
3D DRAM Based Application Specific Hardware Accelerator for SpMV
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Solution: Convert random accesses to streaming access.
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It works because vector elements are
 Generated/stored in order – Step 1
 Accessed sequentially – Step 2

Data Volume vs Precision

0

5

10

15

20

25

Quadruple(128) Double(64) Single(32) Half(16) Quarter(8) Bit(1)

D
at

a 
vo

l.
 b

et
w

e
e

n
 L

LC
/s

cr
at

ch
p

ad
 &

 D
R

A
M

  (
G

B
)

Data Precision (bits)

Source Vector Redundant

Source Vector Useful

Matrix

Target + Intermediate Vector

1st bar - Baseline with no compression
2nd bar - Two-step with no compression
3rd bar - Two-step with compression  

80M x 80M, 3 NNZ per Row, 20MB LLC/scratchpad

34%

58%

74%
83% 88% 93%

0

2

4

6

8

10

12

14

16

18

20

5 20 35 50D
at

a 
vo

l.
 b

et
w

e
e

n
 L

LC
/s

cr
at

ch
p

ad
 &

 D
R

A
M

 (
G

B
)

LLC/scratchpad size (MB)

Source Vector Redundant

Source Vector Useful

Matrix

Target + Intermediate Vector

Data Volume vs LLC

80M x 80M, 3 NNZ per Row, Double

1000% scratchpad increase
7% Data vol. decrease

45%
58%

1st bar - Baseline with no compression
2nd bar - Two-step with no compression
3rd bar - Two-step with compression  

payload

Carnegie Mellon UniversityFazle Sadi, Larry Pileggi, Franz Franchetti Contact: fsadi@cmu.edu

This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under agreement No. HR0011-13-2-0007. The work was also
sponsored by Intelligence Advanced Research Program Agency and Space and Naval Warfare Systems Center Pacific under Contract No. N66001-12- C-
2008. The content, views and conclusions presented in this document do not necessarily reflect the position or the policy of DARPA or IARPA or the U.S.
Government. No official endorsement should be inferred.

Sparse Matrix-Vector multiplication (SpMV) is an important kernel for 
many applications. However, due to lack of data locality and low FLOP 
to memory access ratio, SpMV’s performance and efficiency are very 
poor on regular architectures. Overcoming this problem warrants re-
thinking of the way we do SpMV, both in terms of software & hardware.

Research Problem

SpMV does not benefit from traditional memory hierarchy.
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Background
For every two computes on average SpMV requires a random access 
to dense vector which is generally too large for the last level cache 
(LLC). This results in random access to DRAM which affects the system 
performance and efficiency in various ways. 

1. Low bandwidth utilization Poor performance

2. Excess volume & page opening Poor efficiency

80M x 80M matrix, 3 NNZ per row, 1KB DRAM page, 64B cache block, 
double precision data

An Example

Will HBM with COTS work?

Probably not. 

The key problem with SpMV on commercial off-the-shelf (COTS) 
architectures is the traditional memory hierarchy. Adding 3D stacked 
DRAM, such as High Bandwidth Memory (HBM), will only provide 
more DRAM bandwidth. Current SpMV implementations on COTS 
platforms will still have the same poor bandwidth utilization and 
other pertinent issues. Therefore, any significant improvement of 
performance or efficiency is unlikely as long as SpMV is implemented 
on any architecture which is built on traditional memory hierarchy.  

Proposed Solution

Performance
& Efficiency

Two-Step Algorithm
 Convert random access

to streaming access 
 High bandwidth utilization

Meta-Data Compression (VLDI)
 Reduce data transfer volume

Application Specific  Accelerator with 3D DRAM
 Low power, no traditional overhead
 High bandwidth of HBM

ALGORITHM

AND

HARDWARE

CO-OPTIMIZED

SPMV

ACCELERATOR

We propose an algorithm-hardware co-optimization approach 
to gain significant performance and energy efficiency for SpMV. 

Two-Step Algorithm

X

Source VectorSource Matrix

Each stripe in CSR format

Intermediate Vectors (Sparse) Target Vector

Big Multi-Way
Merge

Data value + Index (Meta-data)

Multiplication
& Partial Addition

Step 1 Step 2

Two-step has been
discarded by many

for merge

 Conversion of all DRAM random accesses into sequential accesses. 
 Dedicated scalable multi-way merge network is required.
 ASIC merge is capable of merging large number of lists (e.g. 1k) with high throughput (1.5B elements/s)

Step 1: Implementation and Parallelization
We can easily scale the process in step 1 to utilize full HBM bandwidth by blocking the matrix stripes. 

Step 2: Implementation and Parallelization
It is not possible to scale the global multi-way merge in step 2 just by blocking the intermediate sparse vectors. 
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To make merge scalable, we assign the merging task to different merge cores depending on few LSBs of the 
indices. This novel technique works for SpMV as it is guaranteed that the final target dense vector will have 
data for each index.

Meta-Data Compression: VLDI
To reduce the meta-data storage and transfer cost, we use Variable Length 
Delta Index (VLDI) compression technique. Instead of absolute index, only 
the distances between non-zero elements are stored using VLDI strings.

Experimental Results

 Even though we increase the payload with Two-step, the overall data transfer volume is significantly reduced.
 Large eDRAM size does not significantly reduce data transfer volume. With efficient merge network small (i.e. low cost) scratchpad will suffice. 
 For lower data precisions, the compression technique becomes more effective as meta-data becomes more dominant.  

 CPU(Xeon E5) + MKL : 22nm, 30MB LLC, 102.4GB/s Peak BW

 Co-processor (Xeon Phi) + MKL: 22nm, 30MB LLC, 352GB/s Peak BW

Energy Efficiency Comparison
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Xeon E5 Xeon Phi 5110P GTX 980 Proposed Accelerator

Increasing memory footprint

Matrix name

100x

1M x 1M – 80M x 80M, 1 - 4 NNZ per Row

 GPU (GTX 980) + cuSPARSE: 28nm, 2MB LLC, GDDR5 224GB/s Peak BW

 Proposed Accelerator + Two-Step: 28nm, 20MB scratchpad, HBM 512GB/s Peak BW 

Large sparse matrices with high sparsity and various sizes from University of Florida’s collection have been used to compare the energy efficiency of the 
proposed system against state of the art architectures. It can be seen that the proposed accelerator can achieve up to 100x more energy efficiency than the 
best performing COTS architecture.
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