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James C. Hoe1, José M. F. Moura1, Markus Püschel1
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Abstract

We overview a library generation framework called Spi-
ral. For the domain of linear transforms, Spiral auto-
matically generates implementations for parallel platforms
including SIMD vector extensions, multicore processors,
field-programmable gate arrays (FPGAs) and FPGA ac-
celerated processors. The performance of the generated
code is competitive with the best available hand-written li-
braries.

1 Introduction

The development of high performance numerical li-
braries has become extraordinarily difficult and time con-
suming. The reason is that recent computing platforms have
become increasingly complex and offer different forms and
usually multiple levels of parallelism (such as vector pro-
cessing or multiple cores). To make things worse, hard-
ware platforms based on field-programmable gate arrays
(FPGAs) have become mainstream as stand-alone platform
or accelerator.

In this paper we show that for the performance critical
domain of linear transforms, the library development can be
automated including the mapping to different forms of par-
allelism, while at the same time matching the performance
of hand-written code. The key ingredients of the frame-
work are 1) a domain-specific, declarative, mathematical
language to describe algorithms; and 2) the use of rewrit-
ing to parallelize and optimize algorithms at a high level of
abstraction. The library generation system is called Spiral
and builds upon an earlier version [9] with the same name.

Related work. Several other efforts have addressed the
problem the problem of automating library development or
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performance optimization. ATLAS [11] is a program gen-
erator for basic linear algebra subroutines (BLAS). For a
given BLAS routine, ATLAS generates implementations
with different degrees of loop unrolling and blocking to find
the best match to the given microarchitecture. FFTW [5] is
a library for the discrete Fourier transform (DFT), using a
program generator for small codelets and heuristic search to
compute larger DFTs based using breakdowns and codelets.
Other examples of automatic tuning include [6] for sparse
linear algebra and [1] for parallel tensor computations.

Except for [1], which targets clusters, the automation in
the above work is restricted to sequential code and in all
cases to software implementations. In contrast, our work in-
cludes automatic parallelization for different forms of paral-
lelism and the mapping to software and hardware platforms.

2 Spiral

Spiral is a program generator for linear transforms in-
cluding the discrete Fourier transform (DFT), the Walsh-
Hadamard transform (WHT), the discrete cosine and sine
transforms, finite impulse response (FIR) filters, and the dis-
crete wavelet transform. The input to Spiral is a formally
specified transform (e.g., DFT of size 245); the output is a
highly optimized C program or Verilog design implement-
ing the transform.

In Spiral (see Figure 1), recursive computation of larger
transforms by smaller transforms is expressed using rules.
For a given transform, Spiral recursively applies these rules
to generate one out of many possible algorithms represented
as a formula in a language called SPL (signal processing
language). This formula is then structurally optimized using
a rewriting system and finally translated into a C or Verilog
program (for computing the transform) using a special for-
mula compiler. Structural optimization includes paralleliza-
tion for different forms of parallelism. The performance of
the generated code is measured or estimated and fed into a
search engine, which decides how to modify the algorithm.

1



Formula Generation

Formula Optimization

Implementation

Code Optimization

Compilation

Performance Evaluation

DSP transform (user specified)

optimized/adapted implementation
S

e
a

rc
h

/L
e

a
rn

in
g

controls

controls

performance

algorithm as formula

in SPL language

C/Fortran

implementation

Algorithm

Level

Implementation

Level

(SPL Compiler)

Evaluation

Level

Figure 1. The program generator Spiral.

This means, the search changes the formula, and thus the
code, by using dynamic programming or other search meth-
ods. Eventually, this feedback loop terminates and outputs
the fastest program found in the search. The basic architec-
ture of the system was built in [9]. Here, we explain how we
extended the system to parallel platforms including FPGAs.
The key is the use of a declarative mathematical language
as described next.

Declarative framework. A (linear) transform is a
matrix-vector multiplication x �→ y = Mx, where x is a
real or complex input vector, M the transform matrix, and
y the result. For example, for an input vector x ∈ C

n, the
DFT is defined by the matrix

DFTn = [ωk�
n ]0≤k,�<n, ωn = exp(−2πi/n).

