4 × 32. After each aggregation,
the aggregation cost is copied into texture memory to save
management of out-of-boundary addressing.

For ESAW at iteration 9 on Teddy dataset, the baseline
implementation takes about 99.9ms. The time spent on each
kernel function, memory copy to or from the host CPU, and
memory copy time on the GPU device are illustrated in Figure
12 “ESAW baseline”. About 35% of the time is spent on
memory copy on the GPU device, and 61% of the time is
spent on horizontal/vertical iterative aggregation.

B. Optimization techniques

Texture vs. global memory. Both texture memory and
global memory can be used for storing the costs. We simply
substitute texture memory with global memory without any
optimization on memory access pattern. The overall processing
time increases to 113.9ms (Figure 12 “ESAW global mem-
ory”). The memory copy time on the GPU is significantly
reduced, butaggr_H kernel is slowed down by about 4
times. The reason is that 75% of load instructions are
un-coalesced. It is worth noticing thatkernel aggr_V is
sped up by1.59×. This is because memory access pattern
for aggr_V is naturally coalesced. For the same coalesced
memory transactions, global memory is usually faster than
texture memory.

Coalescing memory accesses.To further improve the per-
formance, we organize global memory accesses into coalesced
transactions. The reason for the un-coalesced loads inaggr_H
is that the offset values in equation (4) may not be a multiple
of 16. This will violate the starting address alignment require-
ment in the coalesced access pattern. Figure 10 illustratesthe
case whens = 3. Each thread needs to read 3 pixels at
(x − 3, y), (x, y), (x + 3, y). Though 16 pixels at(x, y) can
be accessed in the coalesced pattern, the left and right offset
pixels cannot be loaded in a coalesced way.

……
16 pixels (half warp)

left offset by 3 pixels

right offset by 3 pixels

Fig. 10. An example of un-aligned memory access pattern in horizontal
aggregation, whens = 3.

The solution for coalescing memory accesses is to use the
on-chip shared memory, as illustrated in Figure 11. Chunks
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of pixels are first read from global memory into the on-chip
shared memory in a coalesced way, and then threads load data
from the shared memory for computation. Accessing data in
the shared memory does not require address alignment and is
as fast as registers. Coalescing memory accesses reduces the
processing time to 53.5ms (Figure 12 “ESAW coalesced”).

global memory

on-chip shared memory

hb

wb 3232

( , )C p d

0d  

1d DL !

1d  

..

.

Fig. 11. Illustration of bringing data from the off-chip memory to the on-
chip shared memory. Every block of sizebh × bw brings pixels inside this
block, and extends 32 pixels to the left and right.

Tuning thread block size. Tuning block size involves
intricate trade-offs among various factors. Total number of
bytes loaded from the global memory in one horizontal pass
is

(9 + (1 + 64/bw)4DL)hw

whereh, w are image height and width,̀ is the number of
disparity levels. So increasing block widthbw helps reduce
off-chip memory accesses. But increasingbw may decrease the
occupancy because eachthread block needs more resources.
Low occupancy may lead to low instruction throughput. We
search for the best block size configuration that gives the
best performance. With tuning, computation time reduces to
43.4ms (Figure 12 “ESAW tune block size”).aggr_H and
aggr_V count for about 92% of the total processing time.

So far, we have discussed about optimization for ESAW.
Next we will discuss implementation of ESMP.

Reorganizing data accesses.The most natural way of
extending ESAW to ESMP is to add one morekernel function
cost2msg that maps the costs to messages using equations
(18)–(21). A straight-forward implementation forcost2msg
kernel takes 90.5ms.cost2msg contains a forward pass
(equation (18)–(19)) and a backward pass (equation (20)–
(21)). We found that performance forcost2msg kernel
is 22.2 Gflop/s, and bandwidth utilized is 59.3GB/s. The
cost2msg kernel is memory bound.

