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ABSTRACT

In this paper we introduce High Assurance SPIRAL to solve the last mile problem for the synthesis of high assurance im-
plementations of controllers for vehicular systems that are executed in today’s and future embedded and high performance
embedded system processors. High Assurance SPIRAL is a scalable methodology to translate a high level specification of
a high assurance controller into a highly resource-efficient, platform-adapted, verified control software implementation for
a given platform in a language like C or C++. High Assurance SPIRAL proves that the implementation is equivalent to the
specification written in the control engineer’s domain language. Our approach scales to problems involving floating-point
calculations and provides highly optimized synthesized code. It is possible to estimate the available headroom to enable
assurance/performance trade-offs under real-time constraints, and enables the synthesis of multiple implementation vari-
ants to make attacks harder. At the core of High Assurance SPIRAL is the Hybrid Control Operator Language (HCOL)
that leverages advanced mathematical constructs expressing the controller specification to provide high quality translation
capabilities. Combined with a verified/certified compiler, High Assurance SPIRAL provides a comprehensive complete
solution to the efficient synthesis of verifiable high assurance controllers. We demonstrate High Assurance SPIRALs ca-
pability by co-synthesizing proofs and implementations for attack detection and sensor spoofing algorithms and deploy the
code as ROS nodes on the Landshark unmanned ground vehicle and on a Synthetic Car in a real-time simulator.
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1. INTRODUCTION

Embedded systems represent a ubiquitous foundation of numerous modern technologies. They are used in large-scale data
collection and monitoring systems for physical infrastructure control, communication devices, medical devices, ground
and aerial vehicles, satellites, and other technologies. Due to design, implementation and functionality conditions and
constraints of embedded devices, such as limited computation power and reliance on networking with other devices, they
are vulnerable to multiple kinds of attacks, such as direct physical manipulation of devices and corruption of software and
device communication.

The research in building high assurance controllers and algorithms that can be verified to meet the required control per-
formance goals is a very active area of work. This activity is sparked by the potential of crippling attacks to critical
cyber-physical systems, as epitomized by the Stuxnet worm in 2010. A critical aspect of this research area is the “last
mile” problem of the synthesis of high assurance controller implementations to be executed on modern and future embed-
ded system processors in vehicular control systems.

In this paper, we describe a scalable approach to translate high assurance cyber-physical system specifications into highly
efficient, platform-adapted, verified control software. Towards this goal, we develop an automatic software generation
system called High Assurance SPIRAL and the domain-specific hybrid control operator language (HCOL). High Assurance
SPIRAL takes a controller specification in a control engineer’s domain language and translates this specification to a
resource-efficient high assurance implementation tuned to a given platform. The system also synthesizes a proof that the
implementation is equivalent to the specification. High Assurance SPIRAL is scalable to large problems involving floating-
point calculations, provides highly optimized synthesized code, and enables the synthesis of multiple implementation
variants to make attacks harder. The system is portable across platforms varying in computational power and architecture.
Combined with a verified/certified compiler, it provides a solution to the “last mile” of controller synthesis.
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2. HIGH ASSURANCE SPIRAL

High Assurance SPIRAL is an enabling technology to integrate the wealth of sensing data available on contemporary
and future vehicles for achieving high assurance control. It generates highly efficient implementations for an important
class of controllers that use physics-based ground truths to detect faults and attacks. The system uses a domain-specific
synthesis approach to high assurance controllers described by a high level specification that scales to realistic problem
sizes and synthesizes highly efficient implementations together with a proof of equivalency between specification and
implementation. Automating the production and verification of such controller implementations enables control engineers
to explore diverse approaches and vary the overhead devoted to fault/attack detection to meet resource and real-time
constraints. High Assurance SPIRAL synthesizes multiple implementation variants and supports the re-synthesis of the
controller when trade-offs change, for instance, due to platform upgrades. The automatic re-synthesis of controllers extends
the usability of embedded systems over their life cycle as they get upgraded to more powerful sensing and computing
platforms to enhance their capabilities.

