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ABSTRACT 
First-principles simulations of high-Z metallic systems using the 
Qbox code on the BlueGene/L supercomputer demonstrate 
unprecedented performance and scaling for a quantum simulation 
code.  Specifically designed to take advantage of massively-
parallel systems like BlueGene/L, Qbox demonstrates excellent 
parallel efficiency and peak performance.  A sustained peak 
performance of 207.3 TFlop/s was measured on 65,536 nodes, 
corresponding to 56.5% of the theoretical full machine peak using 
all 128k CPUs.   

Categories and Subject Descriptors 
J.2 [Physical Sciences and Engineering]:– Chemistry, Physics. 

  

General Terms 
Algorithms, Measurement, Performance. 

Keywords 
Electronic structure. First-principles Molecular Dynamics. Ab 
initio simulations. Parallel computing. BlueGene/L, Qbox. 

1. INTRODUCTION 
First-Principles Molecular Dynamics (FPMD) is an accurate 
atomistic simulation approach that is routinely applied to a variety 
of areas including solid-state physics, chemistry, biochemistry 
and nanotechnology [1]. It includes a quantum mechanical 
description of electrons, and a classical description of atomic 
nuclei. FPMD simulations integrate the Newton equations of 
motion for all nuclei in order to simulate dynamical properties of 
physical systems at finite temperature. At each discrete time step 
of the trajectory, the forces acting on the nuclei are derived from a 
calculation of the electronic properties of the system. 
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In this paper, we consider the case of FPMD simulations of heavy 
(or “high-Z”) metals such as molybdenum or tantalum. In 
particular, we focus on high-accuracy electronic structure 
calculations needed to evaluate the energy of isolated defects. 
Such calculations are especially challenging since they require the 
inclusion of a large number of atoms in a periodic simulation cell. 
This in turn implies that a large number of valence electrons must 
be included in the calculation. Furthermore, high-accuracy 
calculations often require the use of additional tightly bound 
electrons (known as semi-core electrons) in the simulation.  

The electronic structure calculation is the most time-consuming 
part of an FPMD simulation. It consists in solving the Kohn-Sham 
(KS) equations [2]. The KS equations are one-particle, non-linear 
PDEs that approximate the many-particle Schroedinger equation. 
The solutions of the KS equations describe electrons in the 
presence of an average effective potential that mimics the 
complex many-body interactions between electrons. In periodic 
solids the KS equations take the form  

( ) ( )k nk nk nkH r rψ ε ψ=   

where kH  is the Hamiltonian, solutions ( )nk rψ are Bloch 
waves, n is a band index and k is a wave vector (also called k-
point) confined to the first Brillouin zone of the crystal. The one-
particle KS Hamiltonian kH depends non-linearly on the 

electronic density ( )rρ which in turn depends on the solutions 

( )nk rψ through the relation 

2( ) ( )nk
nk

r rρ ψ=∑  

The KS equations can therefore be solved independently for each 
value of k, which leads to a natural division of the computational 
work on a parallel computer. However, the dependence of the 
electronic charge density ( )rρ  on the solutions at all values of k 
introduces a coupling between solutions at different k values. This 
coupling appears in the dependence of the effective one-particle 
potential on the total electronic charge distribution ( )rρ through 
the electrostatic and exchange-correlation potentials. In the 
systems considered here (metals in large supercells), the number 
of k-points needed is of the order of four to eight. Solutions of the 
KS equations are real if k=0 and complex otherwise. For this 
reason electronic structure computations involving multiple k-
points are more costly than computations performed with a single 
k-point (if k=0) since they involve complex arithmetic. 

Thus the electronic structure problem can be solved efficiently on 
a parallel computer if i) a one-particle (single k-point) KS 
problem can be solved efficiently on one fourth to one eighth of 
the machine, and ii) the solutions for all k-points can be combined 
efficiently to compute the total charge density. We show in this 
paper that both these conditions can be met and lead to efficient 
electronic structure calculations on the BlueGene/L platform. 