It is not practical to use the on-chip shared memory to
alleviate off-chip memory accesses, because each thread needs
4` bytes space to store cost values. This means eachwarp
needs 8k bytes on-chip memory when` = 64, so at most
2 warps can run concurrently on one SM, leading to an
extremely lowoccupancy of 0.08. Also for stereo requiring
large number of disparity levels, this technique is not scalable.

We propose a more practical solution. At the end of each
aggregation, costs are written back to the global memory, and
then they are read from the global memory at the beginning
of cost2msg kernel. This motivates us to integrate the for-
ward pass ofcost2msg with the aggregationkernel, which

median filter

select_disparity

init_cost

rgb2grey

aggr_V

aggr_H

memcpy(on GPU)

memcpy(CPU)

cost2msg
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Fig. 12. Profile of execution time of different implementations on Teddy
dataset, at iteration 9. (Best view in color)

slightly increases the complexity of the aggregationkernel,
but saves half of the global memory accesses incost2msg.
We rename the reorganizedkernels asaggr_H+, aggr_V+
andcost2msg-. With this technique,kernel execution time
for cost2msg is sped up by about2×. The total process-
ing time reduces to 65.2 ms for ESMP (Figure 12 “ESMP
reorganized”).

In Table II, we summarize the arithmetic operation count
and bandwidth used for the most time-consumingker-
nels: aggr_H, aggr_V in “ESAW tune block size”, and
aggr_H+, aggr_V+, cost2msg- in “ESMP reorganized”.
Clearly the performance is memory bound. Figure 12 shows
the time spent on eachkernel in the above implementations
on Teddy image dataset at iteration 9.

TABLE II
COMPUTATIONAL AND COMMUNICATIONAL COST FOR THE MOST

TIME-CONSUMING KERNELS.

arithmetic off-chip off-chip op/s BW
operations read(B) write(B) (Gflop/s) (GB/s)

aggr_H (33 + 5`)hw (9 + 6`)hw 4`hw 19.4 34.5
aggr_V (33 + 5`)hw (9 + 12`)hw 4`hw 22.7 63.9
aggr_H+ (33 + 8`)hw (9 + 6`)hw 4`hw 28.7 33.4
aggr_V+ (33 + 8`)hw (9 + 12`)hw 4`hw 33.9 62.8
cost2msg- 3`hw 4`hw 4`hw 21.6 57.7

h, w are image height and width.̀ is the total number of disparity levels.

Figure 13 shows processing time of our final version
“ESAW tune block size” and “ESMP reorganized” for the four
benchmark datasets, for iteration number 3 to 10.
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Fig. 13. Execution time of “ESAW tune block size” and “ESMP reorganized”
on four datasets, for 3 to 10 iterations. Red dashed line (33ms) shows where
real-time performance can be achieved.
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V. EXPERIMENTAL RESULTS

In this section, we compare both accuracy and system
throughput with existing stereo systems. Our implementation
uses all optimization techniques discussed in Section IV. The
accuracy is measured by the average percent of bad pixels
for non-occluded, all, and discontinuous areas on all four
benchmark datasets. The throughput is reported as average
MDS on Teddy and Cones dataset (MDS for Tsukuba and
Venus is bit lower due to the higher overhead for small image
size).

Comparison to RtAW[5] and AW[23]. Figure 14 shows
trade-off between the average error rate and algorithm com-
plexity in ESAW, RtAW[5] and original window based
AW[23]. It is worth noticing that in RtAW and AW after
fixing γc, γp and τ , the window size decides both algorithm
complexity and accuracy. However in ESAW after fixingγc, γp

andτ , the accuracy depends on iteration numberT and base
b. The algorithm complexity depends onT . It can be seen
in Figure 3 that the optimal base is not the one having the
largest impact range or the effective window size, meaning
in ESAW the effective window size itself cannot decide the
accuracy. Therefore, a fair comparison is to compare the
accuracy complexity trade-off.