The performance of the code synthesized by High Assurance SPIRAL is comparable to the best painstakingly hand-
implemented code with the same functionality (in those cases when human-written expert code exists). Furthermore, High
Assurance SPIRAL starts from a clean slate. It builds on the SPIRAL autotuning and program generation system1–5 and
extends it to hybrid control systems and high assurance methodologies. SPIRAL is the only system translating a problem
specification (given in a mathematical domain-specific language, DSL) into highly efficient code across a wide range
of platforms, on par with the best available code. Target platforms range from cell to supercomputers, including GPUs
and FPGAs. SPIRAL uses a domain-specific formal translation framework based on mathematics6–9 that allows the code
generation process to prove symbolical equivalence between the specification and internal representations. It contains
formal knowledge bases for algorithms (hundreds of journal papers worth of signal processing algorithms), computer
architectures, and program generations. SPIRAL’s constructive approach to search through term rewriting, backtracking,
and constraint satisfaction enables autotuning, algorithm space exploration, and architecture/algorithm co-design. For
signal processing applications, SPIRAL has led to industry-grade code generation: SPIRAL-generated functionality is
included in Intel’s performance libraries (IPP and MKL).

Related work. Systems and technologies similar to High Assurance SPIRAL have been proposed before in different
research domains. SAT/SMT based software synthesis systems, such as like Sketch10 and Paraglide11 automatically synthe-
size software according to a specification. However, despite tremendous progress in SAT/SMT solving, these systems are
limited to moderate-sized (if complicated) pieces of code and mainly support integer code. Research in Domain-specific
languages (DSLs) has usually focused on how to design the languages, how to compile them, and how to build host sys-
tems that enable fast development of new DSLs. Performance, low-level code generation, and symbolic verification/proofs
of the generated code are usually not addressed. Autotuning and program generation systems, including FFTW,12 AT-
LAS,13 OSKI,14 FLAME,15 and TCE, explore search spaces and are capable of producing many variants for the same
algorithm, searching for good implementations, often employing domain-specific compilation techniques, but are usually
restricted to linear algebra or signal processing kernels. Algorithmic correctness and empirical code testing is usually part
of these systems, but formal verification or proof generation for the produced code is not addressed. Model Checking,
automated theorem proving and proof verification prove that a model of a system meets its specification and that a formula
is correct in a given formal system. However, the state-of-the-art is not directly applicable to control code that contains
floating-point arithmetic, random processes and data, and does not scale efficiently to large problem sizes. Further, these
systems do not address how to translate the specification into its implementation, that is, how to automatically synthesize
the implementations.

3. CODE SYNTHESIS AND PROOF GENERATION

In this section, we provide a simple example of a dynamic model-based fault/attack detection possible on an autonomous
vehicle to illustrate how classical sensing, control, and dynamics can be represented faithfully and naturally in our HCOL.
We caution the reader that this is a simplified illustrative example only.

Figure 1 shows the high-level flow of code/proof co-synthesis. Higher-level approaches to verify algorithms like model
checking or differential logic provide verified control algorithms and the respective proofs at that level. Signal-processing
or statistical approaches provide tests to establish sensor self-consistency or detect inconsistency. The focus of this paper,
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Figure 1: Code/proof co-synthesis in High Assurance SPIRAL.

formal compilation translates specifications of such checks into provably equivalent floating-point implementations. A
backend compilation stage performs final optimizations before the code is deployed on a robot like the Black-I Robotics
Landshark∗ using a secure operating system like CertiKOS.

3.1 Illustrative Example

First order dynamic model. We assume that the vehicle has two 3-vector sensors: position x = (x, y, z)> and velocity
v(vx, vy, vz)

> in a global coordinate system. These sensor readings are derived from the actual physical sensors through
sensor fusion. In our example we use the redundancy between continuous reading of speed and location sensors to check
a simple first order model (velocity v(t) is the derivative of location x(t), v = ∇x).

We assume that the sensors are read at a fixed sampling interval h. Using the Euler formula we can approximate the
position at time t+ h as function of the position xt at time t and the velocity measurements vt+h at time t+ h. We obtain
xt+h ≈ xt + hvt+1

x ; yt+h and zt+h are computed analogously. Similarly, we obtain the velocity at time t+ h as function
of the position xt at time t and xt+h at time t + h through numerical differentiation: vt+h

x ≈ (xt+h − xt)/h. This is the
first order approximation that we use for the purposes of an illustration here. Higher-order methods can be used to increase
the accuracy and utilize a longer history.

