Interval Arithmetic FFT for Large Integer Multiplication

Zibo Gong*, Nathan Zhu*, Matthew Ngaw*, Joao Rivera ${ }^{\dagger}$, Larry Tang*, Eric Tang*, Het Mankad*, Franz Franchetti*

*Carnegie Mellon University

\dagger ETH Zurich

Motivation

Large integer multiplication has applications in:

- Modular arithmetic routines in cryptographic systems
- Number theoretic tasks in kernels
- Computer algebra systems

Computation complexity of naive multiplication: $\mathrm{O}\left(\mathrm{N}^{2}\right)$ Too slow and infeasible for these applications

Our Approach

Fast Fourier Transform (FFT) + Interval Arithmetic

- We perform our multiplication pipeline with FFT \rightarrow computation complexity $\mathrm{O}(\mathrm{N} \log \mathrm{N})$

$$
\begin{aligned}
& y[n]= \sum_{\cdots-n}^{N-1} x_{1}[m] x_{2}\left[(n-m)_{N}\right] \stackrel{\mathrm{DFT} / \mathrm{IDFT}}{\Longleftrightarrow} Y[k]=X_{1}[k] \circ X_{2}[k] \\
& 12 \times 21=[1,2] *[2,1]=[2,5,2] \\
& 12 \times 21=\mathcal{F}^{-1}(\mathcal{F}[1,2] \odot \mathcal{F}[2,1])=[2,5,2]
\end{aligned}
$$

- Pitfalls \triangle : Complex FFTs lead to round-off errors associated with floating point arithmetic

$0 \quad \beta^{c_{\min }} \quad \beta^{c_{\min }+1} \quad \beta^{c_{\min }+2} \quad \beta^{c_{\min }+3}$

- Interval Arithmetic to handle floating point round-off error ∇

$$
\left[x_{1}, x_{2}\right]+\left[y_{1}, y_{2}\right]=\left[x_{1}+y_{1}, x_{2}+y_{2}\right]
$$

$\left[x_{1}, x_{2}\right] \cdot\left[y_{1}, y_{2}\right]=\left[\min \left\{x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}\right\}, \max \left\{x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}\right\}\right]$

Algorithm Interval-arithmetic FFT-based Integer Multiplication	
Input: vector x and y of size N	
Output: vector z of size 2 N	
$i 1 \leftarrow \operatorname{ZeroPad}(x)$	
$i 2 \leftarrow \operatorname{ZeroPad}(y)$	\triangleright zero padding to size of 2 N
$f 1 \leftarrow$ IntervalFFT $(i 1)$	
$f 2 \leftarrow$ IntervalFFT $(i 2)$	
$\operatorname{prod} \leftarrow \operatorname{Mul}(f 1, f 2)$	\triangleright point-wise multiplication
raw_retv \leftarrow IntervalIFFT (prod)	
$z \leftarrow \mathbf{C a r r y}$ (raw_retv)	\triangle Propagate carries

Our Optimization in algorithm-level:

- IntervalFFT uses Decimation-in-frequency (DIF) and

IntervalIFFT uses Decimation-in-time (DIT) \rightarrow avoid bit reversal operation

- Used Real FFT to help decrease the memory usage

Our Optimization in software-level

- Used double-double (128 bits floating point data type) to provide higher precision
- Packed up more bits for an element to lower the FFT size
- Used shared memory for GPU to decrease global memory accesses
- Used OpenMP for CPU to parallelize

Our Goal:

- Support multiplication of billions of digits input
- Achieve comparable or better performance in contrast with GMP

Future work

- We plan to use pruned FFTs to further decrease our memory usage and speed up our algorithm
- We plan to combine our algorithm with Karatsuba to help roundoff errors
- We plan to use higher radix FFT in our algorithm