In Figure 14, parameters for ESAW are the same as in
Figure 3.γc, γp andτ are the same for ESAW and RtAW. For
RtAW, we show results of varying window size in{17, 33, 65,
97}. For AW, we use the code provided online[24], and show
results of varying window size in{17, 33}. Program is aborted
due to lack of memory on a 4G RAM machine for window size
65 and 97. Algorithm complexity is estimated by arithmetic
operations(ops) per pixel per disparity level. For ESAW it is
about2T · 5, because 5 ops are needed to compute Eq. (5) or
(6). For RtAW it is about2·(2Ws−1) (Ws is the window size),
because2Ws−1 ops are needed to compute horizontal/vertical
aggregation. For AW it is about5W 2

s −1 to compute window-
based aggregated error, according to Eq. (7) in [23]. Clearly
complexity of ESAW is the lowest among three algorithms at
comparable accuracy. We also implement message aggregation
for RtAW. Results of ESMP and RtAW+MP are also shown.
Parameter setting for ESMP is the same as in Figure 8.γc,
γp, τ , λ and η are the same for ESMP and RtAW+MP. For
both ESAW and RtAW, we see message aggregation improves
accuracy at the cost of higher complexity compared to direct
cost aggregation.

Comparison to other real-time stereo systems.Figure
15 plots error rates for non-occluded and discontinuous areas
versus the normalized processing time inlog2 scale (ns per
disparity evaluation, which is the reciprocal of MDS), for real-
time stereo systems on the GPU. The proposed ESAW and
ESMP suggest a number of Pareto-optimal configurations in
the accuracy-speed trade-off space.

Table IV shows quantitative comparison results using four
benchmark datasets. Parameter settings are listed in TableIII.
Disparity maps are shown in Figure 16. In terms of accuracy,
ESMP at iteration 9 outperforms all other real-time or near
real-time stereo systems on GPU except for WeaklyTex in [22].
WeaklyTex incorporates color segmentation and plane fitting,
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Fig. 14. Accuracy-complexity trade-off of ESAW, ESMP, RtAW, RtAW+MP,
and AW.x-axis shows arithmetic operation count per pixel per disparity level.
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Fig. 15. Error rate versus processing time for real-time stereo on the GPU.

and it is much slower than ESMP. At comparable accuracy,
the proposed systems can achieve much higher throughput
compared to existing stereo systems. We also show C code im-
plementation result of ESAW for reference on an off-the-shelf
Core 2 Duo desktop CPU (Intel E6750 2.66GHz) with 2GB
memory. Please note this result is based on single-threaded
scalar code without full optimizations, which probably is much
slower than the best code (fully optimized, using multiple
threads and SSE vector instructions) possible.

Comparison of implementation efficiency.It is important
to note that some previous works are not implemented on ex-
actly the same platform. For a fair comparison across different
platforms, we made our best effort to compare implementation
efficiency with RtAW (adaptive weight33 × 33 in [5]) and
HBP ( [21]), as shown in Table V. The estimation of memory
access is a lower bound, based on the assumption that in each
pass cost values are at least read and write once. Compared to
ESAW, RtAW achieves comparable computational efficiency
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TABLE IV
ACCURACY-SPEED COMPARISON OF REAL-TIME OR NEAR REAL-TIME STEREO SYSTEMS. THE DATASET AND ERROR RATE ARE THE SAME AS

M IDDLEBURY ONLINE EVALUATION STEREO SYSTEM[15].

Tsukuba Venus Teddy Cones Err MDS

vis all disc vis all disc vis all disc vis all disc

GPU local ESMP(iter 8) 1.4 1.9 7.1 0.4 1.0 2.7 8.6 15.2 19.5 5.612.5 13.2 7.42 144.4
ESAW(iter 9) 1.9 2.5 9.7 1.0 1.7 6.9 8.5 14.2 18.7 6.6 12.7 14.48.2 194.8
ESAW(iter 5) 1.4 2.4 7.1 1.6 2.6 12.9 9.4 16.0 19.4 8.6 15.6 17.9 9.6 307.2
RtAW([5]) 2.3 3.6 11.2 3.6 4.6 19.8 10.9 18.8 23.2 5.9 14.3 13.8 11.0 124.1
RealTime([20]) 9.7 15.7 117.0