Next we derive a declarative matrix representation of the above formulas. Representing numerical integration and numeri-
cal differentiation using matrices will allow us to define HCOL, which represents the necessary computations in a concise
operator-based formalism (with matrices used to represent linear and bilinear operators). This opens the door to build a
code/proof co-synthesis system using rewriting rules derived from mathematical (operator) identities. We define In as the
n× n identity matrix. [.| . . . |.] denotes horizontal stacking of matrices and ⊕ denotes the direct sum of vectors. Then,

xt+h ≈
[
I3 |h I3

]
(xt ⊕ vt+h) and vt+h ≈ 1/h

[
I3 | − I3

]
(xt+h ⊕ xt).

We now can define a matrix that computes from the state at t and the measurements at t+ h the disagreement between the
first-order model and the measurements. The result is a residue vector rt+h = (rt+h

x , rt+h
y , rt+h

z , rt+h
vx , rt+h

vy , rt+h
vz ) with

rt+h
x = xt+h − (xt + hvt+1

x ) and rt+h
vx ≈ vt+h

x − (xt+h − xt)/h. In block-matrix notation the residue vector becomes

rt+h = R · (xt ⊕ vt ⊕ xt+h ⊕ vt+h) with R =
[
− I3 −h I3 I3 03
1/h I3 03 −1/h I3 I3

]
. (1)

Finally, we compute the L2 norm of the residue vector, et+h = ‖rt+h‖2 = (rt+h)>rt+h. Defining the state at time t as
st = (xt ⊕ vt) we can define the first order error operator

Eh : (st, st+h) 7→ (st ⊕ st+h)>
(
R>R

)
(st ⊕ st+h). (2)

∗http://www.blackirobotics.com/



In this case the error operator can declaratively be represented as a matrix representing a quadratic form (a bilinear operator)
and can be evaluated solely with matrix-vector operations. The error operator (2) enables a consistency check between the
real location and velocity sensor-based estimates and the respective real and estimated velocities. An exception is detected
if the error value crosses a threshold that makes it unlikely for the deviation to be caused by mere noise, but indicates a
fault or attack.

The error residual consistency check that we show here is much simplified but illustrates the basic idea behind the more
general hypothesis-testing driven approach that High Assurance SPIRAL uses for abnormality and attack detection. Note
that in this example we trust the previous data point as soon as it is accepted (no exception is raised). This way there is no
accumulation of discrepancy between measurements and model. The matrix representation of the test statistic (the residual)
above continues to hold in general practical scenarios involving batch or sequentially obtained sensing data, where instead
of considering only a single system snapshot one incorporates longer time-series histories and prior data for more accurate
and reliable failure detection.

High Assurance Fail-Safe Controller Expression in HCOL. Based on the consistency check, we now discuss a high
assurance cruise control system. In normal mode it controls the speed with a proportional-integral-derivative (PID) con-
troller. When receiving a failure/attack signal from the virtual high assurance velocity sensor (i.e., location predicted from
old position and current velocity strongly disagrees with measured current position) the controller switches to failsafe mode
and brings the vehicle to a controlled stop.

We define the current velocity at time t as vt and the set point velocity as v0. The error at time t is the difference between
these velocities, et = v0 − vt. Assuming the controller performed n time steps of length h, a first order discretized PID
control stimulus ut at time point t is computed by

ut = kpe
t + ki

n−1∑
i=0

eih + kd
et − et−h

h
(3)

with the three gain parameters kp, ki, and kd. We define a history vector st = et ⊕
∑n−1

i=0 eih. Then we can compute the
control stimulus ut and update the the history vector as function of new measurement vt and the state from one time step
before (st−h) using the following matrix equation:

(
ut

st

)
=

([
kp Ie |ki I3 |kd/h I3

][I3 . .
I3 . I3
I3 − I3 .

] [
I3 − I3 .
. . I6

])
⊕
[
I3 − I3 .
I3 − I3 I3

]
(v0 ⊕ vt ⊕ st−h). (4)

The failsafe mode of the controller is simply slowing down the car at a constant rate by applying constant brake pressure,
denoted by ut = −c. The failsafe controller illustrates an important point. It introduces switching into the dynamics,
which, in real systems, happens for various reasons and turns the model into a hybrid model. What is important in our
context is that switching is outside the matrix abstraction of linear transformations. Instead, we use an operator abstraction
that naturally extends the matrix abstraction (matrices represent linear or quadratic operators). We define a conditional
operator

CONDc(A,B) : x 7→
{
A(x) c true
B(x) c false

that is a predicated operation akin to the C construct ?:. if condition c (parameterizing the operator) is true, operator A
gets used, otherwise operator B. The result is a conditional operator that permits state and control flow, but in a reasonably
limited form. Using the conditional operator, the residue operator and the PID operator we can formally describe a fail-safe
high assurance cruise control system.

