
Simulated mode profile of resonance in PhC

Interval Arithmetic FFT for Large Integer Multiplication
Zibo Gong∗, Nathan Zhu∗, Matthew Ngaw∗, Joao Rivera†,

Larry Tang∗, Eric Tang∗, Het Mankad∗, Franz Franchetti∗

*Carnegie Mellon University †ETH Zurich

Motivation
Large integer multiplication has applications in:

- Modular arithmetic routines in cryptographic systems

- Number theoretic tasks in kernels

- Computer algebra systems

Computation complexity of naive multiplication: O(N2)

Too slow and infeasible for these applications

Our Approach
Fast Fourier Transform (FFT) + Interval Arithmetic

- Pitfalls⚠️: Complex FFTs lead to round-off errors

associated with floating point arithmetic

- Interval Arithmetic to handle floating point round-off error ✅

Results

- We tested our algorithms on two platforms:

• GPU (NVIDIA Tesla V100)

• CPU (Intel Xeon E7-4850 v3)

Our Optimization in software-level:

• Used double-double (128 bits floating point data type) to provide

higher precision

• Packed up more bits for an element to lower the FFT size

• Used shared memory for GPU to decrease global memory

accesses

• Used OpenMP for CPU to parallelize

Future work
- We plan to use pruned FFTs to further decrease our memory

usage and speed up our algorithm

- We plan to combine our algorithm with Karatsuba to help round-

off errors

- We plan to use higher radix FFT in our algorithm

- We perform our multiplication pipeline with FFT →

computation complexity O(NlogN)

Our Optimization in algorithm-level:

• IntervalFFT uses Decimation-in-frequency (DIF) and

IntervalIFFT uses Decimation-in-time (DIT) → avoid bit

reversal operation

• Used Real FFT to help decrease the memory usage

Our Goal:

• Support multiplication of billions of digits input

• Achieve comparable or better performance in contrast with GMP