global WeaklyTex([22]) 1.0 1.8 5.3 0.2 0.5 1.7 6.7 12.1 14.7 4.2 10.7 10.6 5.8 9.4
HBP([21]) 1.5 3.4 7.9 0.8 1.9 9.0 8.7 13.2 17.2 4.6 11.6 12.4 7.7 17.0
DP([17]) 2.1 4.2 10.6 1.9 3.0 20.3 7.2 14.4 17.6 6.4 13.7 16.5 9.8 52.8
ORDP([4]) 1.4 7.4 2.4 13.5 20.0

CPU local ESAW(iter 9) 1.9 2.5 9.7 1.0 1.7 6.9 8.5 14.2 18.7 6.612.7 14.4 8.2 2.3
ESAW(iter 5) 1.4 2.4 7.1 1.6 2.6 12.9 9.4 16.0 19.4 8.6 15.6 17.9 9.6 4.2
aggregate([11]) 3.0 4.4 13.2 3.5 4.6 25.5 10.7 17.5 23.4 4.9 12.7 11.3 11.2 18.9
Integral([13]) 2.4 12.2 1.2 13.4 < 1

global BP([2]) 1.9 3.8 10.1 1.2 2.2 15.6 23.1 30.9 33.8 20.6 27.6 29.0 16.6 1.8
RealTimeDP([3]) 2.9 15.6 6.4 25.3 100.0
AW([23]) 1.4 1.9 6.9 0.7 1.2 6.1 7.9 13.3 18.6 4.0 9.8 8.3 6.7< 0.1

TABLE III
PARAMETER SETTINGS INESAW AND ESMP.

ESAW iter 5 γc = 17, γp = 36, τ = 12, b = 2.60
iter 9 γc = 17, γp = 36, τ = 12, b = 1.90

ESMP iter 8 γc = 18, γp = 29, τ = 17, λ = 0.15, c = 1,
η = 0.0375dm, b = 2.80

(op/s). We believe this is due to the strong data locality in
the RtAW algorithm. Another point worth noticing is that the
operation count of ESAW at iteration 4 is only about30% of
RtAW, but they generate disparity maps of the same quality.

TABLE V
COMPUTATIONAL AND COMMUNICATIONAL EFFICIENCY COMPARISON.

op/s BW used # of ops memory
(Gflop/s) (GB/s) (G) accesses(B)

ESMP iter5 28.0 50.5 1.00 1.80
ESAW iter4 20.9 48.1 0.39 0.90
RtAW 20.3 2.1† 1.30 0.14†
HBP 4.3 0.5† 2.55 0.64†

Note: ESMP and ESAW are run on GTX 8800, with peak performanceof 350 Gflop/s
and BW 86.4 GB/s; RtAW[5] is run on ATI Radeon X800, with peak performance of
200 Gflop/s and BW 35.8 GB/s; HBP [21] is run on Geforce 7900 GTX, with peak
performance of 255 Gflop/s and BW 51.2 GB/s.†estimation is a lower-bound.

VI. CONCLUSIONS

In this paper, we propose a high performance stereo system
based on hardware-aware software design concept. Our system
consists of two new algorithms: exponential step size adaptive
weight (ESAW) and exponential step size message propagation
(ESMP). ESAW can effectively reduce the operation count
from O(N) to O(log N) per pixel, whereN is the aggregation
window size. ESMP extends ESAW to incorporate the smooth-
ness term, thus can better model non-frontal planes. We also
discuss various choices in code optimization. Instead of doing
optimization in an ‘ad hoc’ manner, we analyze the trade-offs
and bottleneck in the implementation to fully understand the

ESMP iteration 8

ESAW iteration 9

ESAW iteration 5

Fig. 16. Disparity map results.

code efficiency. Such methodologies not only deliver higher
performance, but also provide insights into how far the current
optimization is from the peak and how much headroom is left
for further optimization. Experiment shows improved Pareto-
efficiency compared to existing real-time stereo systems.
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