We have used the Qbox code to perform electronic structure 
calculations of molybdenum on the BlueGene/L (BG/L) computer 
installed at Lawrence Livermore National Laboratory. Qbox is a 
C++ implementation of the FPMD method [3]. It uses the MPI 
message-passing paradigm and solves the KS equations [2] within 
the pseudopotential, plane wave formalism. The solution of the 
KS equations has been extensively discussed by various authors 
[1] and requires the capability to perform three-dimensional 
Fourier transforms and dense linear algebra efficiently. The 
implementation of these two operations will be discussed in detail 
below. Qbox was designed specifically for large parallel 
platforms, including BlueGene/L. The design of Qbox yields 
good load balance through an efficient data layout and a careful 
management of the data flow during the most time consuming 
operations. 

The sample chosen for the present performance study contains 
1000 molybdenum atoms, and includes a highly accurate 
treatment of electron-ion interactions. Norm-conserving semi-
local pseudopotentials were used to represent the electron-ion 
interactions. A total of 64 projectors were used (8 radial 
quadrature points for p and d channels) on each atom to represent 
the semi-local potentials. A plane wave energy cutoff of 112 Ry 
was used to describe the electronic wave functions. Semi-core p 
electrons were included in the valence shell. Calculations 
including 1, 4 and 8 k-points were performed. 

Simulations were performed using up to 65,536 nodes. 
Performance measurements were carried out by counting floating-
point operations using hardware counters.  Qbox realizes a 41% 
parallel efficiency between 2k and 64k CPUs for single k-point 
calculations. When using multiple k-points, we show that 56.5% 
of peak performance, or 207.3 TFlop/s, can be achieved on the 
full machine (65,536 nodes, 131,072 CPUs). 

This kind of simulation is considerably larger that any previously 
feasible FPMD simulation. Our demonstration that BG/L’s large 
computing power makes such large simulations feasible opens the 
way to accurate simulations of the properties of metals, including 
the calculation of melting temperatures, defect energies and defect 
migration processes, studying the effects of aging on the 
structural and electronic properties of heavy metals and the 
properties of materials subjected to extreme conditions[4]. 
 

2. KEY ASPECTS OF THE BLUEGENE/L 
ARCHITECTURE FOR FPMD 
BlueGene/L (BG/L) presents several opportunities for efficient 
implementation of FPMD simulations. Details of the tightly-
integrated large-scale system architecture are covered elsewhere 
[5], including aspects of it that are particularly relevant to Qbox 
[6]. Overall, LLNL’s BG/L platform has 65,536 compute nodes 
and a total peak performance of 367TFlop/s.We briefly cover its 
general architectural aspects here, focusing on those related to 
recent or planned optimizations in Qbox. 

Each compute node is built from a single compute node ASIC and 
a set of memory chips. The compute ASIC features two 32-bit 
superscalar 700 MHz PowerPC 440 cores, with two copies of the 
PPC floating point unit associated with each core that function as 



a SIMD-like double FPU [7]. Achieving high performance 
requires the use of an extensive set of parallel instructions for 
which the double precision operands can come from the register 
file of either unit and that include a variety of paired multiply-add 
operations, resulting in a peak of four floating point operations 
(Flop) per cycle per core. Later in this paper, we discuss the 
DGEMM, ZGEMM and FFT implementations that allow Qbox to 
use these instructions and, thus, to achieve a high percentage of 
peak performance. 

BG/L includes five networks; we focus on the 3-D torus, the 
broadcast/reduction tree and the global interrupt for Qbox 
optimizations. Integration of the network registers into the 
compute ASIC not only provides fast inter-processor 
communication but also direct access to network-related hardware 
performance monitor data. Due to limitations on deadlock-free 
communication, the MPI implementation uses the tree networks 
only for global (full-partition) collective operations. The torus 
network also includes broadcast support; however, currently only 
MPI communicators that consist of nodes that exactly form a 
rectangular and compact sub-prism can use it. Since Qbox MPI 
communication primarily occurs in library routines that use 
derived subset communicators, we can only make limited use of 
the tree network and hence torus performance dominates its 
communication costs in the absence of special optimizations.  