3.2 Co-Generating Proof and Code for a Controller Specification

We continue our example to show how the structured matrix-vector products (that arise as in the previous section) are
translated into source code in a two-step process. In a first step the matrices are decomposed into iterative sums of matrices,
and then we give rules how to translate every construct into a code piece. The result is code and a complete “paper trail” of
rule applications that are mathematical identities and have been used internally to translate the specification into the code,
and thus provide a proof that the specification and the code are equivalent.



Formal code synthesis. Below, we denote the canonical n-dimensional row base vector (all elements zero except the ith
element) with e1×ni = [0, . . . , 0, 1, 0, . . . , 0] ∈ R1×n and the canonical n-dimensional column base vector with en×1 =
(e1×ni )>. The identity matrix In can be decomposed into a sum of n rank-1 matrices:

In →
n−1∑
i=0

eni I1(e
n
i )
> =

n−1∑
i=0

Si Ai Gi (5)

which follows a general gather-compute-scatter pattern where the iterative sum contains a product of three matrices (a
parameterized gather matrix Gi, a computational kernel Ai and a parameterized scatter matrix Si). Note that the math-
ematical identity is written using → which introduces a direction and turns the identity into a rule, because the matrix
expression on the right is a step towards the final synthesized code.

In this representation, the iterative sum is a high-level representation for a loop and gather/scatter operations represent array
accesses while the kernel represents the actual computation. The following example is another optimization rule (again a
matrix identity with “direction” capturing a loop merging optimization):[

n−1∑
i=0

Si Ai Gi |
n−1∑
i=0

Si Bi Gi

]
→

n−1∑
i=0

Si

([
Ai|Bi

][1
1

])
Gi .

Applying such rules recursively expands a specification into a high-level representation of the loop-based program that
implements the specification. The final result is an expression that can be evaluated into a matrix and is equivalent to the
specification but at the same time represents a program. The rule system is implemented in a computer algebra system that
supports symbolic (infinite precision) computation. This allows at any point to compare (sub)expressions to each other
and to specifications in an mathematically exact way and is a core contributor to code/proof co-synthesis. A DSL that
implements the mathematical objects and rules can be modeled after SPIRAL’s SPL and OL, and has the flavor of LISP or
Scheme.

Code generation. The sum-based matrix representation is translated into code using a rule set similar to the one below.

Code
(
y = (AB)x

)
→

{
Decl(t),Code

(
t = Bx

)
,Code

(
y = At

)}
Code

(
y =

(
n−1∑
i=0

Ai

)
x

)
→

{
y := ~0, for(i = 0..n− 1) Code

(
y+ = Aix

)}
Code

(
y = e1×n

i x
)
→ y[0] := x[i]

Code
(
y = en×1

i x
)
→

{
y = ~0, y[i] := x[0]

}
Note that for many cases we can prove that we do not need to initialize the vector y in the for loop and that the accumulate
operation becomes an assignment.

We show as example the code generated for yt+h =
[
I3 |h I3

]
(xt ⊕ vt+h) with h being a code synthesis time parameter.

let(y:=var(TArray(TReal, 3)), xv:=var(TArray(TReal, 6)), h := TReal(1/100),
func([inparam(xv), outparam(y)],

loop(i, [0..3], chain(
assign(nth(y, i), add(nth(xv, i), mul(h, nth(xv, add(i,3)))))))))

This representation is a data structure in the underlying computer algebra system that executes the rule system. The code
objects support symbolic execution, which allows to prove that the program is equivalent to the higher-level representa-
tions and the specification. It also allows us to build an rule-based optimizing compiler that performs standard backend
optimizations like array scalarization, constant folding, and common subexpression elimination.