Algorithms for transforms are typically divide-and-conquer
and can be viewed as factorizations of the transform into
sparse, structured matrices [10]. The structure is exhibited
through matrix operators like the product ·, the direct sum
⊕, and, most importantly the Kronecker product ⊗ defined
as

A ⊗ B = [ak�B], A = [ak�].

Then, for example, the Cooley-Tukey FFT algorithm can be
written as the break-down rule

DFTmn → (DFTm ⊗ In)Dm,n(Im ⊗DFTn) Lnm
m (1)

with the identity matrix In, the diagonal matrix Dm,n and
the stride permutation matrix Lnm

m .
The matrix formula language, called SPL, is declara-

tive: it describes the dataflow of computation and its struc-
ture. Spiral contains about 50 transforms and more than 200
breakdown rules.

3 Mapping Formulas to Parallel Platforms

The key observation is that formula constructs can be
related to properties of the target architecture. In particular,
certain formula constructs can be implemented efficiently
on a particular type of hardware while they are ill-suited for
other types of hardware. As example, in (1) the construct

Im ⊗DFTn (2)

has a perfect structure for m-way parallel machines. Simi-
larly, the construct

DFTm ⊗ In (3)

has a perfect structure for n-way vector SIMD (single in-
struction, multiple data) architectures [3]. However, (2) is
ill-suited for vector SIMD architectures and (3) is ill-suited
for parallel machines.

Further, formulas can be manipulated using algebraic
identities [7] to change their structure. For instance, the
identity

DFTm ⊗ In = Lmn
m (In ⊗DFTm) Lmn

n (4)

replaces a vector formula by a parallel formula and intro-
duces two stride permutations.

Optimization through rewriting. The basic idea in Spi-
ral’s formula optimization is to rewrite a generated formula
into another formula that has a structure that maps well to
a given target architecture. An important example is paral-
lelization: Spiral rewrites formulas to obtain the right form
and the right degree of parallelism.

Spiral’s rewriting system for parallelization consists of
three components to accomplish this goal:

• Tags encode target architecture types and parame-
ters. Specifically, Spiral uses the tags “vec(ν)”
for SIMD vector extensions, “smp(p, µ)” for shared
memory, “stream(w)” for streaming on FPGAs,
“partition(s,An)” for HW/SW partitioning, and
“gpu(n, t)” for graphics processors. The meaning of
the parameters is explained later.

• Base cases encode formula constructs that can be
mapped well to a given target architecture. For in-
stance, we denote a p-way parallel base case generaliz-
ing (2) with Ip ⊗‖An, using the tagged operator “⊗‖;”
An is any n × n matrix expression.

• Rewriting rules encode how to translate general for-
mulas into base cases. For instance, we generalize (4)
into the rewriting rule

Am ⊗ In︸ ︷︷ ︸
smp(p,µ)

→ Lmn
m︸︷︷︸

smp(p,µ)

(
Ip ⊗‖(In/p ⊗Am)

)
Lmn

n︸︷︷︸
smp(p,µ)

.
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This rule applies identity (4), but “knows” (due to the
tag smp(p, µ)) that the target architecture is a p-way
parallel shared memory system, and thus introduces
the matching base case Ip ⊗‖(In/p ⊗Am). The stride
permutations Lmn

m and Lmn
n will be handled by further

rewriting.

For every given platform or form of parallelism, we fol-
low the same procedure to obtain the above components:
1) We identify the most important platform parameters and
encode these as tags. 2) We identify formula constructs that
can be mapped well to the target architecture, thus defining
a set of base cases. We also specify their efficient imple-
mentation. 3) We identify a set of rewriting rules, param-
eterized by hardware parameters, which translate general
constructs into base cases.

In the remainder of this section we provide additional
details on this approach for vector SIMD extensions, multi-
core CPUs, GPUs, FPGAs, and partitioning across embed-
ded CPUs and FPGAs.

Vector SIMD instructions. To generate efficient SIMD
vector code we need to guarantee that all memory accesses
are properly aligned and load/store whole vectors. All arith-
metic should be done using vector operations and all data
shuffling should take place in vector registers using ef-
ficient shuffle instructions (which may differ across sup-
ported SIMD architectures). The number of shuffle oper-
ations should be minimized.