3.    COMPUTATIONAL KERNELS 
When using the plane-wave representation, an efficient solution 
of the KS equations depends critically on two computational 
kernels: dense linear algebra and 3D complex Fourier transforms 
(FT). In the following section, we describe the optimized 
implementations of these kernels used in Qbox. 

3.1 Linear Algebra 
Dense linear algebra is implemented through the ScaLAPACK 
library [8]. ScaLAPACK performs a wide variety of matrix 
operations on large, distributed, dense matrices. It places some 
constraints on the data layout. ScaLAPACK is built upon the 
BLACS communication library, which itself invokes MPI 
functions. The performance of ScaLAPACK depends critically on 
the availability of efficient BLAS subroutines. In particular, the 
ScaLAPACK matrix multiplication function pzgemm makes 
extensive use of the BLAS3 zgemm kernel. We used a hand-
optimized version of the zgemm kernel that we describe in more 
detail below. 

3.1.1 Optimized ZGEMM library 
While the performance of the zgemm routine is dependent upon 
taking advantage of the hardware features at each level of the 
memory hierarchy, missteps at the lower-levels have a greater 
impact than analogously suboptimal decisions that involve higher 
levels of memory. Similarly, the design and implementation of the 
optimized zgemm routine on BG/L is most easily understood 
when described from the bottom up.   

3.1.2 Mathematical and Memory-based Operations: 
SIMD Vector Units 
The peak computational flop rate of a BG/L processor is based 
upon the assumption that a SIMD FMA can execute during every 
cycle. If computationally intensive routines cannot take advantage 
of SIMD instructions (or FMAs), they will not evince more than 

50% of the theoretical peak rate of the processor. Fortunately, 
general matrix-multiplication (C op= A*B) is dominated by 
FMAs and BG/L’s relatively rich instruction set allows one to 
utilize the SIMD FMA instructions for all of the computations 
involved in zgemm. The only prerequisite to taking advantage of 
these instructions is to load the registers utilized for computations 
with useful data (i.e. not pad them or throw away half of their 
result). Because the input data, complex double-precision values 
in this case, is assumed to be aligned on 16-byte boundaries, the 
loads and stores of the C matrix are strictly SIMD. If this 
assumption regarding alignment were not made, the load-primary 
and load-secondary instructions would allow one to load the 
registers in the prescribed pattern. Further, since the number of 
computations involved in zgemm is an order of magnitude greater 
than the number of data moves (loads and stores), data 
reformatting, again using only SIMD instructions, can be 
employed on the A and B matrices. Data reformatting is standard 
practice in the area as it makes the matrices more cache-friendly, 
not simply appropriately aligned. 

3.1.3 The Computational Kernel: Register-Based 
View 
Traditionally, the matrix-multiplication computational core, or 
“kernel routine,” is carefully written so as to respect intricacies of 
the architecture of the machine under consideration. Typically, 
and on BG/L, the most important considerations are: 1) the 
number of architected registers, 2) the latency of the levels of the 
memory hierarchy that are being targeted and, somewhat less 
importantly, 3) the bandwidth between the register file and the 
level of the memory hierarchy being targeted. 

BG/L’s cores each have 32 architected SIMD (length 2) floating-
point registers. We used these registers to target a 4x4xK matrix 
multiplication kernel as our main computational workhorse. Our 
register blocking uses all 32 SIMD registers: eight for A 
operands, eight for B operands, and 16 for elements of the C 
matrix. The computation is composed as two rank-1 updates of 
the C-registers, yielding, simplistically, a 32-cycle latency 
between outer products. 

3.1.4 L1 Cache Considerations 
BG/L’s L1 caches are 16-way, 64-set associative and use a round-
robin replacement policy [5]. Because of the excellent latency and 
bandwidth characteristics of its L3/L2 cache, we considered the 
L1 cache optimizations secondary in the construction of the 
zgemm routine; we do not cover them in this paper due to space 
constraints. It is noted, however, that it is important to block 
correctly for the L1 cache in order to approach optimal 
performance for small matrix multiplications. 