In a last step the code is unparsed into a restricted dialect of C and passed to a verified/certified compiler. The binary
then can be empirically tested for numerical equivalence to the various levels of symbolic/fully accurate representations,
including the specification. The synthesized code is highly optimized both structurally (loop optimizations) and inside
basic blocks (all the standard compiler optimizations), as the high level intermediate language and the original specifica-
tion enables optimizations due to better information of code semantics. Parallelization, vectorization, tiling, and similar



optimizations become much easier than in a general compiler setting. This also allows us to use a rather unoptimizing
verified compiler like CompCert, because the optimizations have already been done in the synthesizer. Below we show
simple ANSI C code for our example, the 3D Euler step.

void euler(int *Y, double *X, double h) {
double q1, q2, q3, q4, q5, q6;
q1 = X[0];
q2 = X[1];
q3 = X[2];
q4 = (X[3]*h);
q5 = (X[4]*h);
q6 = (X[5]*h);
Y[0] = (q1 + q4);
Y[1] = (q2 + q5);
Y[2] = (q3 + q6);

}

Proof generation. The co-generation of proofs together with the synthesis of an implementation is a core component of our
system. Our system provides a framework to verify various types of rules needed, and the verification of rule application
during a rewriting process. Together this provides a gap-free chain of evidence (a proof) that the produced code is equivalent
to the specification. Specifically, our rule-based proof generation requires: 1) Translation ruled from specification into
highest-level internal representation (matrix and operator expressions, HCOL). 2) Transformation rules inside HCOL.
3) Lowering to iterative matrix/operator expressions (lower level HCOL variant called Sigma-HCOL). 4) Transformation
rules inside Sigma-HCOL. 5) Lowering to internal code representation. 6) Transformation rules for the internal code
representation. 7) Output of internal code as restricted C code. 8) Symbolic execution of generated C programs to recover
the semantics and map it back to the internal representation. All rules are implemented as rewriting rules with pattern
matching inside the computer algebra infrastructure. For instance, rule (5) is shown in its source code representation
below. @ is the pattern matching wildcard and the expression matches I(n) for any n. On the right-hand side of the rule,
@ refers to the matched object (I(n)) and @1 to is parameter (n).

SumSAG_In := Rule(@(I(@1)),
(@, @1)->Let(i := Idx(@1), ISum(i, @1, e(@1, i) * I(1) * e(@1, i)ˆT)));

A rewriting trail used to construct a proof shows the matched patterns and how the rule replaced the matched
sub-expression. For instance, applying the rewrite rule SumSAG_In to an instantiation of residue by calling
RewriteOnce(residue(1/100), SumSAG_In); leads to the following output:

> rule: "SumSAG_In"
> matched: BlockMat([[-I(3), 1/100*I(3), I(3), O(3)],
> [100*I(3), O(3), 100*I(3), @(I(3))]])
> wildcards: @="I(3)", @1="3"
> rewritten: "ISum(k, 3, e(3, k) * I(1) * e(3, k)ˆT))"
> proof: "I(3) == ISum(k, 3, e(3, k) * I(1) * e(3, k)ˆT))"
> result: BlockMat([[-I(3), 1/100*I(3), I(3), O(3)],
> [100*I(3), O(3), 100*I(3), ISum(k, 3, e(3, k)*I(1)*e(3, k)ˆT)]])

This output shows the details of the matching/substitution operation and can be translated into a proof that verifies the
assertion labeled proof.

The final proof is performed using the proof assitent Isabelle†. The trail of rewriting operation then is turned into an Isabelle
proof script (ISAR), and rewrite rules become Isabelle lemmas. The combination of lemmas and an ISAR script provide
enough hints to Isabelle to enable automatic proofs to go through, showing that the generated code is indeed equivalent to
its declarative specification.

†https://www.cl.cam.ac.uk/research/hvg/Isabelle/



4. CONCLUSION

This paper provides a first glimpse at High Assurance SPIRAL, an extension to the SPIRAL system aimed at co-
synthesizing highly efficient code and proofs for control algorithms. The system’s input is a high-level declarative spec-
ification of control algorithms and the output is 1) a highly optimized sound implementation of the algorithm, and 2) a
formal proof that the implementation is indeed implementing the specification faithfully. The aim of the tool is to close
the gap between formal methods tools that prove the correctness of control algorithms and their numerical implementation
using modern computer systems with performance-enhancing instruction sets. A crucial component of our approach is to
leverage domain knowledge to enable reasoning about otherwise hard to prove properties and implementation issues like
floating-point arithmetic.
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