We introduce the tag “vec(ν)” for vector SIMD opera-
tion using ν-way vector instructions. The construct

A�⊗ Iν (5)

(using the tagged operator “�⊗”) can be implemented solely
using vector arithmetic and guarantees aligned memory ac-
cess of whole vectors. Further, Spiral automatically builds
a library of vectorized implementations of permutations for
every supported vector architecture. The construct (5) and
the vectorized permutations constitute some of the base
cases for vector architectures.

Vector rewriting rules like

A ⊗ In︸ ︷︷ ︸
vec(ν)

→ (A ⊗ In/ν)�⊗ Iν (6)

are parameterized by ν and encode how to turn general
constructs into vector base cases. Using vector base cases
and vector breakdown rules, Spiral successfully vectorizes
a large class of linear transform algorithms. Further details
on Spiral’s vectorization process can be found in [3].

Multicore and SMP. The goal on symmetric multipro-
cessors and multicore CPUs is to balance the computational
load and to avoid false sharing (private data of multiple pro-
cessors stored in the same cache line). We aim at gener-
ating programs in which each cache line is accessed only

by one processor at a time (the processor “owns” that cache
line), and change of ownership happens as little as possi-
ble, thus minimizing communication invoked by the cache
coherency protocol.

We introduce the tag “smp(p, µ)” for shared memory
computation on p processors with cache line size µ. The
constructs

Ip ⊗‖A and P ⊗̄ Iµ, P a permutation, (7)

expresses embarrassingly parallel, load balanced operation
on p processors and ownership change of cache lines, re-
spectively; both can easily be translated into shared memory
code. The shared memory rule set consists of rules like

Am ⊗ In︸ ︷︷ ︸
smp(p,µ)

→ (
Ip ⊗‖(Am ⊗ In/p)

)
(
L

mp
p ⊗ In/p

)
︸ ︷︷ ︸

smp(p,µ) (8)

and allows to parallelize even small transforms and to pro-
duce efficient multicore code. (we use conjugation AP =
P−1AP in (8).) Further information on Spiral’s shared
memory and multicore code generation can be found in [4].

To enable Spiral to generate parallel programs for mul-
tiple SPUs of the Cell processor, we simulate a cache co-
herency protocol using DMA transfers, exchanging rela-
tively small packets between SPUs whenever they are ready.

Graphics processors. Current graphics processors
(GPUs) support programmable pixel shaders, floating-point
units, and high bandwidth to the main memory. General
purpose computation on GPUs is based on these shaders,
which must be programmed in a “for all pixels do” SIMD
paradigm using OpenGL or Cg. Shader programs can
load multiple pixels (t-way vectors) from multiple textures
(rectangular data arrays), and produce a limited number
of output pixels (multi-target rendering). We define a tag
“gpu(n, t)” for GPUs supporting n-way multi-texture ren-
dering and t color values per pixel (typically, t=4). We
cast the pixel shaders’ SIMD programming model as a GPU
base case,

(
Am ⊗× Ik �⊗ It

)(
P �⊗ It

)
, m ≤ n,

and introduce rewriting rules like

Am ⊗ Ikt︸ ︷︷ ︸
gpu(n,t)

→ Am ⊗× Ik �⊗ It .

Streaming on FPGAs. The governing property on FP-
GAs is that data is streamed through the data path at a cer-
tain stream rate of w elements per cycle. Moreover, to limit
resource usage reuse is required. Spiral supports sequential
reuse (reuse of a computational block multiple times within
the same problem) and iterative reuse (reuse within a cas-
cade of identical blocks in the horizontal dimension).
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We use a a tagged tensor product ⊗s to indicate stream-
ing reuse. (9) shows a rule used to extract streaming reuse.
The tag “stream(w)” instructs the system to restructure the
formula to have w input and output ports.

Im ⊗An︸ ︷︷ ︸
stream(w)

→ Im/w ⊗s(Iw/n ⊗An), n ≤ w (9)

In (9), w/n instances of An are built in parallel and reused
over m/w cycles. More details on Spiral-generated hard-
ware designs can be found in [8].