3.1.5 The L2 Cache and Pre-fetching 
BG/L’s L2 cache is considerably smaller than the L1 cache (2KB 
vs. 32KB). The L2 cache acts as a prefetch buffer for data that is 
streaming from higher levels of memory to the L1 cache. For 
sequential data accesses, this prefetch mechanism yields a latency 
that is less than that needed by our register kernel. In order to use 
this prefetch buffer effectively, algorithms should not use more 
streams than it can handle optimally. Since it can efficiently 
handle seven streams in normal mode, we can safely use one 



stream for the reformatted A matrix and one stream for the 
reformatted B matrix.  

3.1.6 L3 Interface 
The theoretical peak bandwidth from the L3 cache is 5.33 
bytes/cycle, which equates to fetching a quadword every 3 cycles 
(or an L1 cache line every 6 cycles). In our SIMD 4x4x2 register 
kernel, the inner loop of the code (the part that is neither loading 
nor storing C) requires exactly one SIMD (quadword) load every 
four cycles. Thus, it is not surprising that the inner loop of this 
routine executes at a rate between 95% and 100% of the peak rate 
of the machine once the data is in L3 and the L2 prefetch 
mechanism is engaged. 

3.1.7 DDR Bandwidth 
Since we have blocked the computation to run out of L3, BG/L’s 
DDR bandwidth and latency might seem unimportant. However, 
they do impact the performance of matrix multiplication, 
especially for relatively small matrices. BG/L’s DDR bandwidth 
is, at approximately 4 bytes/cycle, comparable to that of its L3 
cache and is of great value in achieving high performance for this 
routine in some cases. 

While the zgemm routine is blocked to take advantage of the L3 
cache, a preliminary step copies and reformats the data in the A 
and B matrices. This step, typically, copies data from DDR to 
DDR or from DDR to L3. Although this is a negligible start-up 
cost with large matrices, this overhead may be a sizeable fraction 
of compute time with small matrices. Further, computation 
occasionally requires bringing data from DDR and keeping it in 
the L3 (or L1 in the case of small matrices) cache even for large 
matrices. 

3.2 Fourier Transforms  
Qbox takes advantage of the fact that many 3D FTs must be 
performed simultaneously (one for each electronic state), which 
eases the scalability requirements on individual 3D FT 
calculations.  For the large systems of interest to this paper 
scaling of individual FT’s beyond 512 tasks is unnecessary, since 
a sufficient number of transforms can occur simultaneously to 
utilize the entire machine fully.  A custom parallel 
implementation of 3D FT was developed and optimized for BG/L 
and shows excellent scaling properties on up to 512 tasks.  

3.2.1 FFTW-GEL for BlueGene/L 
Qbox calls one-dimensional single-processor FFT kernel routines 
within its computation. Among other libraries, it can use the 
portable open-source library FFTW 2.1.5 [9]. FFTW-GEL for 
BG/L [10] is an FFTW 2.1.5 replacement for BG/L based on the 
SIMD FFTW replacement provided by FFTW-GEL [11].   

Several BG/L specific optimizations were required to achieve 
good floating-point performance.  FFTW-GEL for BG/L achieves 
good utilization of the two-way vector instructions for the double 
FPU by replacing the original scalar FFTW codelets with 
explicitly vectorized double FPU codelets. For BG/L, these vector 
codelets are generated using intrinsic functions and the C99 
complex data type provided by the IBM XL C compiler for BG/L.  
Additionally, the Vienna MAP vectorizer [12] two-way vectorizes 
large computational basic blocks by a depth-first search with 
chronological backtracking to produce explicitly vectorized 

FFTW codelets with solely two-way vector instructions and a 
minimum of data reorganization instructions.  MAP’s 
vectorization rules that describe the variable and operation pairing 
encode machine characteristics such as the double FPU’s special 
fused multiply-add instructions.  SIMD instructions provide a 
large performance increase in FFTW-GEL (near two-fold 
speedup) when measured on a hot L1 cache (e.g. by transforming 
the same data multiple times). The increase that we observe in 
Qbox is smaller, since the data to be transformed far exceeds the 
size of the L1 cache, and memory bandwidth limits performance. 
A speedup of 20-25% was measured when comparing the FFTW-
GEL library with the conventional FFTW 2.1.5 implementation in 
that case 

4. NODE MAPPING STRATEGIES 
Unlike many applications for which a simple 3D domain 
decomposition naturally maps to a 3D torus architecture, the KS 
equations do no exhibit any obvious way to map parts of the 
calculation to a torus. For this reason, we have explored various 
node mappings in order to optimize performance. This 
optimization must be carried out for each partition size, since the 
shape of a partition depends on its size. For example, a 4k-node 
partition consists of an 8x16x32 block of nodes, whereas a 16k 
partition is a 16x32x32 block. As a consequence, the optimal map 
for one partition size can differ substantially from the optimal 
map for another partition. This process is facilitated by the 
capability to specify a node mapping at run time. 
The Qbox data layout distributes the degrees of freedom 
describing electronic wave functions on a two-dimensional 
process grid similar to the BLACS process grids [8]. Collective 
communications over MPI communicators that correspond to 
rows and columns of the process grid form the bulk of Qbox 
communication costs. Table 1, which provides Qbox 
communication timings, indicates that MPI_Bcasts and 
MPI_Allreduces over these communicators dominate those costs. 

Experience shows that Qbox communication costs vary 
significantly with the mapping of MPI tasks to BG/L’s torus 
topology. Good connectivity between communicators requires 
more complex node maps than the default XYZ, YZX or ZXY 
orderings. Figure 1 shows examples of four node mappings used 
on the full machine 64k-node partition. For a 64k-node 
calculation of 1000 molybdenum atoms with a single k-point, i.e. 
a single set of KS equations, we found that the mapping 
dramatically affected performance. The default mapping (shown 
in Figure 1a) resulted in a sustained floating-point performance of 
39.5 TFlop/s. Attempts to minimize intra-column communication 
via a compact scheme (Figure 1b) did not improve performance, 
yielding 38.2 TFlop/s. Distributing each process column over a 
torus slice in a bipartite (Figure 1c) or quadpartite (Figure 1d) 
arrangement provided the highest overall performance: 64.0 
TFlop/s and 64.7 TFlop/s. The fact that a 1.64 speedup can be 
achieved over the default node layout illustrates the critical 
importance of proper task layout on a machine like BG/L. The 
bipartite mapping was found to be the optimal mapping for 
partition sizes of 8k, 16k and 32k nodes. 

We have explored how BG/L’s MPI implementation maps 
collective operations to the torus network through hardware 
performance counts of torus network events. We focus on the 



performance of MPI_Bcast, since this dominates communication 
costs in Qbox (see Table 1). Figure 2 shows the communication 
pattern of a single broadcast on a 4x4 plane of BG/L nodes using 
three eight-node communicators. Broadcasts over a compact 
rectangle of nodes (left panel), which use the torus network’s 
broadcast functionality, have the most balanced packet counts as 
well as the lowest maximum count. When we split the nodes 

across multiple lines resulting in disjoint sets of nodes (middle 
panel), the communication requires significantly more 
communication packets with less balanced link utilization. The 
node mappings in Figure 1c) and 1d), on the other hand, lead to a 
more balanced link utilization (as illustrated in Figure 2, right 
panel) and hence to higher overall performance.

(a) (b)    

  (c) (d)     

 
 

Figure 1. Illustration of different node mappings for a 64k-node partition. Each color represents the nodes belonging to one 512-
node column of the process grid. 
This analysis of Qbox communication led to several node 
mapping optimizations. In particular, our initial mappings did 
not optimize the placement of tasks within communicators. We 
have refined the bipartite mapping shown in Figure 1c to map 
tasks with a variant of Z ordering within a plane. This 
modification effectively isolates the subtree of a binomial 
software tree broadcast within subplanes of the torus. In 
addition, we observed that substantial time was spent in 

MPI_Type_commit calls in the BLACS library. The types being 
created were in many cases just contiguous native types, which 
allowed us to hand-optimize BLACS to eliminate calls in these 
cases. We are investigating other possible optimizations, 
including multi-level collective operations [13] that could 
substantially improve the performance of the middle 
configuration in Figure 2. 