Accelerating software by FPGA. Current FPGAs con-
tain embedded processors and thus are a target for FPGA-
accelerated software. Spiral generates FPGA-accelerated
software, using its hardware design and software tool chain.
The hardware and software communicate through Spiral-
generated glue code, utilizing the vendor-supplied interface
between the embedded CPUs and the FPGA fabric.

(10) shows a rule used to perform the HW/SW partition-
ing. The tag “partition(s,Am)” instructs the rule system
that constructs Am are supported in hardware and that the
FPGA accelerator block Am supports streaming of s inde-
pendent calls.

Im ⊗Am︸ ︷︷ ︸
partition(s, Am)

→ Im/s ⊗︸ ︷︷ ︸
SW

(
Is ⊗̃Am

)
︸ ︷︷ ︸

HW

(10)

(10) breaks a tensor product with too many independent
calls into a software and hardware loop. More details on
Spiral-generated software accelerated by hardware can be
found in [2].

4 Experimental Results

Spiral generates highly optimized transform programs
for a large class of advanced architectures. The generated
code is consistently competitive with the best available ven-
dor libraries and open source libraries like FFTW. Note that
a vendor library like Intel’s IPP and MKL or Xilinx Logi-
Core requires many man-years of coding effort.

In the following we show a few example benchmarks fo-
cussing on the DFT due to space limitations.

SIMD vector code. Spiral is particularly successful in
optimizing for vector SIMD extensions like Intel’s SSE, and
AltiVec/VMX supported by PowerPC G4, G5 and Cell pro-
cessors [3]. We show the performance of Spiral generated
vector code in Fig. 2 (a): Complex 1D DFTn for all sizes
n = 2, 3, . . . , 64 on Intel Core2 Duo (single core), 2.66
GHz, 4-way SIMD (SSE2), single-precision. Spiral is much
faster than Intel’s MKL for all sizes.

SMP and multicore code. In Fig. 2 (b) we compare
sequential and parallel performance of Spiral generated 1D
complex single-precision DFT programs to FFTW 3.2 alpha

and Intel’s IPP 5.0 on a 3 GHz Core2 Extreme (4 cores).
Spiral generated sequential code is on par with FFTW and
IPP. Spiral-generated parallel code outperforms FFTW and
IPP and makes the parallelization of very small FFTs (n =
1024) possible [4].

In Fig. 2 (c) we show the performance of single-precision
WHTs on a 3.2 GHz Cell processor. We compare the per-
formance on a single SPU and 4 SPUs, both are 4-way vec-
torized codes. Starting at n = 211 using 4 SPUs provides
speed-up, reaching up to 3 times over a single SPU.

GPU. In Fig. 2 (d) we show the performance of single-
precision WHTs on a 3.6 GHz Pentium 4 with a Nvidia
7900 GTX GPU. For small sizes 4-way-vectorized SSE
code outperforms the GPU code, but from n = 216 on the
CPU code suffers from memory bandwidth problems and
the GPU code runs at its full potential. Combining both
codes leads to high performance across all sizes.

FPGA. In Fig. 2 (e), we examine performance versus
area for DFT 1024 cores generated for the Xilinx Virtex-5
FPGA platform. Cores are generated across a wide range of
architectural options; the Pareto front consisting of the most
efficient designs is presented here. Xilinx LogiCore designs
offer similar cost and performance to our smaller cores, but
provide very limited scalability.

FPGA-accelerated software. In Fig. 2 (f) we show
the performance of FPGA-accelerated software on a Xilinx
Virtex-II Pro FPGA with embedded PowerPC 405 core. We
accelerate a whole DFT library of sizes n = 2, 4, . . . , 8192
with two hardware cores. While the cores provide the
strongest performance boost at their native size, other sizes
are sped up considerably as well.

5 Conclusions

We showed that for an entire domain of structurally com-
plex numerical kernels, the implementation for a wide range
of platforms can be automated while still achieving high-
est performance. Even though our framework is domain-
specific, we believe that its underlying principles can be
applied to other numerical domains. Doing so is a main
direction in our current research.
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[3] F. Franchetti and M. Püschel. Short vector code generation
for the discrete Fourier transform. In Proc. IEEE Int’l Par-
allel and Distributed Processing Symposium (IPDPS), pages
58–67, 2003.

[4] F. Franchetti, Y. Voronenko, and M. Püschel. FFT program
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