Table 1 Top 5 communication routines in Qbox measured using libmpitrace on 8k nodes, running 5 steepest descent iterations for 
1000 molybdenum atoms with 1 (non-zero) k-point (complex arithmetic).  The total run time was 2774.7 s, of which 571.4 s was 
spent in communication.  Averages include the MPI_Bcast operations which take place once on startup and account for 
approximately 128 s of the total communication time. 

# calls avg. msg size (bytes) time (s) % MPI % total
MPI_Bcast 4048 950681.5 401.0 70.2% 14.5%
MPI_Allreduce 54256 35446.1 103.6 18.1% 3.7%
MPI_Alltoallv 5635 399.1 41.8 7.3% 1.5%
MPI_Reduce 940 186007.1 15.2 2.7% 0.5%
MPI_Barrier 2352 0.0 8.8 1.5% 0.3%  

 
 
 

       

Figure 2:  Communication pattern of a 4000 Byte MPI broadcast on an eight node communicator within a 4x4 node plane. The 
node labels indicate the coordinates of the node within the grid. Nodes in grey are part of the communicator (the rank is indicated 
in parenthesis), the node in black is the broadcast initiator, and nodes in white do not participate in the broadcast. Edges mark 
communication as measured using BG/L’s hardware counters for torus traffic with the number showing the number of packets 
observed and the color indicating the direction of the traffic[14]. 

 
 

5. PERFORMANCE MEASUREMENTS 

5.1 FPU Operations Count 
Floating point operations were counted using the APC 
performance counter library. This library accesses the compute 
node ASIC’s hardware performance counters to tracks several 
events including FPU, some SIMD and load and store operations. 
Counting can be limited to selected sections of the code by calling 
ApcStart()at the beginning and ApcStop()at the end of 
each section. In Qbox, these calls were placed around the main 
iteration loop, in order to get an accurate measure of sustained 
performance. Operation counts and total number of cycles used 
for each task are saved to individual files (one per task), and a 
cumulative report generated using the post-processing tool 
apc_scan. 

BG/L’s hardware counters do not include events for SIMD 
add/subtract, or multiply operations (although the fused multiply-
add operations can be counted). Thus, some SIMD operations are 
not included in the count. For this reason, the floating-point 
performance cannot be extracted from a single measurement of 
the operation count.  Instead, the number of cycles and the 
number of operations must be obtained from separate 
measurements using the following procedure: 

1) Compile the code without SIMD instructions (i.e., use –
qarch=440 with the xlC compiler), using unoptimized 
(non-SIMD) versions of the FFTW, DGEMM and 
ZGEMM libraries.  Measure the total FPU operation 
count with this executable. 

2) Recompile the code, enabling the SIMD instructions 
(using –qarch=440d). Obtain the total number of cycles 
and, thus, the total time with this executable. The FP 
operation count in this case is potentially inaccurate and 
should be discarded. 

3) Divide the total FP operation count by the total time to 
compute the performance. 

While this procedure requires running two simulations to get a 
single measurement, it uses BG/L’s hardware counters to measure 
floating-point performance rigorously. 

5.2 Results 
Although many first-principles calculations require multiple 
simultaneous solutions of the KS equations, each representing 
different electronic spin states, k-points in the Brillouin zone, or 
imaginary-time slices in a path integral, the parallel efficiency of 
a calculation with a single set of KS equations is the most general 
measure of how successfully a FPMD code has been parallelized.  



Thus, we first present results of calculations using a single k-point 
(k=0) before showing results with the multiple k-points needed 
for high-Z metals. 
Table 2 shows strong-scaling results of Qbox for a simulation of 
1000 molybdenum atoms and 12,000 electrons, for a single k-
point.  Simulations were performed on partitions of increasing 
size on the 64k-node LLNL BG/L machine.  The problem size 

was kept constant for all partition sizes. The time per iteration 
reported is the wall-clock time needed to perform a single 
steepest-descent iteration on electronic states. Times are reported 
for the best node mapping at each partition size.  All calculations 
were run in co-processor mode, although it should be noted that 
the DGEMM library was written to utilize both CPUs on a node 
even in coprocessor mode as discussed above. 

 

Table 2. Qbox performance data for a molybdenum simulation including 1000 atoms and 12000 electrons with a plane-wave cutoff 
of 112 Ry, for a single k-point (k=0). The fractional speedup represents the fraction of ideal speedup obtained with respect to the 
2048-node partition. The aggregate FP rate is measured with the APC performance counters as described in the text.  
 

nodes time/iteration (s) speedup frac speedup agg. FP rate (TFlop/s)
2048 725.3 1.00 1.00 4.76
4096 348.6 2.08 1.04 9.86
8192 190.8 3.80 0.95 18.20

16384 108.2 6.70 0.84 32.63
32768 73.9 9.81 0.61 47.80
65536 55.3 13.12 0.41 64.70  

 

 Figure 3. Strong scaling results for 1000 molybdenum atoms 
with 1 (non-zero) k-point.  Also shown is the sustained 
performance on the full machine (64k nodes) with multiple k-
points.  Dashed lines indicate perfect scaling between the 
measured full machine result and the equivalent individual k-
point calculations.  

 
Calculations over a single k-point are often sped up by choosing 
the high-symmetry k=0 point (Γ-point) for which the imaginary 
part of the complex wave function is known to be zero by 
symmetry.  In addition to decreasing the dimension of the wave 
function matrices by a factor of two, the linear algebra routines 
for matrices of doubles can be used, including DGEMM.  In the 
case of multiple (non-zero) k-points, this symmetry does not hold, 
and complex linear algebra routines, including zgemm, are 
required. Performance results for simulations of 1000 
molybdenum atoms with multiple k-points are shown in Figure 3 
and Table 3.  Excellent floating-point performance is achieved, 
primarily due to the highly optimized ZGEMM library used for 
single-node matrix multiplication and the fact that each k-point 
calculation takes place on 8k and 16k nodes where parallel 
efficiency per k-point is still quite high.  A sustained performance 
of 207.3 TFlop/s was observed when 8 k-points were used, which 
corresponds to 56.5% of the theoretical full machine peak 
perfomance.  This level of performance indicates an extremely 
efficient use of BG/L’s computational resources, especially in 
view of the fact that these calculations were run in coprocessor 
mode with only the ZGEMM library making use of the second 
processor. 
 

 

Table 3. Qbox performance data for a molybdenum simulation including 1000 atoms and 12000 electrons with a plane-wave cutoff 
of 112 Ry, as a function of number of k-points. Note that the single k-point calculations presented here are not calculated at k=0, as 
in Table 2, but instead use the same complex treatment as multiple k-points for the sake of accurate comparison. 
 

nodes # of k-points time/iteration (s) agg. FP rate (TFlop/s)
65536 1 127.13 108.8
65536 4 289.43 187.7
65536 8 526.91 207.3



6. CONCLUSION 
We have demonstrated the feasibility of unprecedented large-
scale First-Principles Molecular Dynamics, and the excellent 
scalability of the Qbox code on the BlueGene/L platform on up to 
64k nodes. Our experiments indicate that a careful choice of node 
mapping is essential in order to obtain good performance for this 
type of application. Strong scalability of Qbox for a Materials 
Science problem involving 1000 molybdenum atoms, with 12000 
electrons is excellent.  The use of hand-optimized libraries for 
linear algebra and Fourier transform operations dramatically 
improves the effective floating point performance. This early 
application of First-Principles Molecular Dynamics demonstrates 
that the exceptional computing power provided by the 
BlueGene/L computer can be efficiently utilized and will have an 
important impact in the area of first-principles prediction of 
materials properties in the near future. 
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